Journal of Statistical and Econometric Methods, vol.5, no.1, 2016, 59-86 ISSN: 1792-6602 (print), 1792-6939 (online) Scienpress Ltd, 2016

Using Halton Sequences in Random Parameters Logit Models

Tong \mathbf{Zeng}^1

Abstract

Quasi-random numbers that are evenly spread over the integration domain have become used as alternatives to pseudo-random numbers in maximum simulated likelihood problems to reduce computational time. In this paper, we carry out Monte Carlo experiments to explore the properties of quasi-random numbers, which are generated by the Halton sequence, in estimating the random parameters logit model. We vary the number of Halton draws, the sample size and the number of random coefficients. We show that increases in the number of Halton draws influence the efficiency of the random parameters logit model estimators only slightly. The maximum simulated likelihood estimator is consistent. We find that it is not necessary to increase the number of Halton draws when the sample size increases for this result to be evident.

JEL Classification: C02; C13; C15; C25 Mathematics Subject Classification: 11B83; 11K45

 ¹ Department of Economics and Finance, Black Hills State University, Spearfish, SD 57799. Email: tong.zeng@bhsu.edu, Tel: +1 605 642 6286, Fax: +1 605 642 6273

Article Info: Received : November 11, 2015. Revised : December 11, 2015. Published online : March 3, 2016 **Keywords:** Maximum simulated likelihood; Random parameters logit model; Quasi-random numbers; Halton sequence; Monte Carlo experiments

1 Introduction

In this paper, we construct Monte Carlo experiments to explore the properties of quasi-random numbers, which are generated by the Halton sequence, in estimating the random parameters logit (RPL) model. The random parameters logit model is a generalization of the conditional logit model for multinomial choices. It has become more frequently used in many fields, such as agricultural economics, marketing, labor economics, health economics and transportation study, because of its high flexibility. Unlike the multinomial logit (MNL) model, this model is not limited by the *Independence from Irrelevant Alternatives* (IIA) assumption. It can capture the random preference variation among individuals and allows unobserved factors of utility to be correlated over time. However, the choice probability in the RPL model cannot be calculated exactly because it involves a multi-dimensional integral which does not have closed form. The use of pseudo-random numbers to approximate the integral during the simulation requires a large number of draws and leads to long computational times.

To reduce the computational cost, it is possible to replace the pseudorandom numbers by a set of fewer, evenly spaced points and still achieve the same, or even higher, estimation accuracy. Quasi-random numbers are evenly spread over the integration domain. They have become popular alternatives to pseudo-random numbers in maximum simulated likelihood problems. Bhat (2001) compared the performance of quasi-random numbers (Halton draws) and pseudo-random numbers in the context of the maximum simulated likelihood estimation of the RPL model. The root mean squared error (RMSE) and the mean absolute error ratio across parameters were used to evaluate the proximity of estimated and true parameters. He found that using 100 Halton draws the RMSE of the RPL model estimates was smaller than using 1000 pseudo-random numbers. However, Bhat (2001) also mentioned that the error measures of the estimated parameters do not always become smaller as the number of Halton draws increases. Train (2009, p.231) summarizes

some numerical experiments comparing the use of 100 Halton draws with 125 Halton draws. He says, "... the standard deviations are greater with 125 Halton draws than with 100 Halton draws. The reason for this anomaly has not been determined. Its occurrence indicates the need for further investigation of the properties of Halton sequences in simulation-based estimation." It is our purpose to further the understanding of these properties through extensive simulation experiments. How does the number of quasi-random numbers, which are generated by the Halton draws, influence the efficiency of the estimated parameters? How many number of Halton draws should be chosen in the application of Halton sequences with the maximum simulated likelihood estimation? To make the maximum simulated likelihood estimator asymptotically equivalent to the maximum likelihood estimator, should we increase the number of points generated by the Halton sequence with increases in the sample size as using the pseudo-random numbers? In our experiments, we vary the number of Halton draws, the sample size and the number of random coefficients to explore the properties of the Halton sequences in estimating the RPL model. Unlike Bhat (2001), we analyze the RMSE and the ratio of the average nominal standard error to the Monte Carlo standard deviation of each estimated parameter. The results of our experiments confirm the efficiency of the quasi-random numbers in the context of the RPL model. We show that increases in the number of Halton draws influence the efficiency of the random parameters logit model estimators by a small amount. The maximum simulated likelihood estimator is consistent. We find that it is not necessary to increase the number of Halton draws when the sample size increases for this result to be evident.

The plan of the paper is as follows. In the following section, we discuss the random parameters logit specification. Section 3 introduces Halton sequences. Section 4 describes our Monte Carlo experiments. Section 5 presents the experimental results. Some conclusions are given in Section 6.

2 The Random Parameters Logit Model

The RPL model is described in Train (2009, p.134-150). Consider individual n facing M alternatives. The random utility associated with alternative *i* is $U_{ni} = \beta'_n x_{ni} + \varepsilon_{ni}$, where x_{ni} are *K* observed explanatory variables for alternative *i*, ε_{ni} is an iid type I extreme value error which is independent of β_n and x_{ni} . The random coefficients β_n vary over individuals in the population with density function $f(\beta)$ and can be regarded as being composed of mean *b* and deviations $\tilde{\beta}_n$. The RPL model decomposes the unobserved part of the utility into the extreme value term and the random part $\tilde{\beta}_n x_{ni}$. Conditional on β_n the probability that individual *n* chooses alternative *i* is of the usual logistic form, $L_{ni}(\beta_n) = e^{\beta'_n x_{ni}} / \sum_i e^{\beta'_n x_{ni}}$. The probability that individual *n* chooses alternative *i* is

$$P_{ni} = \int L_{ni}(\beta) f(\beta|\theta) d\beta \tag{1}$$

The density function $f(\beta)$ provides the weights, and the choice probability is a weighted average of $L_{ni}(\beta)$ over all possible values of β_n . Even though the integral in (1) does not have a closed form, the choice probability in the RPL model can be estimated through simulation. The unknown parameters (θ) , such as the mean and variance of the random coefficient distribution, can be estimated by maximizing the simulated log-likelihood function. With simulation, a value of β labelled as β^r representing the *r*th draw, is selected randomly from a previously specified distribution. The standard logit $L_{ni}(\beta)$ in equation (1) can be calculated with β^r . Repeating this process *R* times, the simulated probability of individual *n* choosing alternative *i* is obtained by averaging $L_{ni}(\beta^r)$:

$$\check{P}_{ni} = \frac{1}{R} \sum_{r=1}^{R} L_{ni}(\beta^r) \tag{2}$$

The simulated log-likelihood function is:

$$SLL(\theta) = \sum_{n=1}^{N} \sum_{i=1}^{M} d_{ni} ln \check{P}_{ni}$$
(3)

where the indicator variable $d_{ni}=1$ if individual *n* chooses alternative *i*. The simulated log-likelihood is then maximized numerically with respect to θ .

The method used to estimate the probability P_{ni} in (2) is called the classical Monte Carlo method. It reduces the integration problem to the problem of estimating the expected value on the basis of the strong law of large numbers. In general terms, the classical Monte Carlo method is described as a numerical

method based on random sampling. The random sampling here is pseudorandom numbers. In terms of the number of pseudo-random numbers N, it gives us a probabilistic error bound, also called the convergence rate, $O(N^{-1/2})$ for numerical integration, since there is never any guarantee that the expected accuracy is achieved in a concrete calculation (Niederreiter, 1992, p.7). It represents the stochastic character of the classical-Monte Carlo method. The useful feature of the classical Monte Carlo method is that the convergence rate of the numerical integration does not depend on the dimension of the integration. With the classical Monte Carlo method, it is not difficult to get an unbiased simulated probability P_{ni} for P_{ni} . The problem is the simulated log-likelihood function in (2) is a logarithmic transformation, which causes a simulation bias in the SLL which translates into bias in the MSL estimator. To decrease the bias in the MSL estimator and get a consistent and efficient MSL estimator, Train (2009, p.255) shows that, with an increase in the sample size N, the number of pseudo-random numbers should rise faster than \sqrt{N} . The disadvantage of the classical Monte Carlo method in the RPL model estimation is the requirement of a large number of pseudo-random numbers, which leads to long computational times.

3 The Halton Sequences

To reduce the computational cost, quasi-random numbers are being used to replace the pseudo-random numbers in MSL, leading to the same or even higher accuracy estimation with much fewer points. The essence of the number theoretic method (NTM) is to find a set of uniformly scattered points over an *s*-dimensional unit cube. Such set of points obtained by NTM is usually called a set of quasi-random numbers, or a number theoretic net. Sometimes it can be used in the classical Monte Carlo method to achieve a significantly higher accuracy. The Monte Carlo method with using quasi-random numbers is called a quasi-Monte Carlo method. In fact, there are several classical methods to construct the quasi-random numbers. Here we use the Halton sequences proposed by Halton (1960).

The Halton sequences are based on the base-p number system which implies

that any integer n can be written as:

$$n \equiv n_M n_{M-1} \cdots n_2 n_1 n_0 = n_0 + n_1 p + n_2 p^2 + \cdots + n_M p^M$$
(4)

where $M = [\log_p n] = [\ln n / \ln p]$ and M + 1 is the number of digits of n, square brackets denoting the integral part, p is base and can be any integer except 1, n_i is the digit at position i, $0 \le i \le M$, $0 \le n_i \le p - 1$ and p^i is the weight of the digit at position i. For example, with the base p = 10, the integer n = 468has $n_0 = 8$, $n_1 = 6$, $n_2 = 4$. The weights for n_0 , n_1 and n_2 are 10^0 , 10^1 and 10^2 respectively.

Using the base-p number system, we can construct one and only one fraction φ which is smaller than 1 by writing n with a different base number system and reversing the order of the digits in n. It is also called the radical inverse function defined as the follows:

$$\varphi = \varphi_p(n) = 0.n_0 n_1 n_2 \cdots n_M = n_0 p^{-1} + n_1 p^{-2} + \cdots + n_M p^{-M-1}$$
(5)

Based on the base-p number system, the integer n = 468 can be converted into the binary number system by successively dividing by the new base p = 2:

$$468_{10} = 1 \times 2^8 + 1 \times 2^7 + 1 \times 2^6 + 0 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0$$

= 111010100₂

Applying the radical inverse function (5), we can get an unique fraction for the integer n = 468 with base p = 2:

$$\varphi_2(111010100) = 0.001010111_2 = 1 \times 2^{-3} + 1 \times 2^{-5} + 1 \times 2^{-7} + 1 \times 2^{-8} + 1 \times 2^{-9}$$
$$= 0.169921875_{10}$$

The value 0.169921875_{10} is the corresponding fraction of 111010100_2 in the decimal number system.

The Halton sequence of length N is developed from the radical inverse function and the points of the Halton sequence are $\varphi_p(n)$ for $n = 1, 2, \dots, N$, where p is a prime number. The k-dimensional sequence is defined as:

$$\phi_n = (\varphi_{p_1}(n), \varphi_{p_2}(n), \cdots, \varphi_{p_k}(n)) \tag{6}$$

Where p_1, p_2, \dots, p_k are prime to each other and are chosen from the first k primes. By setting p_1, p_2, \dots, p_k to be prime to each other we avoid the

correlation among the points generated by any two Halton sequences with different base-p.

In applications, Halton sequences are used to replace random number generators to produce points in the interval [0, 1]. The points of the Halton sequence are generated iteratively. As far as a one-dimensional Halton sequence is concerned, the Halton sequence based on prime p divides the 0-1 space into p segments and systematically fills in the empty space by dividing each segment into smaller p segments iteratively. This is illustrated below. The numbers above the line represents the order of points filling in the space.

The position of the points is determined by the base which is used to construct the iteration. A large base implies more points in each iteration or longer cycle. Due to the high correlation among the initial points of the Halton sequence, the first ten points of the sequences are usually discarded in applications. Compared to the pseudo-random numbers, the coverage of the points of the Halton sequence are more uniform, since the pseudo-random numbers may cluster in some areas and leave some areas uncovered. This can be seen from Figure 1, which is similar to the figure from Bhat (2001). Figure 1(a) is a plot of 200 points taken from uniform distribution of two dimensions using pseudo-random numbers. Figure 1(b) is a plot of 200 points obtained by the Halton sequence. The latter scatters more uniformly on the unit square than the former. Since the points generated from the Halton sequences are deterministic points, unlike the classical-Monte Carlo method, quasi-Monte Carlo provides a deterministic error bound instead of probabilistic error bound. It is also called the discrepancy in the literature of number theoretic methods. The smaller the discrepancy, the more evenly the quasirandom numbers are spread over the domain. The deterministic error bound of quasi-Monte Carlo method with the k-dimensional Halton sequence, which is represented in terms of the number of points used, was shown [Halton, 1960] smaller than the probabilistic error bound of classical-Monte Carlo method as $O(N^{-1}(\ln N)^k)$. It means that with much fewer points generated by the Halton sequence we can achieve the same or even higher accuracy estimation than that with using pseudo-random numbers. However, some researchers pointed out the correlation problem among the points generated by the Halton sequence with two adjacent large prime number in high dimensional integral.

With high dimensional Halton sequences, usually $k \ge 10$, a large number

of points is needed to complete the long cycle with large prime numbers. In addition to increasing the computational time, it will also cause a correlation between two adjacent large prime-based sequences, such as the thirteenth and fourteenth dimension generated by prime number 41 and 43 respectively. The correlation coefficient between two close large prime-based sequences is almost equal to one. This is shown in Figure 2, which is based on a graph from Bhat (2003). To solve this problem, number theorists such as Wang and Hickernell (2000) scramble the digits of each number of the sequences, which is called a scrambled Halton sequences. In this paper, we only focus on the normal Halton sequences with relatively low dimentional integral.

4 The Quasi-Monte Carlo Experiments with Halton Sequences

Our experiments begin from the simple RPL model which has no intercept term and only one random coefficient. Then, we expand the number of random coefficient to four by adding the random coefficient one by one. In our experiments, each individual faces four mutually exclusive alternatives with only one choice occasion. The associated utility for individual n choosing alternative iis:

$$U_{ni} = \beta'_n x_{ni} + \varepsilon_{ni} \tag{7}$$

The explanatory variables for each individual and each alternative x_{ni} are generated from independent standard normal distributions. The coefficients for each individual β_n are generated from normal distribution $N(\overline{\beta}, \overline{\sigma}_{\beta}^2)$. These values of x_{ni} and β_n are held fixed over each experiment design. The choice probability for each individual is generated with the logit-smoothed acceptreject simulator suggested by McFadden (1989). We set λ as 0.125.

$$\check{P}_{ni} = \frac{1}{R} \sum_{r=1}^{R} \frac{e^{U_{ni}^r/\lambda}}{\sum_j e^{U_{nj}^r/\lambda}}$$
(8)

The dependent variables y_{ni} are determined by these values of simulated choice probabilities. Our generated data is composed of the explanatory and

dependent variables x_{ni} and y_{ni} which are used to estimate the RPL model parameters. In our experiments, we generate 1000 Monte Carlo samples (NSAM) with specific true values that we set for the RPL model parameters. During the estimation process, the random coefficients β_n in (7) are generated by the Halton sequences instead of pseudo-random numbers. First, we generate the k-dimensional Halton sequences of length $N \times R + 10$, where N is sample size, R is the number of the Halton draws assigned to each individual and 10 is the number of Halton draws that we discard due to the high correlation [Morokoff and Caflisch (1995), Bratley, et al. (1992)]. Then we transform these Halton draws into a set of numbers β_n with normal distribution using discrepancy-preserving transformation. Based on the discrepancy-preserving transformation, the independent multivariate normal distribution β_n which is transformed from the k-dimensional Halton sequences, has the same discrepancy as the Halton sequences generated from the k-dimensional unit cube. So the smaller discrepancy of the Halton sequences leads to the smaller discrepancy of β_n . To calculate the corresponding simulated probability P_{ni} in (2), the first R points are assigned to the first individual, the second R points are assigned to the second individual, and so on. They are used to calculate the simulated probability P_{ni} of each individual respectively.

To examine the efficiency of the estimated parameters using Halton sequences, we use the error measures: the ratio of the average nominal standard error to the Monte Carlo standard deviation of the estimated parameters and the root mean squared error (RMSE) of the RPL model estimates. They are calculated as follows using one estimated parameter $\hat{\beta}$ as an example:

Monte Carlo average
$$\bar{\hat{\beta}}_i = \sum \hat{\beta}_i / NSAM$$
 (9)

Monte Carlo standard deviation (s.d.) of $\hat{\beta}_i = \sqrt{\sum (\hat{\beta}_i - \bar{\beta})^2 / (NSAM - 1)}$ (10)

Average nominal standard error (s.e.) of
$$\hat{\beta}_i = \sum \sqrt{v\hat{a}r(\hat{\beta}_i)}/NSAM$$
 (11)

Root mean square error (RMSE) of
$$\hat{\beta}_i = \sqrt{\sum (\hat{\beta}_i - \bar{\beta})^2 / NSAM}$$
 (12)

where $\bar{\beta}$ and $\hat{\beta}_i$ are the true parameter and estimates of parameter, respectively. To explore the properties of the Halton sequences in estimating the RPL model, we vary the number of Halton draws, the sample size and the number of random coefficients. we also do the same experiments using the pseudo-random numbers to compare the performance of the Halton sequence and pseudorandom numbers in estimating the RPL model. To avoid different simulation errors from the different process of probability integral transformation, we use the same probability integral transformation process with Halon draws and pseudo-random numbers.

5 The Experimental Results

In our experiments, we increase the number of random coefficients one by one. For each case, the RPL model is estimated by 25, 100, 250 and 500 Halton draws. We use 2000 pseudo-random numbers to get the benchmark results of the error measures which are based on the RPL model estimators. The mean and standard deviation of the random coefficient are set as 1.5 and 0.8 respectively. Table 1 and Table 2 show the results of the one random coefficient parameter logit model using Halton draws. Tables 3 and 4 present the results using 1000 and 2000 pseudo-random numbers. From Table 1 and Table 2, with the given number of observations, increasing the number of Halton draws from 25 to 500 only changes the RMSE of the estimated mean of the random coefficient distribution by less than 4%, and influences the RMSE of the estimated standard deviation of the random coefficient distribution by no more than 10%. When the number of observations increases to 500 and 800, increasing the number of Halton draws from 100 to 500 only influences of the RMSE and the ratio the average nominal standard deviations to the Monte Carlo standard deviations of each estimated parameter very slightly. The RMSE of the estimated parameter mean is lower using 25 Halton draws than that using more Halton draws and pseudo-random numbers. With 100 Halton draws, we can reach almost the same efficiency of the RPL model estimators as using 2000 pseudo-random numbers. The results are consistent with Bhat (2001). The ratios of the average nominal standard deviations to the Monte Carlo standard deviations of the estimated parameters are stable with increases in the number of Halton draws.

Tables 5-12 present the results of two independent random coefficients logit model using Halton draws and pseudo-random numbers. We set the mean and

the standard deviation of the new random coefficient as 1.0 and 0.5 respectively. The same error measures are used to analyze the efficiency of each estimator for each case. After including another random coefficient, the mean of each random coefficient distribution is overestimated. The RMSE of the RPL estimator is stable in the number of Halton draws. Again, with increases in the number of observations, increasing the number of Haton draws doesn't influence the efficiency of the estimated parameters significantly. The $\hat{\beta}$ has the lowest RMSE with 25 Halton draws. In the two random coefficients case, the RMSEs with 500 Halton draws are the closest ones to the according benchmark results. The results with 100 Halton draws are also very close to the benchmark and there is no significantly difference between them.

As the number of random coefficients increases, the computational time increases greatly using pseudo-random numbers rather than using quasi-random numbers. However, we can get almost the same efficiency of the estimated parameters using 100 Halton draws as using 1000 pseudo-random numbers. Tables showing the results of three and four independent random coefficients logit model are available upon request. With three and four independent random coefficients, using 25 Halton draws doesn't always provide the lowest RMSE of the estimated parameter mean. When the number of random coefficients is increased, the effect of rising Halton draws on the efficiency of the RPL model estimators is still slightly, especially with 500 and 800 observations. The results are similar to the one and two random coefficients cases. Train (2009, p.225) discusses that the negative correlation between the average of two adjacent observation's draws can reduce errors in the simulated log-likelihood function, like the method of antithetic variates. However, this negative covariance across observations declines with increases in the number of observations N, since the length of Halton sequences in estimating the RPL model is determined by the number of observations and the number of Halton draws assigned to each observation. The increases in the number of observations will decrease the gap between two adjacent observation's coverage. Train (2009, p.225) suggests increasing the number of Halton draws for each individual when the number of observations increases. But, based on our experimental results, we find that increasing the number of Halton draws for each individual does not significantly affect the RMSE of the RPL model estimators as the number of observations increases.

6 Conclusions

In this paper, we study the properties of the Halton sequences in estimating the RPL model, which is a very flexible and a generalization of the conditional logit model. With one or two independent random coefficients, using only 25 Halton draws can provides smaller RMSE of the estimated parameters than that using 2000 pseudo-random numbers. When the number of random coefficients is increased to three and four, with 100 Halton draws can achieve almost the same efficiency of the estimated parameters as using 1000 pseudorandom numbers. However, the computational time is reduced greatly. The most important thing is, as the number of observations increases, we find it is not necessary to increase the number of Halton draws to get the efficient and consistent maximum simulated likelihood estimators. Our experimental results can also provide the guidance of using quasi-random numbers generated by the Halton sequence in estimating other discrete choice model, like the probit model.

Tε	ble	1:	The	mixed	logit	model	with	one	random	coefficient	5
					0						

$ar{eta}=1.5,ar{\sigma}_{eta}=0.8$					
Quasi-Monte Carlo E	Stimatio	on			
	Num	ber of H	Ialton I	Draws	
Estimator $\hat{\beta}$	25	100	250	500	
Observatio	ns=200				
Monte Carlo average	1.468	1.477	1.477	1.477	
Monte Carlo s.d.	0.226	0.233	0.232	0.233	
Average nominal s.e.	0.236	0.237	0.237	0.237	
Average nominal s.e./MC s.d.	1.044	1.017	1.022	1.017	
RMSE	0.228	0.234	0.233	0.234	
Observatio	ns=500				
Monte Carlo average	1.578	1.582	1.585	1.585	
Monte Carlo s.d.	0.163	0.163	0.163	0.163	
Average nominal s.e.	0.165	0.166	0.165	0.165	
Average nominal s.e./MC s.d.	1.012	1.018	1.012	1.012	
RMSE	0.181	0.183	0.184	0.183	
Observatio	ns=800				
Monte Carlo average	1.521	1.533	1.535	1.534	
Monte Carlo s.d.	0.125	0.125	0.125	0.125	
Average nominal s.e.	0.128	0.129	0.129	0.129	
Average nominal s.e./MC s.d.	1.024	1.032	1.032	1.032	
RMSE	0.127	0.129	0.129	0.129	

Table 2: The mixed logit model with one random coefficient

$\bar{\beta} = 1.5, \bar{\sigma}_{\beta} = 0.8$
Quasi-Monte Carlo Estimation

	Number of Halton Draws			
Estimator $\hat{\sigma}_{\beta}$	25	100	250	500
Observatio	ons=200			
Monte Carlo average	0.594	0.606	0.602	0.601
Monte Carlo s.d.	0.337	0.372	0.375	0.377
Average nominal s.e.	0.417	0.447	0.465	0.473
Average nominal s.e./MC s.d.	1.237	1.202	1.240	1.255
RMSE	0.395	0.419	0.424	0.426
Observatio	ons=500			
Monte Carlo average	0.728	0.740	0.743	0.743
Monte Carlo s.d.	0.236	0.243	0.242	0.243
Average nominal s.e.	0.245	0.249	0.248	0.249
Average nominal s.e./MC s.d.	1.038	1.025	1.025	1.025
RMSE	0.246	0.250	0.249	0.250
Observatio	ons=800			
Monte Carlo average	0.741	0.763	0.766	0.766
Monte Carlo s.d.	0.177	0.173	0.172	0.172
Average nominal s.e.	0.183	0.182	0.181	0.182
Average nominal s.e./MC s.d.	1.034	1.052	1.052	1.058
RMSE	0.187	0.177	0.176	0.176

Table 3: The mixed logit model with one random coefficient

$ar{eta} = 1.5, ar{\sigma}_eta = 0.8$						
Classical-Monte Carlo Estimation						
Number of Random Draws						
Estimator $\hat{\beta}$	1000	2000				
Observation	ns=200					
Monte Carlo average	1.479	1.483				
Monte Carlo s.d.	0.229	0.233				
Average nominal s.e.	0.236	0.239				
Average nominal s.e./MC s.d.	1.031	1.026				
RMSE	0.230	0.234				
Observation	ns = 500					
Monte Carlo average	1.584	1.590				
Monte Carlo s.d.	0.162	0.163				
Average nominal s.e.	0.165	0.166				
Average nominal s.e./MC s.d.	1.019	1.018				
RMSE	0.182	0.187				
Observations=800						
Monte Carlo average	1.531	1.536				
Monte Carlo s.d.	0.124	0.125				
Average nominal s.e.	0.129	0.129				
Average nominal s.e./MC s.d.	1.040	1.032				
RMSE	0.128	0.130				

Table 4: The mixed logit model with one random coefficient

$\bar{\beta} = 1.5, \bar{\sigma}_{\beta} = 0.8$
Classical-Monte Carlo Estimation

	Number of Ra	andom Draws
Estimator $\hat{\sigma}_{\beta}$	1000	2000
Observation	s=200	
Monte Carlo average	1.479	1.483
Monte Carlo s.d.	0.229	0.233
Average nominal s.e.	0.236	0.239
Average nominal s.e./MC s.d.	1.031	1.026
RMSE	0.230	0.234
Observation	s = 500	
Monte Carlo average	0.614	0.618
Monte Carlo s.d.	0.354	0.368
Average nominal s.e.	0.424	0.435
Average nominal s.e./MC s.d.	1.198	1.182
RMSE	0.400	0.410
Observation	.s=800	
Monte Carlo average	0.758	0.768
Monte Carlo s.d.	0.172	0.173
Average nominal s.e.	0.182	0.181
Average nominal s.e./MC s.d.	1.058	1.046
RMSE	0.177	0.175

$\bar{\beta}_1 = 1.0, \bar{\sigma}_{\beta_1} = 0.5; \bar{\beta}_2 = 1.5, \bar{\sigma}_{\beta_2} = 0.8$						
Quasi-Monte Carlo Estimation						
	Num	ber of H	Ialton I	Draws		
Estimator $\hat{\beta}_1$	25	100	250	500		
Observatio	ons=200					
Monte Carlo average	1.002	1.011	1.007	1.009		
Monte Carlo s.d.	0.168	0.176	0.174	0.175		
Average nominal s.e.	0.188	0.190	0.188	0.188		
Average nominal s.e./MC s.d.	1.119	1.080	1.080	1.074		
RMSE	0.168	0.176	0.174	0.175		
Observatio	ons=500					
Monte Carlo average	1.018	1.029	1.029	1.031		
Monte Carlo s.d.	0.107	0.111	0.111	0.111		
Average nominal s.e.	0.122	0.125	0.125	0.125		
Average nominal s.e./MC s.d.	1.140	1.126	1.126	1.126		
RMSE	0.108	0.115	0.115	0.115		
Observatio	ons=800					
Monte Carlo average	1.007	1.020	1.018	1.019		
Monte Carlo s.d.	0.083	0.086	0.086	0.086		
Average nominal s.e.	0.095	0.097	0.097	0.097		
Average nominal s.e./MC s.d.	1.145	1.128	1.128	1.128		
RMSE	0.083	0.089	0.088	0.089		

Table 5: The mixed logit model with two random coefficients

$\bar{\beta}_1 = 1.0, \bar{\sigma}_{\beta_1} = 0.5; \bar{\beta}_2 = 1.5, \bar{\sigma}_{\beta_2} = 0.8$						
Quasi-Monte Carlo Estimation						
Number of Halton Draws						
Estimator $\hat{\sigma}_{\beta_1}$	25	100	250	500		
Observatio	ons=200					
Monte Carlo average	0.433	0.431	0.409	0.414		
Monte Carlo s.d.	0.315	0.350	0.358	0.358		
Average nominal s.e.	0.460	0.515	0.544	0.542		
Average nominal s.e./MC s.d.	1.460	1.471	1.520	1.514		
RMSE	0.322	0.357	0.369	0.368		
Observatio	ons=500					
Monte Carlo average	0.487	0.503	0.504	0.506		
Monte Carlo s.d.	0.221	0.229	0.230	0.230		
Average nominal s.e.	0.282	0.290	0.290	0.292		
Average nominal s.e./MC s.d.	1.276	1.266	1.261	1.270		
RMSE	0.222	0.229	0.230	0.230		
Observatio	ons=800					
Monte Carlo average	0.460	0.478	0.474	0.473		
Monte Carlo s.d.	0.184	0.191	0.194	0.196		
Average nominal s.e.	0.222	0.222	0.228	0.234		
Average nominal s.e./MC s.d.	1.207	1.162	1.175	1.194		
RMSE	0.189	0.192	0.196	0.197		

Table 6: The mixed logit model with two random coefficients

$\bar{\beta}_1 = 1.0, \bar{\sigma}_{\beta_1} = 0.5; \bar{\beta}_2 = 1.5, \bar{\sigma}_{\beta_2} = 0.8$						
Quasi-Monte Carlo Estimation						
Number of Halton Draws						
Estimator $\hat{\beta}_2$	25	100	250	500		
Observatio	ons=200					
Monte Carlo average	1.557	1.566	1.561	1.562		
Monte Carlo s.d.	0.260	0.264	0.260	0.261		
Average nominal s.e.	0.279	0.280	0.278	0.277		
Average nominal s.e./MC s.d.	1.073	1.061	1.069	1.061		
RMSE	0.266	0.272	0.267	0.268		
Observatio	ns=500					
Monte Carlo average	1.518	1.533	1.531	1.532		
Monte Carlo s.d.	0.167	0.167	0.166	0.167		
Average nominal s.e.	0.176	0.179	0.178	0.178		
Average nominal s.e./MC s.d.	1.054	1.072	1.072	1.066		
RMSE	0.168	0.170	0.169	0.170		
Observatio	ons=800					
Monte Carlo average	1.511	1.534	1.531	1.533		
Monte Carlo s.d.	0.124	0.127	0.127	0.128		
Average nominal s.e.	0.137	0.141	0.140	0.141		
Average nominal s.e./MC s.d.	1.105	1.110	1.102	1.102		
RMSE	0.124	0.132	0.131	0.132		

Table 7: The mixed logit model with two random coefficients

$\bar{\beta}_1 = 1.0, \bar{\sigma}_{\beta_1} = 0.5; \bar{\beta}_2 = 1.5, \bar{\sigma}_{\beta_2} = 0.8$							
Quasi-Monte Carlo Estimation							
	Number of Halton Draws						
Estimator $\hat{\sigma}_{\beta_2}$	25	100	250	500			
Observatio	ns=200						
Monte Carlo average	0.874	0.894	0.882	0.883			
Monte Carlo s.d.	0.338	0.330	0.326	0.328			
Average nominal s.e.	0.369	0.367	0.367	0.369			
Average nominal s.e./MC s.d.	1.092	1.112	1.126	1.125			
RMSE	0.345	0.343	0.336	0.338			
Observatio	ns=500						
Monte Carlo average	0.816	0.843	0.834	0.838			
Monte Carlo s.d.	0.221	0.212	0.213	0.213			
Average nominal s.e.	0.237	0.232	0.233	0.233			
Average nominal s.e./MC s.d.	1.072	1.094	1.094	1.094			
RMSE	0.222	0.216	0.215	0.216			
Observatio	ns=800						
Monte Carlo average	0.771	0.811	0.804	0.807			
Monte Carlo s.d.	0.163	0.161	0.161	0.161			
Average nominal s.e.	0.185	0.185	0.185	0.185			
Average nominal s.e./MC s.d.	1.135	1.149	1.149	1.149			
RMSE	0.165	0.161	0.161	0.161			

Table 8: The mixed logit model with two random coefficients

$ar{eta}_1 = 1.0, ar{\sigma}_{eta_1} = 0.5; ar{eta}_2$	$\bar{\beta}_2 = 1.5, \bar{\sigma}_{\beta_2}$	= 0.8					
Classical-Monte C	arlo Estimat	tion					
Number of Random Draws							
Estimator $\hat{\beta}_1$	1000	2000					
Observatio	ons=200						
Monte Carlo average	1.010	1.012					
Monte Carlo s.d.	0.173	0.175					
Average nominal s.e.	0.190	0.189					
Average nominal s.e./MC s.d.	1.098	1.080					
RMSE	0.173	0.176					
Observatio	ons=500						
Monte Carlo average	1.026	1.034					
Monte Carlo s.d.	0.110	0.111					
Average nominal s.e.	0.124	0.126					
Average nominal s.e./MC s.d.	1.127	1.135					
RMSE	0.113	0.116					
Observatio	ons=800						
Monte Carlo average	1.015	1.022					
Monte Carlo s.d.	0.085	0.086					
Average nominal s.e.	0.096	0.097					
Average nominal s.e./MC s.d.	1.129	1.128					
RMSE	0.086	0.089					

Table 9: The mixed logit model with two random coefficients

Table 10:	The mixed	logit	model	with	two	random	coefficients
		()					

$\bar{\beta}_1 = 1.0, \bar{\sigma}_{\beta_1} = 0.5; \bar{\beta}_2 = 1.5, \bar{\sigma}_{\beta_2} = 0.8$						
Classical-Monte Ca	rlo Estimation					
	Number of Ra	andom Draws				
Estimator $\hat{\sigma}_{\beta_1}$	1000	2000				
Observation	s = 200					
Monte Carlo average	0.429	0.426				
Monte Carlo s.d.	0.333	0.342				
Average nominal s.e.	0.507	0.502				
Average nominal s.e./MC s.d.	1.523	1.468				
RMSE	0.341	0.350				
Observations=500						
Monte Carlo average	0.499	0.516				
Monte Carlo s.d.	0.219	0.220				
Average nominal s.e.	0.281	0.276				
Average nominal s.e./MC s.d.	1.283	1.255				
RMSE	0.219	0.221				
Observations=800						
Monte Carlo average	0.465	0.481				
Monte Carlo s.d.	0.186	0.187				
Average nominal s.e.	0.221	0.216				
Average nominal s.e./MC s.d.	1.188	1.155				
RMSE	0.189	0.188				

Table 11:	The mixed	logit	model	with	two	random	coefficients

$ar{eta}_1=1.0,ar{\sigma}_{eta_1}=0.5;ar{eta}_2=1.5,ar{\sigma}_{eta_2}=0.8$						
Classical-Monte Carlo Estimation						
Number of Random Drav						
Estimator $\hat{\beta}_2$	1000	2000				
Observatio	ns=200					
Monte Carlo average	1.562	1.562				
Monte Carlo s.d.	0.258	0.261				
Average nominal s.e.	0.277	0.278				
Average nominal s.e./MC s.d.	1.074	1.065				
RMSE	0.266	0.268				
Observations=200						
Monte Carlo average	1.531	1.531				
Monte Carlo s.d.	0.165	0.166				
Average nominal s.e.	0.177	0.178				
Average nominal s.e./MC s.d.	1.073	1.072				
RMSE	0.168	0.169				
Observations = 200						
Monte Carlo average	1.532	1.532				
Monte Carlo s.d.	0.126	0.127				
Average nominal s.e.	0.140	0.140				
Average nominal s.e./MC s.d.	1.111	1.102				
RMSE	0.130	0.131				

	Table 12:	The mixed	logit	model	with	two	random	coefficients
--	-----------	-----------	-------	-------	------	-----	--------	--------------

$\bar{\beta}_1 = 1.0, \bar{\sigma}_{\beta_1} = 0.5; \bar{\beta}_2 = 1.5, \bar{\sigma}_{\beta_2} = 0.8$						
Classical-Monte Carlo Estimation						
	Number of Ra	andom Draws				
Estimator $\hat{\sigma}_{\beta_2}$	1000	2000				
Observation	ns=200					
Monte Carlo average	0.881	0.889				
Monte Carlo s.d.	0.316	0.327				
Average nominal s.e.	0.357	0.369				
Average nominal s.e./MC s.d.	1.130	1.128				
RMSE	0.326	0.338				
Observations = 200						
Monte Carlo average	0.834	0.841				
Monte Carlo s.d.	0.208	0.214				
Average nominal s.e.	0.228	0.233				
Average nominal s.e./MC s.d.	1.096	1.089				
RMSE	0.210	0.218				
Observations=200						
Monte Carlo average	0.807	0.808				
Monte Carlo s.d.	0.158	0.161				
Average nominal s.e.	0.182	0.185				
Average nominal s.e./MC s.d.	1.152	1.149				
RMSE	0.158	0.162				

Figure 1(a): 200 points pseduo-random numbers in two-dimension

Figure 1(b): 200 points generated from two-dimension Halton sequence with prime 2 and 3 $\,$

Figure 2: 200 points of two-dimension Halton sequence generated with prime 41 and 43 $\,$

ACKNOWLEDGEMENTS. I thank R. Carter Hill for his help and insightful suggestion and thank John H. Halton for his kind encouragement. All mistakes are mine.

References

- Bhat, C.R., Quasi-random Maximum Simulated Likelihood Estimation of the Mixed Multinomial Logit Model, *Transportation Research Part B*, 35(7), (2001), 677-693.
- [2] Bratley, P., Fox, B.L., and Niederreiter, H., Implementation and Tests of Low-discrepancy Sequences, ACM Transportations on Modeling and Computer Simulation, 2(3), (1992), 195-213.
- [3] Fang, K.T. and Wang, Y., Number-theoretic Methods in Statistics, Chapman and Hall/CRC, 1994.
- [4] Halton, J. H., On the Efficiency of Certain Quasi-random Sequences of Points in Evaluating Multi-dimensional Integrals, *Numerishe Mathematik*, 2, (1960), 84-90.
- [5] Keng, H.L. and Yan, W., Application of Number Theory to Numerical Analysis, Spring-Verlag Berlin Heidelberg New York, 1981.
- [6] McFadden, D., A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration, *Econometrica*, 57, (1989), 995-1026.
- [7] Morokoff, W.J. and Caflisch, R.E.C., Quasi-Monte Carlo Integration, Journal of Computational Physics, 122, (1995), 218-230.
- [8] Niederreiter, H., Random Number Generation and Quasi-Monte Carlo Methods, Society for Industrial and Applied Mathematics, 1992.
- [9] Train, K. E., *Discrete Choice Methods with Simulation*, Cambridge University Press, 2009.

- [10] Wang, X.Q. and Hickernell, Fred J., Randomized Halton Sequence, Mathematical and Computer Modeling, 32, (2000), 887-899.
- [11] Yan, S. Y., Number Theory for Computing, Springer-Verlag Berlin Heidelberg New York, 2002.