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Abstract 

 This paper employs an analytical method, where linear and nonlinear integral 

equations are solve using the homotopy analysis method. The Volterra integral 

equations of the second kind are considered by this method. Here an infinite 

solution series which converges to the exact solution of considered equations are 

realized. In this method one is allowed to choose an initial guess and iteratively 

deforms the considered equations with an initial guess to obtain the exact solution. 

 

Keywords: Exact solution; Integral equations; Volterra integral equations; 

Homotopy Analysis Method. 

1 Department of Mathematics, Kwame Nkrumah University of Science and Technology,  
  Kumasi, Ghana. E-mail: Issahim6@gmail.com 
2 Department of Mathematics, Kwame Nkrumah University of Science and Technology,     
   Kumasi, Ghana. E-mail: obengdentehw@yahoo.com 
3 Department of Mathematics, Kwame Nkrumah University of Science and Technology,     
  Kumasi, Ghana. E-mail: nanaamonoo12@yahoo.com 
4 Department of Mathematics,  Kwame Nkrumah University of Science and Technology,  
  Kumasi, Ghana. E-mail: seffahpoku@gmail.com 
 
Article Info: Received: March 5, 2016. Revised : April 6, 2016. 
                    Published online : July 30, 2016. 

                                                           

mailto:Issahim6@gmail.com
mailto:obengdentehw@yahoo.com
mailto:nanaamonoo12@yahoo.com
mailto:seffahpoku@gmail.com


86       Homotopy analysis method for solving Volterra integral equations of the 2nd  kind 

1  Introduction 

Liao in 1992 proposed this analytical method known as homotopy analysis 

method [5] .In this method, the exact solution is obtained as the summation of an 

infinite series which usually converges quickily to the exact solution. Liao in [7] 

introduced an auxiliary parameter h, as a convergence control parameter. Let’s 

consider linear and nonlinear Volterra integral equations   

y(x) = g(x) + ƛ∫ 𝐻(𝑥, 𝑡)𝑑𝑡𝑥
𝑟                                                                                    (1) 

In the equation (1) the upper limit is variable, as the equation is Volterra 

integral equation, the kernel H(x,t) [1] and g(x) are known functions, whereas y is 

to be determined, ƛ is a complex number [3]. 

 

 

2    Description of the method 

Let the following equation 

                                                        N[r(x)]=0                                                        (2) 

These are parameters in equation (2) N nonlinear operator, r(x) which is 

unknown function and x independent variable [8]. Consider r0(x) that represents 

an initial guess of the exact solution r(x), h≠0 an auxiliary parameter, H(x)≠0 an 

auxiliary function, and L an auxiliary linear operator with the property L[r(x)]=0 

when r(x)= 0. Then using q∈[0,1] as an embedding parameter [8], homotopy is 

constructed as [6]  and [4] 

(1 - q)L[ɸ (x : q) – r0(x)] – qhH(x)N[ɸ(x : q)] = 0                                                 (3) 

It should be emphasized that ,there is great laxity in selecting  an initial guess 

r0(x), the auxiliary linear operator L, the non-zero auxiliary parameter h,[6] and 

the auxiliary function H(x).We have the so-called zero-order deformation 

equation[8] 

(1- q)L[ɸ (x : q) – r0(x)] = qhH(x)N[ɸ (x : q)]                                          (4) 
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When q=0, the  equation (4) becomes ɸ (x:0)= r0(x). And when q=1, since h≠0 

and H(x) ≠0, the equation (3) is equivalent to ɸ (x:1)= r(x) .For (3) and (4) as the 

embedding parameter [8] increases from 0 to 1, ɸ (x:q) varies continuously from 

the initial approximation r0(x) to the exact solution r(x)[6]. Where this continuous 

variation is known as deformation in homotopy [1] and[4]. 

As apply to Taylor's theorem, ɸ(x;q) can be expanded in an exponential series 

of q as follows 

                              ɸ(𝑥: 𝑞) = 𝑟0(x)+∑ 𝑟∞
𝑛=1 n(x)qn                                                                          (5) 

where 

                            rn(x)= 1
𝑛!
𝛿𝑛ɸ(𝑥:𝑞)
𝛿𝑞𝑛

∣q=0                                                                    (6)                    

If the initial guess r0(x), the auxiliary linear parameter L, the non-zero 

auxiliary parameter h and the auxiliary function H(x) are selected properly, it 

fascilitates the convergence of power series (5) of ɸ(x:q) [8] at a point where q=1. 

Where  these assumptions of  the solution series are made 

                               r(x)= ɸ(𝑥: 1) = 𝑟0(x)+ 𝑟n(x)                                                   (7)  

where the vector is defined  

                           rn(x)=r0(x), r1(x), r2(x),… rn(x)                                                    (8) 

                           L[rn(x) - 𝜒nrn-1(x)]=hH(x)Rn(𝑟𝑛−1→ (x)) ,       rn(0)=0                     (9) 

Where 

                               Rn(𝑟(x)= 1
(𝑛−1)!

𝛿𝑛−1𝑁[ɸ(𝑥:𝑞)]
𝛿qn−1

∣q=0                                                                 (10)           

And 

                                 𝜒n= �0,     𝑓𝑜𝑟  𝑛 ≤ 1
1,     𝑓𝑜𝑟  𝑛 ≥ 1

� 

As in [2] the equation (9) is governed by  L, and Rn(𝑟𝑛−1→ (x) as presented by 

(10) for any  N, which is the nonlinear operator. And MATLAB is used to obtain 
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rn(x) the solution. The solution r(x) depends on L,h,H(x) and r0(x)see[6]. If  

∑ 𝑟∞
𝑛=1 n(x)   moves to a limit as n→∞, converges to the exact solution [8]. 

               

 

3  HAM's solution to Volterra integral equations 

 Let consider the equation 

             h(t)u(t)=g(x)+ƛ∫ 𝐻(𝑡, 𝑥)𝑥
𝑟 𝑢(𝑡)𝑑𝑡                                                           (11)  

where equation (11)[2] is Volterra integral equation of the second kind if h(t)=1 

 is substituted into equation(11),then 

           U(t)=g(t)+ƛ∫ 𝐻(𝑡, 𝑥)𝑢(𝑥)𝑑𝑥 𝑥
𝑟            b≤ 𝑡 ≤ 𝑐                                       (12) 

construct the zeroth-order deformation [8] for this kind of integral equations as 

     (1-p)(u(t,p,h)-g(x))=hp(u(t,p,h)-g(t)-∫ 𝐻(𝑥, 𝑡)𝑢(𝑥,𝑝,ℎ)𝑑𝑥𝑥
𝑟 )                        (13) 

For p=0 and p=1,implies 

u(t,0,h)=g(t) 

u(t,1,h)=u(t) 

For Maclaurin series of u(t,p,h) corresponding to p, then 

                    U(t,p,h)=u(t,0,h)+∑ 𝑢0
[𝑛](𝑡,ℎ)
𝑛!

+∞
𝑛=1 pn                                                   (14) 

Which 

                       𝑢0
[𝑛](𝑡,ℎ) = 𝛿𝑛𝑢(𝑡,𝑝,ℎ)

𝛿𝑝𝑛
∣p=0                                                                                                 (15) 

Substituting p=1 into (14) give 

                    u(t)=g(t)+∑ 𝑢0
[𝑛](𝑡,ℎ)
𝑛!

+∞
𝑛=1                                                                      (16) 

where the nth-order deformation equation is obtained as 
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    L[𝑢0
[𝑛](𝑡,ℎ) − 𝜒𝑛𝑢0

[𝑛](𝑡, ℎ)]=h𝑅𝑛(𝑢𝑛−1→ )                                                         (17) 

And the solution of the nth-order deformation equation for n≥1 yields 

     𝑢0
[1](𝑡,ℎ) = −ℎ∫ 𝐻(𝑡, 𝑥)𝑔(𝑥)𝑑𝑥𝑥

𝑟                                                                   (18) 

And 

     𝑢0
[𝑛](𝑡,ℎ)
𝑛!

= u0
[n−1](t,h)
(n−1)!

+ h (u0
[n−1](t,h))
(n−1)!

− h∫ H(x, t) u0
[n−1](x,h)
(n−1)!

dxx
r                        (19) 

 The solution of the problem looks similar to that of homotopy perturbation 

method when one choose h = -1[8], [4] and [1].  

Applying the HAM 

Here application of the HAM to Volterra integral equations are considered. 

 

            

4 The Volterra integral equation of the second kind [2] 

Let  look at Volterra integral equation of the second kind, which reads 

     ɸ(x) = g(x) +∫ H(x;  t)ɸ𝑥
𝑎 (t)dt                                                                          (20) 

where H(x,t) is the kernel of the integral equation 

 

Example 1: Consider this Volterra integral equation 

        ɸ(x) =x+ ∫ (3𝑡 − 𝑥)𝑥
0 ɸ(t)dt                                                                          (21)       

Then choose 

              ɸ0(x) = x                                                                                                  (22) 

where the linear operator 

            L[ɸ(x,p)] = ɸ(x,p)                                                                                    (23)         
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 the nonlinear operator is define below 

           N[ɸ(x,p)]= ɸ(x,p)-x-∫ (3𝑡 − 𝑥)ɸ(𝑡)𝑑𝑡𝑥
0                                                     (24) 

where the nth-order deformation equation is 

L[ɸ𝑛-𝜒𝑛ɸ𝑛−1]=h𝑅𝑛(ɸ𝑛−1
→ )                                                                                   (25) 

And 

𝑅𝑛(ɸ𝑛−1
→ )= ɸ𝑛−1(𝑥) − (1 − 𝜒𝑛)x+∫ (3𝑡 − 𝑥)ɸ𝑛−1(𝑡)𝑥

0 dy                                  (26) 

where the solution of the nth-order deformation equation (25) 

ɸ𝑛(𝑥)= 𝜒𝑛ɸ𝑛−1(x)+h𝐿−1[𝑅𝑛(ɸ𝑛−1
→ )]                                                                    (27) 

Finally, 

             ɸ(x)=ɸ0(x)+∑ ɸ𝑛
+∞
𝑛=1 (x)                                                                           (28)     

where 

ɸ0(𝑥) = 𝑥 

 

ɸ1(𝑥) = −∫ (3𝑡 − 𝑥)𝑥
0 ɸ0(𝑡)𝑑𝑡 =-h3

3!
𝑥3 

 

ɸ2(𝑥) = −∫ (3𝑡 − 𝑥)𝑥
0 ɸ1(𝑡)𝑑𝑡 = h9

5!
𝑥5 

 

ɸ3(𝑥) = −∫ (3𝑡 − 𝑥)𝑥
0 ɸ2(𝑡)𝑑𝑡 =-h27

7!
𝑥7 

 

ɸ4(𝑥) = −∫ (3𝑡 − 𝑥)𝑥
0 ɸ3(𝑡)𝑑𝑡 = h81

9!
𝑥9 

 

. 

. 

. 

Hence 
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ɸ(x)= ɸ0(𝑥) + ɸ1(𝑥)+ɸ2(𝑥)+ɸ3(𝑥)+ɸ4(𝑥) + ⋯ 

       =x - h 3
3!
𝑥3 + h9

5!
𝑥5 - h27

7!
𝑥7 +  h 81

9!
𝑥9 

       If h= -1 

       = x +  3
3!
𝑥3 - 9

5!
𝑥5 + 27

7!
𝑥7 - 81

9!
𝑥9 

      =∑ (−3)𝑛

(2𝑛+1)!
𝑥(2𝑛+1)+∞

𝑛=0                                                                                     (29) 

 

Which is the exact solution of equation (21) 

 

 
Figure 4:1 Example 1.Exact solution to equation (21) [3]. 

 

The following algorithm produces Figure 4.1 using the Matlab software. 
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function [x,sumc] = solplot1(x,n) 

        sumc(1) = x; 

    for i=1:n 

        num = (-3)^i; 

        den = factorial(2*i+1); 

        rsult = num/den; rsult = rsult*x^(2*i+1); 

        sumc(i+1) = sumc(i) + rsult; 

    end 

     plot(1:n+1,sumc) 

     %plot(1:n,sumc(2:end)) 

end 

 

Example 2: Consider the following Volterra integral equation 

            ɸ(x)=2x - 𝑥2 − ∫ ɸ(t)dt𝑥
0                                                                          (30)               

To solve equation (30), choose 

               ɸ0(x)=2x - 𝑥2                                                                                          (31) 

And the linear operator 

                   L[ɸ (x; p)] = ɸ (x; p)                                                                         (32) 

And the nonlinear operator is defined as 

      N[ɸ (x; p)] = ɸ (x; p) - 2x + 𝑥2 + ∫ ɸ(t)dt𝑥
0                                                   (33) 

Let’s construct the nth-order deformation equation 

     L[ɸ𝑛-𝜒𝑛ɸ𝑛−1]=h𝑅𝑛(ɸ𝑛−1
→ )                                                                              (34) 

And 

      𝑅𝑛(ɸ𝑛−1
→ )= ɸ𝑛−1(𝑥) − (1 − 𝜒𝑛)2x + 𝑥2 + ∫ ɸ(t)dt𝑥

0                                     (35)         

The solution of the nth-order deformation equation (34) 

        ɸ𝑛(𝑥)= 𝜒𝑛ɸ𝑛−1(x)+h𝐿−1[𝑅𝑛(ɸ𝑛−1
→ )]                                                             (36) 

Finally, the solution of equation (30) is 
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          ɸ(x)=ɸ0(x)+∑ ɸ𝑛
+∞
𝑛=1 (x)                                                                              (37) 

where 

ɸ0(x)= 2x - 𝑥2 

ɸ1(x)=∫ ɸ0(t)dt =𝑥
0 ∫ (2𝑡 −  𝑡2)𝑑𝑡 = ℎ𝑥

0 ( 𝑥2 -1
3
𝑥3) 

ɸ2(x)=∫ ɸ1(t)dt =𝑥
0 ∫ � 𝑡2 − 𝑡3

3
� 𝑑𝑡 =𝑥

0  ℎ(1
3
𝑥3 − 𝑥4

12
) 

ɸ3(x)=∫ ɸ2(t)dt =𝑥
0 ∫ �1

3
𝑡3 − 𝑡4

12
� 𝑑𝑡 =𝑥

0 ℎ( 𝑥
4

12
− 𝑥5

60
) 

ɸ4(x)=∫ ɸ3(t)dt =𝑥
0 ∫ �𝑡

4

12
− 𝑡5

60
� 𝑑𝑡 =𝑥

0 ℎ( 𝑥
5

60
− 𝑥6

360
) 

. 

. 

. 

Hence 

ɸ(x) = ɸ0(𝑥) + ɸ1(𝑥)+ɸ2(𝑥)+ɸ3(𝑥)+ɸ4(𝑥) + ⋯ 

        = 2x - 𝑥2 + h( 𝑥2 -1
3
𝑥3) + ℎ(1

3
𝑥3 − 𝑥4

12
) + ℎ( 𝑥

4

12
− 𝑥5

60
) + ℎ( 𝑥

5

60
− 𝑥6

360
) 

If h= -1 

      =2x - 𝑥2 - 𝑥2 +1
3
𝑥3 − 1

3
𝑥3 + 𝑥4

12
− 𝑥

4

12
+ 𝑥5

60
− 𝑥

5

60
+ 𝑥6

360
 

      = ∑ ɸ𝑛(𝑥)+∞
𝑛=0  = 2x - 2𝑥2                                                                               (38) 

          
Which is the exact solution to equation (30), [3]. 

 

Example 3: Let consider the following Volterra equation 

       ɸ(x)= x +∫ ɸ2(t)dt𝑥
0                                                                                     (39) 

To solve equation(39),let 
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       ɸ0(𝑥) = 𝑥                                                                                                       (40) 

choose  linear operator 

L[ɸ (x; p)] = ɸ(x; p)                                                                                             (41) 

Thus the nonlinear operator is 

N[ɸ (x; p)] = ɸ (x; p) - x −∫ ɸ2(t)dt𝑥
0                                                                   (42) 

And the nth-order deformation equation is as follows 

L[ɸ𝑛(𝑥)-𝜒𝑛ɸ𝑛−1]=h𝑅𝑛(ɸ𝑛−1
→ )                                                                              (43)       

And 

𝑅𝑛(ɸ𝑛−1
→ )= ɸ𝑛−1(𝑥) − (1 − 𝜒𝑛) x −∫ ɸ2(t)dt𝑥

0                                                  (44)                          

where the solution of the nth-order deformation equation (43) 

ɸ𝑛(𝑥)= 𝜒𝑛ɸ𝑛−1(x)+h𝐿−1[𝑅𝑛(ɸ𝑛−1
→ )]                                                                    (45) 

Finally, the solution of equation (39) is 

ɸ(x)=ɸ0(x)+∑ ɸ𝑛
+∞
𝑛=1 (x)                                                                                        (46)       

where 

ɸ0(𝑥) = 𝑥 
 

ɸ1(𝑥) = −� ɸ0
2(𝑡)𝑑𝑡 =  −[

1
3!
𝑡3]0𝑥 = −ℎ

1
3!
𝑥3

𝑥

0
 

                              

ɸ2(𝑥) = −� ɸ1
2(𝑡)𝑑𝑡 =  −[

1
7!
𝑡7]0𝑥 = −ℎ

1
7!
𝑥7

𝑥

0
 

 

ɸ3(𝑥) = −� ɸ2
2(𝑡)𝑑𝑡 =  −[

1
15!

𝑡15]0𝑥 = −ℎ
1

15!
𝑥15

𝑥

0
 

 

ɸ4(𝑥) = −� ɸ3
2(𝑡)𝑑𝑡 =  −[

1
31!

𝑡31]0𝑥 = −ℎ
1

31!
𝑥31

𝑥

0
 

. 

. 
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. 
 
 
 
Hence 
 
ɸ(x) = ɸ0(𝑥) + ɸ1(𝑥)+ɸ2(𝑥)+ɸ3(𝑥)+ɸ4(𝑥) + ⋯ 
 
       = x + − ℎ 1

3!
𝑥3 + − ℎ 1

7!
𝑥7 + −ℎ 1

15!
𝑥15 + − ℎ 1

31!
𝑥31+… 

 
If h= -1 
 
       = x + 1

3!
𝑥3  + 1

7!
𝑥7 + 1

15!
𝑥15 + 1

31!
𝑥31+… 

 
       = ∑ ɸ𝑛

+∞
𝑛=0 (x)                                                                                                 (47)     

 
Which is the exact solution to equation (39). 

 

 
Figure 4.2: Example 3. Exact solution to equation (39) [3]. 
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The following algorithm produces Figure 4.2 using the Matlab software. 

 

function [x,sumc] = solplot4(x,n)  

    sumc(1) = x; m=1; 

    for i=1:n 

        m = 2*m+1; 

        num = 1; 

        den = factorial(m); 

        rsult = (num*x^m)/den; 

        sumc(i+1) = sumc(i) + rsult; 

    end 

     plot(1:n,sumc(2:end))   

end 

 

Example 4: Let consider the Volterra integral equations 

ɸ(x)= x + 1
2 ∫ ɸ2(t)dt𝑥

0                                                                                          (48)                     

To solve equation (48), choose 

ɸ0(x) = x                                                                                                            (49) 

the linear operator 

L[ɸ (x; p)] = ɸ(x; p)                                                                                             (50) 

Now define the nonlinear operator is 

N[ɸ (x; p)] = ɸ (x; p) - x −1
2 ∫ ɸ2(t)dt𝑥

0                                                                (51)  

And the nth-order deformation equation is 

L[ɸ𝑛-𝜒𝑛ɸ𝑛−1]=h𝑅𝑛(ɸ𝑛−1
→ )                                                                                   (52)      

And 
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𝑅𝑛(ɸ𝑛−1
→ )= ɸ𝑛−1(𝑥) − (1 − 𝜒𝑛) x −1

2∫ ɸ2(t)dt𝑥
0                                                (53)      

where the solution of the nth-order deformation equation (52) 

ɸ𝑛(𝑥)= 𝜒𝑛ɸ𝑛−1(x)+h𝐿−1[𝑅𝑛(ɸ𝑛−1
→ )]                                                                    (54) 

Finally,equation (48) 

ɸ(x)=ɸ0(x)+∑ ɸ𝑛
+∞
𝑛=1 (x)                                                                                        (55) 

where 

ɸ0(𝑥) = 𝑥 
 
ɸ1(x) =−1

2 ∫ ɸ0
2(𝑡)𝑑𝑡 =  −1

2
[𝑡
3

3
]0𝑥 =  −ℎ 1

6
𝑥3𝑥

0   
 
ɸ2(x) =−1

2∫ ɸ1
2(𝑡)𝑑𝑡 =  −1

2
[𝑡
10

10
]0𝑥 =  −ℎ 1

20
𝑥10𝑥

0   
 
ɸ3(x) =−1

2∫ ɸ2
2(𝑡)𝑑𝑡 =  −1

2
[𝑡
101

101
]0𝑥 =  −ℎ 1

202
𝑥101𝑥

0   
 
. 
. 
. 
Hence 
 
ɸ(x) = ɸ0(𝑥) + ɸ1(𝑥)+ɸ2(𝑥)+ɸ3(𝑥)+… 
 
       = x + −ℎ 1

6
𝑥3 +  −ℎ 1

20
𝑥10 + −ℎ 1

202
𝑥101 

 
If  h= - 1 
 
= x + 1

6
𝑥3 +  1

20
𝑥10 + 1

202
𝑥101 

Which is the exact solution to equation (48). 
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Figure 4.3: Example 4. Exact solution to equation (48). 

 

The following algorithm produces Figure 4.3 using the Matlab software. 

 

function [x,sumc] = solplot5(x,n) 

    sumc(1) = x; m=sqrt(2); 

    for i=1:n 

        m = m^2 + 1; 

        num = x^m; 

        den = 2*m; 

        rsult = (-1)^(i+1) * (num/den); 

        sumc(i+1) = sumc(i) + rsult; 

    end 

     plot(1:n,sumc(2:end)) 

end 

% % Script to run 
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Solplot1(0.5,100) 

Solplot2(1,100) 

Solplot3(1,100) 

\end{verbatim}[3] 

 

 

5  Conclusion 

  Volterra integral equation of the second kind has been solved successfully by 

Homotopy analysis method (HAM).The exact solutions obtained by the analytical 

solution of the considered equations showed that HAM is a powerful method for 

solving Volterra integral equations. 
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