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Abstract 

We investigate the potential benefits of high performance cloud computing 

(HPCC) for novel application domain namely symbolic computation, and 

specifically for computational algebra as provided by systems like Maple, 

Mathematica or GAP. HPCCs potentially offer the computational power of a large 

number of hosts, flexible configuration, and ease of access to a specialized, 

high-performance configuration. Computational algebra deals with the symbolic 

manipulation of mathematical problems, often and many algebraic computations 

are time consuming and therefore promising candidates for parallelism. However, 

the nature of these computations is fundamentally different to classic 

high-performance scientific computation: many are highly dynamic, use complex 

recursive data structures, exhibit high degrees of irregularity, generate large 

intermediate data structures and primarily use arbitrary precision scalars rather 
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than floating point values. We present an initial study on how to use existing 

HPCC frameworks for computational algebra.  We port a C+MPI parallel 

implementation of a representative computational algebra application, the parallel 

determinisation of a non-deterministic finite state automaton, to an HPCC and 

evaluate the performance on several cloud infrastructures. The key issies for the 

HPCC implementation are the efficient management of massive intermediate data 

structures, up to 1.1TB, and fast access to the file system in order to store such big 

data structures. 

 

Keywords: Computational algebra; CALCIUM; C+MPI; Cloud infrastructures; 

OpenNebula (key words) 

 

 

1  Introduction  

Cloud computing has the potential to simplify access to domain-specific 

software and to provide computational power far in excess of what is available 

locally to a user. The ease of access is realised by the concept of delivery of 

computing as a service rather than a product, which is core to the idea of cloud 

computing. This service allows the user (individuals and businesses) to use 

software and hardware that are located and managed (located remotely) by third 

parties. Accessing the cloud resources and information via cloud computing 

services is possible from anywhere while a network connection is available. The 

benefits of this type of service are reduced computing cost (e.g. cloud users do not 

have to invest in infrastructure, purchase hardware, or buy software licenses, etc.) 

and reduced complexity of owning and operating shared pool of resources 

(Computers, networks and data storage space) [1]–[4]. 

We investigate the potential benefits of high performance cloud computing 

(HPCC) for novel application domain, namely symbolic computation. The 
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elasticity that comes with the Cloud offers the opportunity to adapt the 

configuration of a parallel programming platform on demand, in particular based 

on the size of the input data that needs to be processed. In order to deal with the 

computational complexity of symbolic computation problems, it is crucial that 

parallel programming is applied to deal with realistic inputs. Therefore, our focus 

is on combining established parallel programming technology, in particular using 

MPI for message passing on a distributed cluster of machines, and port one 

representative application from this area to modern Cloud infrastructures[1]–[4]. 

Using applications with significant processing time requirements, which require a 

reliable high bandwidth, and low latency networks and resources, that utilise 

supercomputers and computer clusters to address complex computational 

requirements (science, engineering, and business) are called High Performance 

Computing (HPC). Nowadays, Cloud computing centers (e.g. KTH PDC2 Cloud) 

provide such high specification hardware outside the established supercomputing 

centers, and make this hardware globally available. In particular, Cluster GPU 

(with thousands of cores), or Cluster Compute services on-demand to speed up 

and reduce the cost of such complex applications, and researches without large 

capital investments. Some high profile examples of clouds available for the public 

are Azure, Amazon Web Services, and Google App Engine [1, 5, 6]. 

The specific symbolic computation addressed in our work is the 

determinisation of a finite state automaton. It is representative for this domain 

because it requires massive compute resources (the sequential runtime for small 

inputs on a cluster is ca 40 minutes and reported parallel runtimes for large inputs 

exceed a full day [7], it generates large intermediate data structures (that are 

managed by a tailored library for file storage of symbolic data structures) and 

generates highly irregular parallelism (with large variations in the compute time 

between threads). It is therefore a challenging high-performance computing 

example, representative for computational mathematics applications. 

Our work started with a parallel version of the application, developed for 
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clusters, using C+MPI to expose massive parallelism and using a domain-specific 

library for fast access to files, that hold the intermediate data structures (Roomy 

[8], [9]). Our immediate goal was to port this application to cloud infrastructures, 

using the already existing parallelism. We explored several cloud infrastructures, 

starting with a private cloud and settling for KTH PDC2 OpenNebula cloud 

[10]–[12].  

In this paper we reflect on the process of porting the determinisation 

application to several cloud infrastructures, in particular we assess the suitability 

of high-performance cloud computing for symbolic applications, and we 

summarise the performance results from running the application on one private 

and on one public cloud.  

The remainder of this paper is organized as follows. In sections 2, 3, 4 and 5 

we review the cloud models, high performance computing (HPC), computational 

algebra and finite state automata in sequence. Section 6 describes the  

determinisation application. In sections 7 and 8 the proposed work is outlined and 

described (CALCIUM and CALICIUM component & structure). Results and 

discussion are presented in section 9.  Finally, in section 10, conclusions are 

drawn and future work is proposed. 

 

 

2   Cloud Models 

Clouds are different from one to another depending on their performance, 

resources and the underlying software infrastructure. Clouds as shown in Figure 1 

could be a private (dedicated to a particular organization), public (managed by a 

service provider who hosts the cloud infrastructure) or hybrid (composition of two 

or more clouds).  
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Figure 1:  Cloud Models 

 

 

Despite of the clouds infrastructure, most of them if not all provide the same 

service types as shown in Figure 2. In the Software as a Service (SaaS) modela 

third party service provider hosts and makes available a business application to 

clientusers on a subscription basis (GoogleApps, Webmail’s, Salesforce.com etc.). 

 

 
Figure 2:  Cloud Services 

 

In the Platform-as-a-Service (PaaS) modelthe vendor (service provider) 

provides a platform and environment to allow clients (developers) to build 

applications and services over the internet. The third model is called Infrastructure 

as a Service (IaaS): On a client per-use basis the service provider owns the cloud 

resources (equipment) and is responsible for housing, running and maintaining it. 
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In IaaS, the client rents not only the computing power, but also the infrastructure, 

including power, cooling, and networking [5,1,13,14]. 

 

 

3  High Performance Computing 

High Performance Computing (HPC) aims to deliver the computational 

power of massively parallel architectures to the programmer. Therefore, it needs 

to provide a model for parallel programming that can make use of this hardware. 

Traditionally the hardware is purchased by national institutions, managed by a 

specialized supercomputing centre and the parallel programming technology that 

is provided tends to be low level, for example Fortran with an MPI library for 

explicit message passing between parallel processes. More recently the trend is 

towards large clusters run by large multi-national institutions rather than dedicated 

supercomputers , and towards providing higher level language models that 

simplify the challenging task of parallelising an application. A high profile 

example of this approach is Google's MapReduce programming model that has 

been highly successful in parallelising a range of applications and is used in 

Google's warehouse compute centres. Open source implementations of this 

concept make it available to a wider class of users and can be applied to local 

clusters as well [3,2,15]. 

The next logical step beyond cluster and warehouse computing is to use the 

computational power of emerging cloud infrastructures to perform parallel 

programming. While this offers obvious benefits in terms of elasticity and the size 

of the available computing platform, it also raises new challenges, in particular 

how to map the existing parallel programming technology to clouds with dynamic 

allocation of resources. To outline the spectrum of these challenges, we start with 

a characterisation of High Performance Computing [16,15]: 
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A. Compute-Intensive Problems:  

- Supercomputers and Computer clusters are used to solve advanced 

computation problems. 

B. Complex Data Structure:  

- HPC has the capacity to handle and analyse massive amounts of data at high 

speeds so that Tasks that can take months using normal computers can be 

done in days or even minutes. 

C. Pattern-based parallel programming:  

- An active technique to improve the performance of computationally intensive 

programs (eg. Google's MapReduce).  

- Incurs costs of increasing the complexity of the programs, since new issues 

must be addressed for a concurrent application.  

- Parallel programming environments provide a way for users to reap the 

benefits of concurrent programming without explicit parallelism in the code.  

D. Uses are diverse and examples include: 

- Facial reconstruction modelling, animated graphics, fluid dynamic 

calculations, nuclear energy research, petroleum exploration, car crash 

simulations, airflows over aircraft wings, data mining and storage.  

 

 

4  Computational Algebra    

In computer and mathematical science, the domain of symbolic computation 

deals with the processing of complex, structured data, rather than flat numerical 

data. Computational algebra deals with the symbolic manipulation of 

mathematical problems, often to simplify a class of problems into a form that can 

be more easily solved. It can therefore be seen as a powerful pre-processing step 

or a general approach to solve entire classes of problems. Algorithms in these 

systems encode mathematical knowledge that can be used to vastly reduce the 

complexity of a more concrete problem. Typically, modern computer algebra 
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systems such as Maple or Mathematica [18]are used in engineering disciplines to 

simplify the mathematical model that has been developed for a concrete 

application. Because of this generality, computational algebra applications are 

often very time consuming and therefore promising candidates for parallel 

computation [17]. 

One instance of such model simplification is the algorithm for converting a 

NFA into a DFA [19]. NFAs model complex systems that exhibit 

non-deterministic behaviour, i.e. that behave differently on the same input at 

different points in time. General questions about NFAs are difficult to automate, 

because such questions need to consider all possible behaviours of the NFA. A 

DFA formulation that exhibits the same behaviour is therefore more desirable 

becauseoperations or queries on it can be implemented far more efficiently. There 

has been strong interest in this process of automata “determinisation” over the past 

4 decades, building on a rich algorithmic theory in computational algebra and 

automata theory. Our goal in this work is to bring the knowledge currently 

encoded in computational algebra algorithms to cloud infrastructures, making it 

immediately available to a larger class of scientific users and to profit from the 

computational power available on cloud infrastructures. The nature of these 

computations is fundamentally different to classic high-performance scientific 

computation: 

A. Highly dynamic:  

- Generating massive parallelism at intermediate stages). 

B. Structures: 

- Use complex recursive structures rather than flat arrays. 

- Generate large intermediate data structures (impacting the granularity of the 

parallelism). 
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C. Accuracy: 

- Primarily use (arbitrary precision) scalar rather than floating point operations. 

D. Speed: 

- Computational algebra applications are often very time consuming. 

Traditionally, experts in this area, mostly mathematicians, have been concerned 

with building theories that simplify the structures satisfying a particular set of 

axioms and proving properties over these structures. Algorithmic aspects often 

receive much less attention, and significant improvements in performance are 

possible even on sequential code. Parallelisation of such complex code would 

bring another boost in performance, but is rarely realised because it requires in 

depth knowledge of both the underlying mathematical domain and the intricacies 

of parallel programming. Combining both sequential and parallel optimisations 

can result in dramatic speedups, as we have recently shown in running a computer 

algebra application on the Archer super-computer [20]where we improved on the 

sequential performance by a factor of 350. The results in [20] also present the first 

ever modern HPC-scale parallelisation of a problem in computational group 

theory, yielding speedups of up to 548 on 992 cores. These results indicate the 

potential for performance improvements through HPC for symbolic computation 

applications, and in this paper we focus on cloud infrastructures as the underlying 

platform. 

 

 

5  Finite State Automata 

Finite State automata (FSA), also known as finite-state machines (FSM) are 

commonly used in the design and modelling of complex systems across a range of 

application areas, and can model a large number of problems in hardware and 

software engineering. They are  also the basis for a lot of work in pattern 
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matching (such as the pattern matching which is performed by Google in 

searching documents for keywords) and for research into computer applications 

for speech and language processing [19,21,22]. 

The behaviour of programs or systems can often be modelled as a set of 

states, with input triggering a state change and optionally producing an output. Not 

only Computer systems can be modelled, but also hardware devices across a range 

of domains (e.g. clocks, vending machines, washing machines, wish washers, 

microwaves), which perform a computational processing or predetermined 

sequence of actions depending on a sequence of events (inputs from the external 

world). These machines can be thought of as a reactive system (work by reacting 

to input signals). We can say that state machines are a method of modeling 

systems whose output depends on the entire history of their inputs, and not just on 

the most recent input [23,24, 25]. 

  Finite State Automata (FSA) characteristics: 
- A finite number of states 

- A finite number of transitions in between, labelled by char. {E epsilon transitions} 

- Used to decide if an input string is a member in some particular set of strings. 
 

Finite state automata (FSA) can be nondeterministic finite automata (NFA), or 

deterministic finite automata (DFA).    

A. NonDeterministic Finite Automata (NFA) 

- A finite state machine (e.g. M1).   

- A given input symbol (with a binary alphabet that determines if the input ends with a 

1), the automaton may jump into several possible next states as shown in Figure 

3. 
 

 
 

Figure 3:  M1 a NonDeterministic Finite Automaton  
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• The transition relation Δ can be defined by the state transition specified in 

Table 1. 

 

 

Table 1: m1 transition table 

 0 1 

P {p} {p, q} 

Q {  } { } 

 

• Δ (p, 1) has more than one state therefore M1 is a nondeterministic Finite 

Automata (NFA). 

B. Deterministic Finite Automata (DFA)   

- A finite state machine (e.g. M2).  

- A given input symbol (with a binary alphabet, which requires that the input contains 

an even number of 0s), the next possible state is uniquely determined either S1, or 

S2 as shown in Figure 4. 

-  
                                         1                      1          

                                   0 

                                   0 

 

 

Figure 4:  M2 a Deterministic Finite Automaton (DFA) 

 

• Table 2. shows the state transition for M2. 
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Table 2: m2 transition table 

State Inputs 

 0 1 

S1 S2 S1 

S2 S1 S2 
 

• Δ (S1, S2, 0, 1) has only one state therefore M2 is deterministic Finite 

Automaton (DFA). 

 
 

6  Determinisation Application 

The determinisation application is the demonstrator application, originally 

developed for clusters, that we have ported to the cloud infrastructure. This 

application is a parallel transformation of a non-deterministic finite state automaton 

(NFA) into a deterministic finite state automaton (DFA) [8]. The structure of the 

application is to first perform a standard sub-set construction followed by 

minimisation of the intermediate DFA [26]. One notable feature of the algorithm is 

that the intermediate DFA can be extremely large. We start from a parallel version 

of the application, developed for clusters, using C+MPI to expose massive 

parallelism. The application exhibits a parallel disk-based algorithm (based on a 

RAM-based parallel algorithm used on supercomputers in the late 1990s and early 

2000s [27],[28]) to produce an intermediate DFA with almost two billion states and 

then continues by producing the corresponding unique minimal DFA with less than 

800,000 states. The original computations were carried out on a 29-node computer 

cluster, each node’s processor being a 4-core Intel Xeon CPU 5130 running at 2 

GHz with 8 or 16GB RAM, at least 200GB free disk space and ran Red Hat Linux 

kernel version 2.6.9 [7]. 

The largest, previous computations of this kind were carried out in 1996 on a 
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512- processor CM-5 supercomputer to produce an intermediate DFA with 525,000 

states. The corresponding minimal DFA states were unreported. In the original 

paper [7] the parallel disk-based computation is also compared with both a 

single-threaded and multi-threaded RAM-based implementation using a 16-core 

128 GB large shared memory computer.  One characteristic feature of the work in 

[7] is the usage of a scalable disk-based parallel algorithm, using the Roomy library 

[8,9], to relieve the critical bottleneck in many automata-based computations. This 

requires the construction of an intermediate non-minimal DFA whose, often very 

large, size has been the critical limitation on previous RAM-based computations. 

Thus, researchers may use a departmental cluster or a SAN (storage area network) 

to produce the desired minimal DFA off-line, and then embed that resulting small 

DFA in their production application. In the original paper [7] there is a motivating 

example, demonstrates the production of a two-billion state DFA that is then 

reduced to a minimal DFA with less than 800,000 states. 

Roomy [8,9] is an open-source library for parallel disk- based computing, 

providing an API for operations with large data structures. The hash table, list and 

array are the three Roomy data structures that we have used. Operations to these 

data structures are batched and delayed until the user decides that there are enough 

operations for processing to be performed efficiently. In doing so, a latency penalty 

is paid only once for accessing a large chunk of data, and aggregate disk bandwidth 

is significantly increased.  Data that needs to be sent to other compute nodes by 

Roomy is first buffered in local RAM, in buckets corresponding to each compute 

node. For a given piece of data, Roomy uses a hash function to determine which 

compute node should process that data and, hence, in which bucket to buffer that 

data. Once a given buffer is full, the data it contains is sent over the network to the 

corresponding compute node (or to the local disk, if the data is to be processed by 

the local node) [7]. 
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7  Calcium 

The primary scientific result of CALCIUM is a cloud-level, parallel 

transformation of non-deterministic finite state automata (NFA) into deterministic 

FSA [19,21,22]. The specific problem used as an instance of this problem is an 

enumeration of possible permutations generated by two (bounded) stacks 

connected in series. This is a generalization of a problem introduced by Knuth in 

The Art of Computer Programming (Volume 1). The parallel determinisation of 

FSA is of general relevance because FSA are widely used in computer science, e.g. 

in natural language processing, speech recognition, computer aided verification via 

model checking and modelling of complex systems, for example in UML. One 

specific example is that any UML 2 compiler must convert ND FSA into a 

deterministic FSA. 

If an FSA can make several transitions based on the same input its behaviour 

is non-deterministic. A non-deterministic FSA is a convenient way of modelling 

inherently non-deterministic behaviour, but it is problematic from an 

implementation point of view, because all possible sequences of transitions have to 

be considered. Therefore, determinising a non-deterministic FSA can be seen as a 

pre-processing step, with benefits for all applications that use an FSA 

representation of a system. 

 

 

8  Calcium Components & Structure 

Our main development was done directly on OpenNebula, building on the 

existing C+MPI implementation of the determinisation application for clusters. We 

selected OpenNebula as a platform, to profit from the performance gains through 

para-virtualisation of the Linux-based application. As described in Table 3, our 

application was designed to be high performance, rather than high-throughput, like 
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most cloud applications. By using C+MPI as an implementation platform it 

provides a scalable scenario of parallel execution. Thus, the majority of our work 

focused on scalability improvements for our application and corresponding 

measurements directly on OpenNebula. 

 

Table 3: Infrastructure components 
 Components Platform Infrastructures 

 

R
oo

m
y 

O
pe

nN
eb

ul
a 

C
O

M
PS

s 

Pr
iv

at
e 

C
lo

ud
 

K
TH

 C
lo

ud
 

Linux 

Ver. 0.9.1 3.0 1.5 4 

Nodes 

PDC2 Ubuntu 12.04 

 

Profiting from our experience with cloud infrastructures, we decided to first 

develop a technology exemplar that exhibits the characteristics of parallel symbolic 

computation within a small program (Parallel Totient Range, sumEuler). In early 

phases of the project we have used the same technology exemplar on our private 

cloud, and achieved near linear speedups on 4 nodes.  On the KTH cloud we were 

given up to 3 VM instances and running our technology exemplar achieved a 

speedup of 2.9 on 3 VMs (Microsoft VitualBox4.1 ), indicating that the platform is 

a suitable basis for our high-performance, symbolic application.  After validating 

the software stack, we ported our main determinisation application to an 

OpenNebula-based Cloud infrastructure. The initial port was done on our own 

3-node private cloud, facilitating the development phase through unrestricted 

access to an infrastructure under our full control.  The configuration of our private 

cloud is depicted below as shown in Figure 5. 

The initial port required some changes to the configuration of the Roomy 

library, to match the characteristics of a cloud versus a cluster and to improve 

performance of disk access. After these changes we managed to achieve speedups 
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of up to 2.1 on a 4 node private cloud configuration, reducing execution time from 

43 minutes 2 seconds to 21minutes. However, scalability of the results was limited 

due to the limited resources available on our private cloud, which was set up as 

development but not as a deployment platform. Therefore, our main goal in moving 

to the KTH cloud infrastructure was to run our parallel application on larger inputs 

and perform scalability measurements on a larger cloud configuration. 

 

 
 

 

 

 

 

 

 

 

Figure 5:  CALCIUM private cloud structure 

 

However, when accessing the KTH cloud infrastructure we were given only a 

very restricted configuration of 1 GB main memory, 4 GB total disk space and 3 

VM instances.  As a result, we were only able to run the two smallest input sets 

on this infrastructure. Bearing these restrictions in mind, we achieved excellent 

results on the KTH cloud. For the input set A2, a representation of a TokenPassing 

network as described above, we achieved speedups of up to 6.6 on a 3 node 

configuration, reducing execution time from 39min48sec to 6min. This super-linear 

speedup is most likely due to more efficient handling of smaller files by the Roomy 

library when distributing the execution over several nodes. It can therefore be seen 

as a cache-effect, specialized to symbolic computation and the underlying library 

taking the role of the main memory. 
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9  Results And Discussion 

For validation of the determinisation application on the KTH cloud, we ran 

the small input files (A1 and A2) through the application, and did a binary 

comparison of the output files with those produced on our private cloud, to ensure 

that the application produces the correct result. 

Our primary input data is an NFA that is a representation of a TokenPassing 

network [29], elaborated on in[7]. TokenPassing networks are in important 

modelling tool for studying the behaviour of computer networks. In the context of 

symbolic computation, this application is of interest because it can be seen as an 

instance of a permutation group, describing which permutations to a sequence of 

values can be produced when passing the values through a series of stacks, 

allowing for limited re-ordering of the elements by each stack. The 

non-determinism in this application comes from the choice between passing an 

incoming element to the next phase or pushing it onto the local stack. The origin of 

studying these kinds of applications goes back to a problem introduced by Knuth in 

“The Art of Computer Programming” (Volume 1)[30], and has been studied in 

several forms in the areas of theoretical computer science and computational group 

theory. In particular, it has been used as a case study for applying automata-based 

algorithms in the GAP[31,32] system for computational group theory. 

The A2 input data used in the measurements represents such an NFA with 

3541 states and 8 transitions.  The resulting, minimised deterministic finite state 

automata contains 1236 states. Although this output size is smaller than the input 

size, the non-minimised, intermediate deterministic finite state automaton, which is 

the result of a standard sub-set construction[26] in the first phase of the algorithm, 

is much larger, containing 646304 states in total, and the resource requirements are 

largely determined by this intermediate data structure. Such huge intermediate data 

structures are one typical characteristic of symbolic applications, and can also be 

observed in other algorithms such as Knuth-Bendix or Groebner Bases. 

The physical setup of our experiments involves 3 VM instances both on our 
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private cloud and on the public KTH cloud that was used as deployment platform 

in this project. We initially set up a small private cloud as main development 

platform for the code in order to retain complete control over the hardware and 

software architecture, after some initial experiences from using externally hosted 

clouds. This decision proved to be important to speed-up the development of the 

core application. The size of the deployment platform was prescribed by the hoster 

of the external cloud and is elaborated on below. Key components in our software 

architecture are the aforementioned Roomy library [8,9] for efficient disk-storage 

of large symbolic data structures, MPICH2 [33, 34] as a highly tuned 

implementation of the MPI standard for message passing on distributed memory 

architectures, and the GAP [31,32]system for computational group theory (mainly 

to validate the data produced by the parallel application). Our development built on 

the cluster-based implementation of the determinisation algorithm described in [7]. 

Our focus was on the port the application to cloud infrastructures and to test 

performance and scalability on these. In the bigger picture, we want to assess the 

suitability of HPC clouds for running parallel symbolic computations. 

Porting a substantial symbolic computation application to several 

state-of-the-art cloud infrastructures required us to deal with challenges specific to 

the domain.  The determinisation application requires massive compute resources 

(the sequential runtime for small inputs is ca 40 min and reported parallel runtimes 

for large inputs exceed a full day), generates large intermediate data structures (that 

are managed by a tailored library for file storage of symbolic data structures) and 

generates highly irregular parallelism (with large variations in the in compute time 

between threads). Specifically, the original, cluster-based algorithm has a peak disk 

consumption of 1.1TB and a sequential runtime of 1 day 12 hours [7]. For these 

kinds of disk-intensive applications it is important to have efficient disk-access. 

Our preferred setup of OpenNebula enables us to make use of para-virtualisation, 

by running a Linux-based application on a Linux host system, thereby avoiding 

overhead that would come with an emulation-based, full virtualisation. This is 
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likely to be a common issue for data-intensive applications in this domain, and the 

determinsation application is an extreme case for such an application (other 

examples in this class include a fast, parallel multiplication operation on large 

permutations[35] and a parallel library for the management of large binary decision 

diagrams [36]). 

Irregularity of the parallelism is another major challenge for symbolic 

applications. The number of live threads may vary largely across the execution and 

so do the compute times of the generated threads, with variations up to five orders 

of magnitude.  In a cloud context and through virtualisaton technology, the system 

has the additional flexibility of assigning VMs to physical machines. Therefore, 

VM-based load balancing mechanisms, that monitors the activity of a VM and, 

upon excessive load, migrate an entire VM to a different physical machine, are 

particularly promising for this kind of applications. It would devolve the 

challenging task of thread-based load-balancing inside the computer algebra engine 

to the higher VM level, employing generic techniques at that level. 

The table below (Table 4) summarizes our main performance results, 

comparing the runtimes on our private cloud with those on the KTH cloud. 

 

Table 4: Infrastructure components 
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The runtimes reflect end-to-end execution times for the entire application and 

thus include time spent on system initialisation and data distribution. Using a 

single-program, multi-data (SPMD) parallel execution model, as prescribed by the 

MPI message-passing standard, the binaries are uploaded onto all nodes 

beforehand. This implies a limitation to the usage of this code on cloud 

infrastructure, since it cannot make use of joining nodes during the execution. 

As mentioned above, our main test case was input A2, with a 3541-state, 

non-deterministic finite state automaton as input and a 1236-state deterministic 

finite state automaton as output, generating an intermediate automaton (before 

minimisation) with 646304 states. Running the determinisation on this input used 

73 out of 1024 MB of main memory and 2.4 out of 4.0 GB of disk space available 

on our private cloud, used for the initial measurements. 

We achieve good performance results on our private cloud already: a speedup 

of 2.1 on a 3 node configuration, and an almost linear speedup on 2 nodes. We then 

deployed this application on KTH cloud infrastructure, which is OpenNebula-based. 

In this setting, the resources are severely constrained with each application having 

an allowance of 1GB main memory, 4 GB total disk space and a maximum of 3 

VM instances. Since our main goal was to provide a proof-of-concept study, we 

went ahead with this fairly limited configuration.  Considering these tight 

resource constraints, we achieved excellent results on the KTH cloud. For the input 

set A2, a representation of a TokenPassing network as described above, we 

achieved speedups of up to 6.6 on a 3 node configuration, reducing execution time 

from 39 minutes 48 seconds to 6 minutes. Closer examination revealed that this 

super-linear speedup is due to the more efficient handling of smaller files by the 

Roomy library when distributing the execution over several nodes rather than using 

a very large file in the single node execution. It can therefore be seen as a 

“cache-effect” specialised to symbolic computation and the underlying disk-based 

library taking the role of the main memory. 

While more realistic input sets would require substantially higher resources, 
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the above results demonstrate that good speedups can be achieved for this 

challenging class of applications. The next data sets for this problem would require 

an estimated 2-8 GB of main memory, and should be executed on 16-64 VMs of a 

cloud infrastructure such as OpenNebula. At least 10 GB of disk space will be 

needed per node. For the larger input files this disk space will have to increase to 

about 150 GB per node, considering that reported intermediate sizes for this kind of 

input are in the range of 1.1TB. 

One important outcome of this proof-of-concept study is the potential 

availability of highly specialised mathematical code through cloud infrastructures, 

based on a SaaS model. This is a drastic change from the model used so far, where 

licenses for entire computer algebra systems need to be purchased, and execution is 

restricted to a local cluster of machines to perform the computations. This set-up 

lacks this would have benefits for both the users of computer algebra systems and 

the developers of algorithms within these systems. The users would profit from the 

flexibility (or elasticity) in allocating additional hardware to a particularly large 

computation (depending on the input data set), which can be addressed using cloud 

infrastructures. The developers, typically mathematicians rather than computer 

scientists, don't have to deal with installation and setup issues of the system, which 

can be difficult for large, parallel systems, and can rather focus on the algorithmic 

changes required to enable parallel execution. In this sense, we believe that cloud 

infrastructures can provide a substantial benefit to the computer algebra 

community. 

 

 

10  Conclusion and Future Work  

In this project we have undertaken a proof of concept study for high 

performance computational algebra on cloud infrastructures. We have been able to 

demonstrate the feasibility of the approach by producing a cloud-enabled version 

of a parallel automata determinisation application. In particular, we make use of the 
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large number of processors and the distributed disk-space available on these 

infrastructures to deal with the high computational demand and the large 

intermediate data structures in this application.  We have measured the 

performance on one private and one public cloud. Our results show, that we can 

achieve excellent speedups even on severely resource-constrained infrastructures. 

In the best case we achieved a super-linear speedup of 6.6 on a 3 node cloud, due 

to the more efficient handling of smaller files in the distributed configuration by the 

underlying Roomy library.  

A significant portion of the development time was expended on basic 

infrastructure access, first to private cloud, later to the KTH cloud. Using a private 

cloud initially gave us full control over the infrastructure, which proved important 

to develop and test the behaviour of the application initially.  We made sure to 

have a self-contained software infrastructure around our application, so that we 

only had to make minor adjustments to different cloud infrastructures once the 

initial port was done.  When deploying the application on the external cloud we 

had to deal with administrative issues of getting access to the infrastructure itself. 

We conclude that good, responsive support by the cloud service provider is crucial 

in order to make it an attractive platform for high performance computing, which 

has stronger demands on tuning and configuring the software infrastructure. One 

concrete limitation in our case was the constrained main memory provided for each 

node. This is a general concern, across providers, who often offer “small”, 

“medium” and “big” configurations on the cloud; but in most cases the ratio of 

processors to main memory and to disk space is constant.  Thus, our applications, 

that are often very memory intensive, cannot exploit the full number of processors, 

without exhausting the available main memory. This lack of elasticity in the 

per-node cloud configurations means, that often the nodes are under-populated and 

use only a few of the available processors.  

Overall, however, our experiences with cloud infrastructures have been 

positive. We conclude that they provide significant benefits for both the users and 
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the developers of computer algebra algorithms. The user get immediate access to 

parallel implementations running on clouds, using a SaaS model, and don't have to 

install specialised software on a local cluster with most likely more limited 

processing power. For the developers this setup avoids having to deal with 

low-level configuration issues, and allows them to focus on algorithmic 

improvements, often based on more abstract, mathematical results. We therefore  

believe that high performance cloud computing has a very strong, so far unused, 

potential to speedup existing applications, and to apply them to problems that have 

so far been out of reach. 

One obvious line of future work is to extend the measurements to larger inputs 

running on larger cloud configurations. For practical reasons this should be done 

on OpenNebula infrastructures.  Another interesting direction of future work 

would be to rephrase this application in terms of an Orbit pattern.  The Orbit 

pattern is a computational pattern, repeatedly occurring in symbolic computation 

that we have identified and studied in earlier work [37], producing a parallel 

implementation of this pattern. Making the determinisation application an instance 

of this pattern would profit from the tuning that we have already performed on this 

pattern. 
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