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Quasi-random numbers that are evenly spread over the integration
domain have become used as alternatives to pseudo-random numbers
in maximum simulated likelihood problems to reduce computational
time. In this paper, we carry out Monte Carlo experiments to explore
the properties of quasi-random numbers, which are generated by the
Halton sequence, in estimating the random parameters logit model. We
vary the number of Halton draws, the sample size and the number of
random coefficients. We show that increases in the number of Halton
draws influence the efficiency of the random parameters logit model
estimators only slightly. The maximum simulated likelihood estimator
is consistent. We find that it is not necessary to increase the number
of Halton draws when the sample size increases for this result to be
evident.
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1 Introduction

In this paper, we construct Monte Carlo experiments to explore the prop-

erties of quasi-random numbers, which are generated by the Halton sequence,

in estimating the random parameters logit (RPL) model. The random pa-

rameters logit model is a generalization of the conditional logit model for

multinomial choices. It has become more frequently used in many fields, such

as agricultural economics, marketing, labor economics, health economics and

transportation study, because of its high flexibility. Unlike the multinomial

logit (MNL) model, this model is not limited by the Independence from Irrel-

evant Alternatives (IIA) assumption. It can capture the random preference

variation among individuals and allows unobserved factors of utility to be cor-

related over time. However, the choice probability in the RPL model cannot be

calculated exactly because it involves a multi-dimensional integral which does

not have closed form. The use of pseudo-random numbers to approximate the

integral during the simulation requires a large number of draws and leads to

long computational times.

To reduce the computational cost, it is possible to replace the pseudo-

random numbers by a set of fewer, evenly spaced points and still achieve the

same, or even higher, estimation accuracy. Quasi-random numbers are evenly

spread over the integration domain. They have become popular alternatives

to pseudo-random numbers in maximum simulated likelihood problems. Bhat

(2001) compared the performance of quasi-random numbers (Halton draws)

and pseudo-random numbers in the context of the maximum simulated like-

lihood estimation of the RPL model. The root mean squared error (RMSE)

and the mean absolute error ratio across parameters were used to evaluate

the proximity of estimated and true parameters. He found that using 100

Halton draws the RMSE of the RPL model estimates was smaller than us-

ing 1000 pseudo-random numbers. However, Bhat (2001) also mentioned that

the error measures of the estimated parameters do not always become smaller

as the number of Halton draws increases. Train (2009, p.231) summarizes



Tong Zeng 61

some numerical experiments comparing the use of 100 Halton draws with 125

Halton draws. He says,“...the standard deviations are greater with 125 Hal-

ton draws than with 100 Halton draws. The reason for this anomaly has not

been determined. Its occurrence indicates the need for further investigation

of the properties of Halton sequences in simulation-based estimation.” It is

our purpose to further the understanding of these properties through exten-

sive simulation experiments. How does the number of quasi-random numbers,

which are generated by the Halton draws, influence the efficiency of the esti-

mated parameters? How many number of Halton draws should be chosen in

the application of Halton sequences with the maximum simulated likelihood

estimation? To make the maximum simulated likelihood estimator asymp-

totically equivalent to the maximum likelihood estimator, should we increase

the number of points generated by the Halton sequence with increases in the

sample size as using the pseudo-random numbers? In our experiments, we

vary the number of Halton draws, the sample size and the number of random

coefficients to explore the properties of the Halton sequences in estimating the

RPL model. Unlike Bhat (2001), we analyze the RMSE and the ratio of the

average nominal standard error to the Monte Carlo standard deviation of each

estimated parameter. The results of our experiments confirm the efficiency of

the quasi-random numbers in the context of the RPL model. We show that

increases in the number of Halton draws influence the efficiency of the random

parameters logit model estimators by a small amount. The maximum simu-

lated likelihood estimator is consistent. We find that it is not necessary to

increase the number of Halton draws when the sample size increases for this

result to be evident.

The plan of the paper is as follows. In the following section, we discuss

the random parameters logit specification. Section 3 introduces Halton se-

quences. Section 4 describes our Monte Carlo experiments. Section 5 presents

the experimental results. Some conclusions are given in Section 6.

2 The Random Parameters Logit Model

The RPL model is described in Train (2009, p.134-150). Consider individ-

ual n facing M alternatives. The random utility associated with alternative
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i is Uni = β′
nxni + εni, where xni are K observed explanatory variables for

alternative i, εni is an iid type I extreme value error which is independent of

βn and xni. The random coefficients βn vary over individuals in the population

with density function f(β) and can be regarded as being composed of mean

b and deviations β̃n. The RPL model decomposes the unobserved part of the

utility into the extreme value term and the random part β̃nxni. Conditional

on βn the probability that individual n chooses alternative i is of the usual

logistic form, Lni(βn) = eβ′
nxni/

∑
i e

β′
nxni . The probability that individual n

chooses alternative i is

Pni =

∫
Lni(β)f(β|θ)dβ (1)

The density function f(β) provides the weights, and the choice probability

is a weighted average of Lni(β) over all possible values of βn. Even though

the integral in (1) does not have a closed form, the choice probability in the

RPL model can be estimated through simulation. The unknown parameters

(θ), such as the mean and variance of the random coefficient distribution,

can be estimated by maximizing the simulated log-likelihood function. With

simulation, a value of β labelled as βr representing the rth draw, is selected

randomly from a previously specified distribution. The standard logit Lni(β)

in equation (1) can be calculated with βr. Repeating this process R times,

the simulated probability of individual n choosing alternative i is obtained by

averaging Lni(β
r):

P̌ni =
1

R

R∑
r=1

Lni(β
r) (2)

The simulated log-likelihood function is:

SLL(θ) =
N∑

n=1

M∑
i=1

dnilnP̌ni (3)

where the indicator variable dni=1 if individual n chooses alternative i. The

simulated log-likelihood is then maximized numerically with respect to θ.

The method used to estimate the probability Pni in (2) is called the classical

Monte Carlo method. It reduces the integration problem to the problem of

estimating the expected value on the basis of the strong law of large numbers.

In general terms, the classical Monte Carlo method is described as a numerical
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method based on random sampling. The random sampling here is pseudo-

random numbers. In terms of the number of pseudo-random numbers N , it

gives us a probabilistic error bound, also called the convergence rate, O(N−1/2)

for numerical integration, since there is never any guarantee that the expected

accuracy is achieved in a concrete calculation (Niederreiter, 1992, p.7). It

represents the stochastic character of the classical-Monte Carlo method. The

useful feature of the classical Monte Carlo method is that the convergence

rate of the numerical integration does not depend on the dimension of the

integration. With the classical Monte Carlo method, it is not difficult to get

an unbiased simulated probability P̌ni for Pni. The problem is the simulated

log-likelihood function in (2) is a logarithmic transformation, which causes a

simulation bias in the SLL which translates into bias in the MSL estimator. To

decrease the bias in the MSL estimator and get a consistent and efficient MSL

estimator, Train (2009, p.255) shows that, with an increase in the sample size

N , the number of pseudo-random numbers should rise faster than
√

N . The

disadvantage of the classical Monte Carlo method in the RPL model estimation

is the requirement of a large number of pseudo-random numbers, which leads

to long computational times.

3 The Halton Sequences

To reduce the computational cost, quasi-random numbers are being used

to replace the pseudo-random numbers in MSL, leading to the same or even

higher accuracy estimation with much fewer points. The essence of the number

theoretic method (NTM) is to find a set of uniformly scattered points over

an s-dimensional unit cube. Such set of points obtained by NTM is usually

called a set of quasi-random numbers, or a number theoretic net. Sometimes

it can be used in the classical Monte Carlo method to achieve a significantly

higher accuracy. The Monte Carlo method with using quasi-random numbers is

called a quasi-Monte Carlo method. In fact, there are several classical methods

to construct the quasi-random numbers. Here we use the Halton sequences

proposed by Halton (1960).

The Halton sequences are based on the base-p number system which implies
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that any integer n can be written as:

n ≡ nMnM−1· · ·n2n1n0 = n0 + n1p + n2p
2 +· · ·+ nMpM (4)

where M=[logp n]=[ln n/ ln p] and M + 1 is the number of digits of n, square

brackets denoting the integral part, p is base and can be any integer except 1,

ni is the digit at position i, 0 ≤ i ≤ M , 0 ≤ ni ≤ p− 1 and pi is the weight of

the digit at position i. For example, with the base p = 10, the integer n = 468

has n0 = 8, n1 = 6, n2 = 4. The weights for n0, n1 and n2 are 100, 101 and

102 respectively.

Using the base-p number system, we can construct one and only one fraction

ϕ which is smaller than 1 by writing n with a different base number system

and reversing the order of the digits in n. It is also called the radical inverse

function defined as the follows:

ϕ = ϕp(n) = 0.n0n1n2· · ·nM = n0p
−1 + n1p

−2 +· · ·+ nMp−M−1 (5)

Based on the base-p number system, the integer n = 468 can be converted into

the binary number system by successively dividing by the new base p = 2:

46810 = 1×28 + 1×27 + 1×26 + 0×25 + 1×24 + 0×23 + 1×22 + 0×21 + 0×20

= 1110101002

Applying the radical inverse function (5), we can get an unique fraction for

the integer n = 468 with base p = 2:

ϕ2(111010100) = 0.0010101112 = 1×2−3 + 1×2−5 + 1×2−7 + 1×2−8 + 1×2−9

= 0.16992187510

The value 0.16992187510 is the corresponding fraction of 1110101002 in the

decimal number system.

The Halton sequence of length N is developed from the radical inverse

function and the points of the Halton sequence are ϕp(n) for n = 1, 2,· · · , N ,

where p is a prime number. The k-dimensional sequence is defined as:

φn = (ϕp1(n), ϕp2(n),· · · , ϕpk
(n)) (6)

Where p1, p2,· · · , pk are prime to each other and are chosen from the first

k primes. By setting p1, p2,· · · , pk to be prime to each other we avoid the
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correlation among the points generated by any two Halton sequences with

different base-p.

In applications, Halton sequences are used to replace random number gen-

erators to produce points in the interval [0, 1]. The points of the Halton

sequence are generated iteratively. As far as a one-dimensional Halton se-

quence is concerned, the Halton sequence based on prime p divides the 0-1

space into p segments and systematically fills in the empty space by dividing

each segment into smaller p segments iteratively. This is illustrated below.

The numbers above the line represents the order of points filling in the space.

The position of the points is determined by the base which is used to

construct the iteration. A large base implies more points in each iteration

or longer cycle. Due to the high correlation among the initial points of the

Halton sequence, the first ten points of the sequences are usually discarded

in applications. Compared to the pseudo-random numbers, the coverage of

the points of the Halton sequence are more uniform, since the pseudo-random

numbers may cluster in some areas and leave some areas uncovered. This

can be seen from Figure 1, which is similar to the figure from Bhat (2001).

Figure 1(a) is a plot of 200 points taken from uniform distribution of two

dimensions using pseudo-random numbers. Figure 1(b) is a plot of 200 points

obtained by the Halton sequence. The latter scatters more uniformly on the

unit square than the former. Since the points generated from the Halton

sequences are deterministic points, unlike the classical-Monte Carlo method,

quasi-Monte Carlo provides a deterministic error bound instead of probabilistic

error bound. It is also called the discrepancy in the literature of number

theoretic methods. The smaller the discrepancy, the more evenly the quasi-

random numbers are spread over the domain. The deterministic error bound

of quasi-Monte Carlo method with the k-dimensional Halton sequence, which

is represented in terms of the number of points used, was shown [Halton, 1960]

smaller than the probabilistic error bound of classical-Monte Carlo method as

O(N−1(ln N)k). It means that with much fewer points generated by the Halton

sequence we can achieve the same or even higher accuracy estimation than that

with using pseudo-random numbers. However, some researchers pointed out

the correlation problem among the points generated by the Halton sequence

with two adjacent large prime number in high dimensional integral.

With high dimensional Halton sequences, usually k ≥ 10, a large number
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of points is needed to complete the long cycle with large prime numbers. In

addition to increasing the computational time, it will also cause a correlation

between two adjacent large prime-based sequences, such as the thirteenth and

fourteenth dimension generated by prime number 41 and 43 respectively. The

correlation coefficient between two close large prime-based sequences is almost

equal to one. This is shown in Figure 2, which is based on a graph from Bhat

(2003). To solve this problem, number theorists such as Wang and Hickernell

(2000) scramble the digits of each number of the sequences, which is called

a scrambled Halton sequences. In this paper, we only focus on the normal

Halton sequences with relatively low dimentional integral.

4 The Quasi-Monte Carlo Experiments with

Halton Sequences

Our experiments begin from the simple RPL model which has no intercept

term and only one random coefficient. Then, we expand the number of random

coefficient to four by adding the random coefficient one by one. In our experi-

ments, each individual faces four mutually exclusive alternatives with only one

choice occasion. The associated utility for individual n choosing alternative i

is:

Uni = β′
nxni + εni (7)

The explanatory variables for each individual and each alternative xni are

generated from independent standard normal distributions. The coefficients

for each individual βn are generated from normal distribution N(β, σ2
β). These

values of xni and βn are held fixed over each experiment design. The choice

probability for each individual is generated with the logit-smoothed accept-

reject simulator suggested by McFadden (1989). We set λ as 0.125.

P̌ni =
1

R

R∑
r=1

eUr
ni/λ∑

j eUr
nj/λ

(8)

The dependent variables yni are determined by these values of simulated

choice probabilities. Our generated data is composed of the explanatory and
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dependent variables xni and yni which are used to estimate the RPL model pa-

rameters. In our experiments, we generate 1000 Monte Carlo samples (NSAM)

with specific true values that we set for the RPL model parameters. During

the estimation process, the random coefficients βn in (7) are generated by

the Halton sequences instead of pseudo-random numbers. First, we generate

the k-dimensional Halton sequences of length N×R +10, where N is sample

size, R is the number of the Halton draws assigned to each individual and 10

is the number of Halton draws that we discard due to the high correlation

[Morokoff and Caflisch (1995), Bratley, et al. (1992)]. Then we transform

these Halton draws into a set of numbers βn with normal distribution using

discrepancy-preserving transformation. Based on the discrepancy-preserving

transformation, the independent multivariate normal distribution βn which is

transformed from the k-dimensional Halton sequences, has the same discrep-

ancy as the Halton sequences generated from the k-dimensional unit cube. So

the smaller discrepancy of the Halton sequences leads to the smaller discrep-

ancy of βn. To calculate the corresponding simulated probability P̌ni in (2),

the first R points are assigned to the first individual, the second R points are

assigned to the second individual, and so on. They are used to calculate the

simulated probability P̌ni of each individual respectively.

To examine the efficiency of the estimated parameters using Halton se-

quences, we use the error measures: the ratio of the average nominal standard

error to the Monte Carlo standard deviation of the estimated parameters and

the root mean squared error (RMSE) of the RPL model estimates. They are

calculated as follows using one estimated parameter β̂ as an example:

Monte Carlo average
¯̂
βi =

∑
β̂i/NSAM (9)

Monte Carlo standard deviation (s.d.) of β̂i =

√∑
(β̂i − ¯̂

β)2/(NSAM − 1)

(10)

Average nominal standard error (s.e.) of β̂i =
∑ √

ˆvar(β̂i)/NSAM (11)

Root mean square error (RMSE) of β̂i =
√∑

(β̂i − β̄)2/NSAM (12)

where β̄ and β̂i are the true parameter and estimates of parameter, respectively.

To explore the properties of the Halton sequences in estimating the RPL model,

we vary the number of Halton draws, the sample size and the number of
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random coefficients. we also do the same experiments using the pseudo-random

numbers to compare the performance of the Halton sequence and pseudo-

random numbers in estimating the RPL model. To avoid different simulation

errors from the different process of probability integral transformation, we use

the same probability integral transformation process with Halon draws and

pseudo-random numbers.

5 The Experimental Results

In our experiments, we increase the number of random coefficients one by

one. For each case, the RPL model is estimated by 25, 100, 250 and 500

Halton draws. We use 2000 pseudo-random numbers to get the benchmark

results of the error measures which are based on the RPL model estimators.

The mean and standard deviation of the random coefficient are set as 1.5 and

0.8 respectively. Table 1 and Table 2 show the results of the one random

coefficient parameter logit model using Halton draws. Tables 3 and 4 present

the results using 1000 and 2000 pseudo-random numbers. From Table 1 and

Table 2, with the given number of observations, increasing the number of

Halton draws from 25 to 500 only changes the RMSE of the estimated mean of

the random coefficient distribution by less than 4%, and influences the RMSE

of the estimated standard deviation of the random coefficient distribution by

no more than 10%. When the number of observations increases to 500 and

800, increasing the number of Halton draws from 100 to 500 only influences

of the RMSE and the ratio the average nominal standard deviations to the

Monte Carlo standard deviations of each estimated parameter very slightly.

The RMSE of the estimated parameter mean is lower using 25 Halton draws

than that using more Halton draws and pseudo-random numbers. With 100

Halton draws, we can reach almost the same efficiency of the RPL model

estimators as using 2000 pseudo-random numbers. The results are consistent

with Bhat (2001). The ratios of the average nominal standard deviations to

the Monte Carlo standard deviations of the estimated parameters are stable

with increases in the number of Halton draws.

Tables 5-12 present the results of two independent random coefficients logit

model using Halton draws and pseudo-random numbers. We set the mean and
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the standard deviation of the new random coefficient as 1.0 and 0.5 respec-

tively. The same error measures are used to analyze the efficiency of each

estimator for each case. After including another random coefficient, the mean

of each random coefficient distribution is overestimated. The RMSE of the

RPL estimator is stable in the number of Halton draws. Again, with increases

in the number of observations, increasing the number of Haton draws doesn’t

influence the efficiency of the estimated parameters significantly. The β̂ has the

lowest RMSE with 25 Halton draws. In the two random coefficients case, the

RMSEs with 500 Halton draws are the closest ones to the according bench-

mark results. The results with 100 Halton draws are also very close to the

benchmark and there is no significantly difference between them.

As the number of random coefficients increases, the computational time in-

creases greatly using pseudo-random numbers rather than using quasi-random

numbers. However, we can get almost the same efficiency of the estimated

parameters using 100 Halton draws as using 1000 pseudo-random numbers.

Tables showing the results of three and four independent random coefficients

logit model are available upon request. With three and four independent ran-

dom coefficients, using 25 Halton draws doesn’t always provide the lowest

RMSE of the estimated parameter mean. When the number of random coef-

ficients is increased, the effect of rising Halton draws on the efficiency of the

RPL model estimators is still slightly, especially with 500 and 800 observa-

tions. The results are similar to the one and two random coefficients cases.

Train (2009, p.225) discusses that the negative correlation between the av-

erage of two adjacent observation’s draws can reduce errors in the simulated

log-likelihood function, like the method of antithetic variates. However, this

negative covariance across observations declines with increases in the num-

ber of observations N , since the length of Halton sequences in estimating the

RPL model is determined by the number of observations and the number of

Halton draws assigned to each observation. The increases in the number of

observations will decrease the gap between two adjacent observation’s cover-

age. Train (2009, p.225) suggests increasing the number of Halton draws for

each individual when the number of observations increases. But, based on

our experimental results, we find that increasing the number of Halton draws

for each individual does not significantly affect the RMSE of the RPL model

estimators as the number of observations increases.
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6 Conclusions

In this paper, we study the properties of the Halton sequences in estimating

the RPL model, which is a very flexible and a generalization of the conditional

logit model. With one or two independent random coefficients, using only 25

Halton draws can provides smaller RMSE of the estimated parameters than

that using 2000 pseudo-random numbers. When the number of random co-

efficients is increased to three and four, with 100 Halton draws can achieve

almost the same efficiency of the estimated parameters as using 1000 pseudo-

random numbers. However, the computational time is reduced greatly. The

most important thing is, as the number of observations increases, we find it

is not necessary to increase the number of Halton draws to get the efficient

and consistent maximum simulated likelihood estimators. Our experimental

results can also provide the guidance of using quasi-random numbers gener-

ated by the Halton sequence in estimating other discrete choice model, like the

probit model.
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Table 1: The mixed logit model with one random coefficient

β̄ = 1.5, σ̄β = 0.8

Quasi-Monte Carlo Estimation

Number of Halton Draws

Estimator β̂ 25 100 250 500

Observations=200

Monte Carlo average 1.468 1.477 1.477 1.477

Monte Carlo s.d. 0.226 0.233 0.232 0.233

Average nominal s.e. 0.236 0.237 0.237 0.237

Average nominal s.e./MC s.d. 1.044 1.017 1.022 1.017

RMSE 0.228 0.234 0.233 0.234

Observations=500

Monte Carlo average 1.578 1.582 1.585 1.585

Monte Carlo s.d. 0.163 0.163 0.163 0.163

Average nominal s.e. 0.165 0.166 0.165 0.165

Average nominal s.e./MC s.d. 1.012 1.018 1.012 1.012

RMSE 0.181 0.183 0.184 0.183

Observations=800

Monte Carlo average 1.521 1.533 1.535 1.534

Monte Carlo s.d. 0.125 0.125 0.125 0.125

Average nominal s.e. 0.128 0.129 0.129 0.129

Average nominal s.e./MC s.d. 1.024 1.032 1.032 1.032

RMSE 0.127 0.129 0.129 0.129
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Table 2: The mixed logit model with one random coefficient

β̄ = 1.5, σ̄β = 0.8

Quasi-Monte Carlo Estimation

Number of Halton Draws

Estimator σ̂β 25 100 250 500

Observations=200

Monte Carlo average 0.594 0.606 0.602 0.601

Monte Carlo s.d. 0.337 0.372 0.375 0.377

Average nominal s.e. 0.417 0.447 0.465 0.473

Average nominal s.e./MC s.d. 1.237 1.202 1.240 1.255

RMSE 0.395 0.419 0.424 0.426

Observations=500

Monte Carlo average 0.728 0.740 0.743 0.743

Monte Carlo s.d. 0.236 0.243 0.242 0.243

Average nominal s.e. 0.245 0.249 0.248 0.249

Average nominal s.e./MC s.d. 1.038 1.025 1.025 1.025

RMSE 0.246 0.250 0.249 0.250

Observations=800

Monte Carlo average 0.741 0.763 0.766 0.766

Monte Carlo s.d. 0.177 0.173 0.172 0.172

Average nominal s.e. 0.183 0.182 0.181 0.182

Average nominal s.e./MC s.d. 1.034 1.052 1.052 1.058

RMSE 0.187 0.177 0.176 0.176
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Table 3: The mixed logit model with one random coefficient

β̄ = 1.5, σ̄β = 0.8

Classical-Monte Carlo Estimation

Number of Random Draws

Estimator β̂ 1000 2000

Observations=200

Monte Carlo average 1.479 1.483

Monte Carlo s.d. 0.229 0.233

Average nominal s.e. 0.236 0.239

Average nominal s.e./MC s.d. 1.031 1.026

RMSE 0.230 0.234

Observations=500

Monte Carlo average 1.584 1.590

Monte Carlo s.d. 0.162 0.163

Average nominal s.e. 0.165 0.166

Average nominal s.e./MC s.d. 1.019 1.018

RMSE 0.182 0.187

Observations=800

Monte Carlo average 1.531 1.536

Monte Carlo s.d. 0.124 0.125

Average nominal s.e. 0.129 0.129

Average nominal s.e./MC s.d. 1.040 1.032

RMSE 0.128 0.130
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Table 4: The mixed logit model with one random coefficient

β̄ = 1.5, σ̄β = 0.8

Classical-Monte Carlo Estimation

Number of Random Draws

Estimator σ̂β 1000 2000

Observations=200

Monte Carlo average 1.479 1.483

Monte Carlo s.d. 0.229 0.233

Average nominal s.e. 0.236 0.239

Average nominal s.e./MC s.d. 1.031 1.026

RMSE 0.230 0.234

Observations=500

Monte Carlo average 0.614 0.618

Monte Carlo s.d. 0.354 0.368

Average nominal s.e. 0.424 0.435

Average nominal s.e./MC s.d. 1.198 1.182

RMSE 0.400 0.410

Observations=800

Monte Carlo average 0.758 0.768

Monte Carlo s.d. 0.172 0.173

Average nominal s.e. 0.182 0.181

Average nominal s.e./MC s.d. 1.058 1.046

RMSE 0.177 0.175
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Table 5: The mixed logit model with two random coefficients

β̄1 = 1.0, σ̄β1 = 0.5; β̄2 = 1.5, σ̄β2 = 0.8

Quasi-Monte Carlo Estimation

Number of Halton Draws

Estimator β̂1 25 100 250 500

Observations=200

Monte Carlo average 1.002 1.011 1.007 1.009

Monte Carlo s.d. 0.168 0.176 0.174 0.175

Average nominal s.e. 0.188 0.190 0.188 0.188

Average nominal s.e./MC s.d. 1.119 1.080 1.080 1.074

RMSE 0.168 0.176 0.174 0.175

Observations=500

Monte Carlo average 1.018 1.029 1.029 1.031

Monte Carlo s.d. 0.107 0.111 0.111 0.111

Average nominal s.e. 0.122 0.125 0.125 0.125

Average nominal s.e./MC s.d. 1.140 1.126 1.126 1.126

RMSE 0.108 0.115 0.115 0.115

Observations=800

Monte Carlo average 1.007 1.020 1.018 1.019

Monte Carlo s.d. 0.083 0.086 0.086 0.086

Average nominal s.e. 0.095 0.097 0.097 0.097

Average nominal s.e./MC s.d. 1.145 1.128 1.128 1.128

RMSE 0.083 0.089 0.088 0.089



76 Halton Sequences in RPL Models

Table 6: The mixed logit model with two random coefficients

β̄1 = 1.0, σ̄β1 = 0.5; β̄2 = 1.5, σ̄β2 = 0.8

Quasi-Monte Carlo Estimation

Number of Halton Draws

Estimator σ̂β1 25 100 250 500

Observations=200

Monte Carlo average 0.433 0.431 0.409 0.414

Monte Carlo s.d. 0.315 0.350 0.358 0.358

Average nominal s.e. 0.460 0.515 0.544 0.542

Average nominal s.e./MC s.d. 1.460 1.471 1.520 1.514

RMSE 0.322 0.357 0.369 0.368

Observations=500

Monte Carlo average 0.487 0.503 0.504 0.506

Monte Carlo s.d. 0.221 0.229 0.230 0.230

Average nominal s.e. 0.282 0.290 0.290 0.292

Average nominal s.e./MC s.d. 1.276 1.266 1.261 1.270

RMSE 0.222 0.229 0.230 0.230

Observations=800

Monte Carlo average 0.460 0.478 0.474 0.473

Monte Carlo s.d. 0.184 0.191 0.194 0.196

Average nominal s.e. 0.222 0.222 0.228 0.234

Average nominal s.e./MC s.d. 1.207 1.162 1.175 1.194

RMSE 0.189 0.192 0.196 0.197
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Table 7: The mixed logit model with two random coefficients

β̄1 = 1.0, σ̄β1 = 0.5; β̄2 = 1.5, σ̄β2 = 0.8

Quasi-Monte Carlo Estimation

Number of Halton Draws

Estimator β̂2 25 100 250 500

Observations=200

Monte Carlo average 1.557 1.566 1.561 1.562

Monte Carlo s.d. 0.260 0.264 0.260 0.261

Average nominal s.e. 0.279 0.280 0.278 0.277

Average nominal s.e./MC s.d. 1.073 1.061 1.069 1.061

RMSE 0.266 0.272 0.267 0.268

Observations=500

Monte Carlo average 1.518 1.533 1.531 1.532

Monte Carlo s.d. 0.167 0.167 0.166 0.167

Average nominal s.e. 0.176 0.179 0.178 0.178

Average nominal s.e./MC s.d. 1.054 1.072 1.072 1.066

RMSE 0.168 0.170 0.169 0.170

Observations=800

Monte Carlo average 1.511 1.534 1.531 1.533

Monte Carlo s.d. 0.124 0.127 0.127 0.128

Average nominal s.e. 0.137 0.141 0.140 0.141

Average nominal s.e./MC s.d. 1.105 1.110 1.102 1.102

RMSE 0.124 0.132 0.131 0.132
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Table 8: The mixed logit model with two random coefficients

β̄1 = 1.0, σ̄β1 = 0.5; β̄2 = 1.5, σ̄β2 = 0.8

Quasi-Monte Carlo Estimation

Number of Halton Draws

Estimator σ̂β2 25 100 250 500

Observations=200

Monte Carlo average 0.874 0.894 0.882 0.883

Monte Carlo s.d. 0.338 0.330 0.326 0.328

Average nominal s.e. 0.369 0.367 0.367 0.369

Average nominal s.e./MC s.d. 1.092 1.112 1.126 1.125

RMSE 0.345 0.343 0.336 0.338

Observations=500

Monte Carlo average 0.816 0.843 0.834 0.838

Monte Carlo s.d. 0.221 0.212 0.213 0.213

Average nominal s.e. 0.237 0.232 0.233 0.233

Average nominal s.e./MC s.d. 1.072 1.094 1.094 1.094

RMSE 0.222 0.216 0.215 0.216

Observations=800

Monte Carlo average 0.771 0.811 0.804 0.807

Monte Carlo s.d. 0.163 0.161 0.161 0.161

Average nominal s.e. 0.185 0.185 0.185 0.185

Average nominal s.e./MC s.d. 1.135 1.149 1.149 1.149

RMSE 0.165 0.161 0.161 0.161
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Table 9: The mixed logit model with two random coefficients

β̄1 = 1.0, σ̄β1 = 0.5; β̄2 = 1.5, σ̄β2 = 0.8

Classical-Monte Carlo Estimation

Number of Random Draws

Estimator β̂1 1000 2000

Observations=200

Monte Carlo average 1.010 1.012

Monte Carlo s.d. 0.173 0.175

Average nominal s.e. 0.190 0.189

Average nominal s.e./MC s.d. 1.098 1.080

RMSE 0.173 0.176

Observations=500

Monte Carlo average 1.026 1.034

Monte Carlo s.d. 0.110 0.111

Average nominal s.e. 0.124 0.126

Average nominal s.e./MC s.d. 1.127 1.135

RMSE 0.113 0.116

Observations=800

Monte Carlo average 1.015 1.022

Monte Carlo s.d. 0.085 0.086

Average nominal s.e. 0.096 0.097

Average nominal s.e./MC s.d. 1.129 1.128

RMSE 0.086 0.089
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Table 10: The mixed logit model with two random coefficients

β̄1 = 1.0, σ̄β1 = 0.5; β̄2 = 1.5, σ̄β2 = 0.8

Classical-Monte Carlo Estimation

Number of Random Draws

Estimator σ̂β1 1000 2000

Observations=200

Monte Carlo average 0.429 0.426

Monte Carlo s.d. 0.333 0.342

Average nominal s.e. 0.507 0.502

Average nominal s.e./MC s.d. 1.523 1.468

RMSE 0.341 0.350

Observations=500

Monte Carlo average 0.499 0.516

Monte Carlo s.d. 0.219 0.220

Average nominal s.e. 0.281 0.276

Average nominal s.e./MC s.d. 1.283 1.255

RMSE 0.219 0.221

Observations=800

Monte Carlo average 0.465 0.481

Monte Carlo s.d. 0.186 0.187

Average nominal s.e. 0.221 0.216

Average nominal s.e./MC s.d. 1.188 1.155

RMSE 0.189 0.188
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Table 11: The mixed logit model with two random coefficients

β̄1 = 1.0, σ̄β1 = 0.5; β̄2 = 1.5, σ̄β2 = 0.8

Classical-Monte Carlo Estimation

Number of Random Draws

Estimator β̂2 1000 2000

Observations=200

Monte Carlo average 1.562 1.562

Monte Carlo s.d. 0.258 0.261

Average nominal s.e. 0.277 0.278

Average nominal s.e./MC s.d. 1.074 1.065

RMSE 0.266 0.268

Observations=200

Monte Carlo average 1.531 1.531

Monte Carlo s.d. 0.165 0.166

Average nominal s.e. 0.177 0.178

Average nominal s.e./MC s.d. 1.073 1.072

RMSE 0.168 0.169

Observations=200

Monte Carlo average 1.532 1.532

Monte Carlo s.d. 0.126 0.127

Average nominal s.e. 0.140 0.140

Average nominal s.e./MC s.d. 1.111 1.102

RMSE 0.130 0.131
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Table 12: The mixed logit model with two random coefficients

β̄1 = 1.0, σ̄β1 = 0.5; β̄2 = 1.5, σ̄β2 = 0.8

Classical-Monte Carlo Estimation

Number of Random Draws

Estimator σ̂β2 1000 2000

Observations=200

Monte Carlo average 0.881 0.889

Monte Carlo s.d. 0.316 0.327

Average nominal s.e. 0.357 0.369

Average nominal s.e./MC s.d. 1.130 1.128

RMSE 0.326 0.338

Observations=200

Monte Carlo average 0.834 0.841

Monte Carlo s.d. 0.208 0.214

Average nominal s.e. 0.228 0.233

Average nominal s.e./MC s.d. 1.096 1.089

RMSE 0.210 0.218

Observations=200

Monte Carlo average 0.807 0.808

Monte Carlo s.d. 0.158 0.161

Average nominal s.e. 0.182 0.185

Average nominal s.e./MC s.d. 1.152 1.149

RMSE 0.158 0.162
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Figure 1(a): 200 points pseduo-random numbers in two-dimension

Figure 1(b): 200 points generated from two-dimension Halton sequence with prime
2 and 3
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Figure 2: 200 points of two-dimension Halton sequence generated with prime 41
and 43
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