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Abstract

We describe a Jordan-algebraic version of E. Lieb convexity inequal-
ities. A joint convexity of Jordan-algebraic version of quantum entropy
is proven. A version of noncommutative Bernstein inequality is proven
as an application of one of convexity inequalities. A spectral theory
on semi-simple complex Jordan algebras is used as a tool to prove the
convexity results. Possible applications to optimization and statistics
are indicated.
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1 Introduction

In [11] E. Lieb proved a number of interrelated convexity inequalities, which

1 Department of Mathematics, University of Notre Dame, USA.
E-mail: lfaybuso@nd.edu

Article Info: Received : October 14, 2015. Revised : November 22, 2015.
Published online : April 5, 2016.



2 E. Lieb convexity inequalities and Bernstein inequality...

found important applications in quantum physics, quantum information the-

ory, statistics and probability. An interesting fact related to these inequalities

is that pretty much all of them admit a Jordan-algebraic interpretation. That

makes it tempting to generalize them to the setting of Euclidean Jordan al-

gebras. If a given simple Euclidean Jordan algebra admits a representation

in Jordan algebra of real symmetric matrices, it is quite straightforward in

most of the cases. Unfortunately, it is not always the case. Since an arbitrary

Euclidean Jordan algebra is a direct sum of simple ones, to prove the results in

general, a different approach is required. While by now a number of different

proofs of original results is known, surprisingly (and in contrast with mere re-

formulation of the results), none of them admits an immediate generalization

in Jordan-algebraic setting. In present paper we provide a Jordan-algebraic

version of E. Lieb’s results. One can consider this paper as an attempt to

further develop a version of matrix analysis (in the sense of, say, [1]) in the

context of Euclidean Jordan algebras.

The plan of the paper is as follows. In section 2 we introduce the vocabu-

lary of Euclidean Jordan algebras. In section 3 we formulate a Jordan-algebraic

version of the main theorem of [11]. We then derive a number of convexity

inequalities and, in particular, prove a joint convexity of Jordan-algebraic ver-

sion on quantum entropy. In section 4 we prove (as an application of one of

the E. Lieb inequalities) the noncommutative Bernstein inequality developing

some ideas of J. Tropp. In section 5 we prove the main theorem following the

scheme of [4]. The section may be of an independent interest, since it shows

a deep analogy of spectral theory in semi-simple complex Jordan algebras and

C*-algebras.

2 Jordan-algebraic Concepts

We adhere to the notation of an excellent book [7]. We do not attempt to

provide a comprehensive introduction to Jordan algebras but rather describe

a vocabulary with references to [7]. Let F be the field R or C. A vector space

V over F is called an algebra over F if a bilinear mapping (x, y) → xy from

V ×V into V is defined. For an element x in V let L(x) : V → V be the linear
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map such that

L(x)y = xy.

An algebra V over F is a Jordan algebra if

xy = yx, x(x2y) = x2(xy),∀x, y ∈ V.

In other words, Jordan algebra is always commutative but typically not asso-

ciative. In an algebra V one defines xn recursively by xn = x ·xn−1. An algebra

V is said to be power assotiative if xp · xq = xp+q for any x ∈ V and integers

p, q.

Proposition 2.1. A Jordan algebra is power associative. Besides,

[L(xp), L(xq)] = 0,∀x ∈ V,

and any positive integers p and q. (In other words, corresponding linear oper-

ators commute).

This is Proposition II.1.2 in [7]. We will always assume that the Jordan

algebra has an identity element e (i.e. , xe = x,∀x ∈ V ). The power associativ-

ity of Jordan algebras allows one (among other things) to develop the spectral

theory very similar to classical case of linear operators on finite dimensional

spaces or finite-dimensional C∗- algebras.

Let V be a finite-dimensional power associative algebra over F with an

identity element e, and let F [Y ] denote the algebra over F of polynomials in

one variable with coefficients in F. For x ∈ V we define

F[x] = {p(x) : p ∈ F[Y ]}.
A polynomial p ∈ F[Y ] of minimal possible degree such that p(x) = 0 is called

the minimal polynomial of x. Given x ∈ V, let m(x) be the degree of the

minimal polynomial of x. We define the rank of V as

r = max{m(x) : x ∈ V }.
An element x is called regular if m(x) = r.

Proposition 2.2. The set of regular elements is open and dense in V.There

exist polynomials a1, . . . ar on V such that the minimal polynomial of every

regular element x is given by

f(λ; x) = λr − a1(x)λr−1 + a2(x)λr−2 + . . . + (−1)rar(x).

The polynomials a1, . . . ar are unique and aj is homogeneous of degree j.
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This is Proposition II.2.1 in [7]. The coefficient a1(x) is called the trace of

x and is denoted tr(x) (in particular, trace is linear). The coefficient ar(x) is

called the determinant of x and is denoted det(x). An element x is said to be

invertible if there exists an element y ∈ F[x] such that xy = e. The set λ ∈ F

such that x − λe is not invertible is called the spectrum of x and is denoted

spec(x).

Given x ∈ V, we define

P (x) = 2L(x)2 − L(x2).

The map P is called the quadratic representation of V. We denote DP (x)y by

2P (x, y). Here DP (x)y is the Frechet derivative of the map P at point x ∈ V

evaluated on y ∈ V. It is easy to see that

P (x, y) = L(x)L(y) + L(y)L(x)− L(xy), x, y ∈ V.

Proposition 2.3. Let V be a finite-dimensional Jordan algebra over F. An

element x ∈ V is invertible if and only if P (x) is invertible. In this case

P (x)x−1 = x, P (x)−1 = P (x−1).

This is Proposition II.3.1 in [7].

Proposition 2.4. Let J be the (open) set of invertible elements in V . The

map x → x−1 : J → J is Frechet differentiable and

i)D(x−1)u = −P (x−1)u, x ∈ J , u ∈ V.

ii) If x and y are invertible, then P (x)y is invertible and (P (x)y)−1 =

P (x−1)y−1.

iii)

P (P (x)y) = P (x)P (y)P (x),∀x, y ∈ V.

iv)

P (P (x)y, P (x)z) = P (x)P (y, z)P (x),∀x, y, z ∈ V.

This is Proposition II.3.3 in [7]. A bilinear form β on V is called associative

if

β(xy, z) = β(x, yz),∀x, y, z ∈ V.
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Proposition 2.5. The symmetric bilinear forms TrL(xy) and tr(xy) are

associative.

This is Proposition II.4.3 in [7].

In case , where F = R we consider an important class of Euclidean Jordan

algebras. A Jordan algebra V over R is called Euclidean if tr(x2) > 0,∀x ∈
V \{0}. An element c ∈ V is called idempotent if c2 = c. Two idempotents are

orthogonal if cd = 0. A system of idempotents c1, . . . ck is a complete system

of orthogonal idempotents If c2
i = ci, cicj = 0, i 6= j, and c1 + . . . + ck = e.

Theorem 2.6. Let V be an Euclidean Jordan algebra. Given x ∈ V,there

exist unique real numbers λ1, . . . λk, all distinct, and a unique complete system

of orthogonal idempotents c1, . . . , ck such that

x = λ1c1 + · · ·+ λkck.

In this case spec(x) = {λ1, . . . , λk}, c1, . . . , ck ∈ R[x].

This is Theorem III.1.1 in [7].

An idempotent is primitive if it is non-zero and cannot be written as a

sum of two non-zero idempotents. We say that c1, . . . , cm is a complete system

of orthogonal primitive idempotents, or Jordan frame, if each cj is primitive

idempotent and if

cjck = 0, j 6= k, c1 + . . . + cm = e.

Note that in this case m = r (rank of V ).

Theorem 2.7. Suppose V has rank r. Then for x ∈ V there exists a Jordan

frame c1, . . . cr and real numbers λ1, . . . λr such that

x =
r∑

j=1

λjcj.

The numbers λj (with multiplicities) are uniquely determined by x. Further-

more,

det(x) =
r∏

j=1

λj, tr(x) =
r∑

j=1

λj.
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This is Theorem III.1.2 in [7].

Given a function f which is defined at least on spec(x), we can define

f(x) =
r∑

i=1

f(λi)ci,

if x =
∑r

i=1 λici. In particular,

exp(x) =
r∑

i=1

exp(λi)ci, ln x =
r∑

i=1

ln λici, λi > 0.

Let

Q = {x2 : x ∈ V }.

Theorem 2.8. Let V be an Euclidean Jordan algebra.The interior Ω of Q

is a symmetric (i.e. , self-dual, homogeneous) convex cone. Furthermore,Ω is

the connected component of e in the set J of invertible elements, and also Ω is

the set of elements x in V for which L(x) is positive definite. In particular, the

group of linear automorphisms GL(Ω) of Ω acts transitively on it. Moreover,

P (x) ∈ GL(Ω) for any invertible x.

This is Proposition III.2.2 in [7].

Let c1, . . . ck be complete system of orthogonal idempotents. For each idem-

potent c, denote V (c, 0), V (c, 1), V (c, 1/2) the eigenspaces of L(c) correspond-

ing to eigenvalues 0, 1, 1/2, respectively. Then L(c1), . . . , L(ck) pairwise com-

mute and

V =
⊕

1≤i≤j

Vij,

where Vii = V (ci, 1), Vij = V (ci, 1/2) ∩ V (cj, 1/2). Such a decomposition of V

corresponding to a complete system of orthogonal idempotents is called the

Peirce decomposition. It is studied in detail in Section 1 of Chapter IV in [7].

A typical example of a Jordan algebra over a field F is the vector space of

symmetric matrices over F with multiplication operation

A ·B =
AB + BA

2
,

where on the right we have a usual matrix multiplication. In case F = R we

get an exmple of an Euclidean Jordan algebra.
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3 Convexity inequalities

In this section we mostly follow the original paper [11] making necessary

Jordan-algebraic adjustments.

Let V be an Euclidean Jordan algebra.

Theorem 3.1. Let 0 ≤ p ≤ 1, k ∈ V. The function f1 : Ω× Ω → R,

f1(a, b) = tr((P (k)ap)b1−p)

is concave.

Here P is quadratic representation on V. This Theorem is proved in Section

5.

Lemma 3.2. Given k, u, v ∈ V,

tr((P (k)u)v) = 〈k, P (u, v)k〉 = 〈P (k)u, v〉.

Proof. By definition: P (k)u = 2L(k)2u− L(k2)u and hence

tr((P (k)u)v) = 〈2L(k)u, L(k)v〉 − 〈L(k2)u, v〉.

On the other hand,

〈k, P (u, v)k〉 = 〈k, (L(u)L(v) + L(v)L(u))k〉 − 〈k, L(uv)k〉 =

2〈L(u)k, L(v)k〉 − 〈k2, uv〉 = 2〈L(k)u, L(k)v〉 − 〈L(u)k2, v〉 =

2〈L(k)u, L(k)v〉 − 〈L(k2)u, v〉.

Consider the function ψ : [0, 1] → R,

ψ(p) = 〈P (k)ap, b1−p〉.

We obviously have:

ψ′(p) = 〈P (k)(ap ln a), b1−p〉 − 〈P (k)ap, b1−p ln b〉.

In particular,

ψ′(1) = 〈P (k)(a ln a), e〉 − 〈P (k)a, lnb〉.
For k = e we obtain:

ψ′(1) = tr(a ln a− a ln b).
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Theorem 3.3. The function (a, b) → tr(a ln a− a ln b) is convex on Ω×Ω.

Proof. ψ(1) = 〈P (k)a, e〉 is a linear function of (a, b), whereas the function

ψ(1 + h) is concave in (a, b) for −1 < h < 0 by Theorem 3.1. Hence,

∆(h) =
ψ(1 + h)− ψ(1)

h

is convex for −1 < h < 0. Consequently,

ψ′(1) = lim∆(h), h → 0−

is convex.

The function

D : Ω× Ω → R

D(a, b) = tr(a ln a− alnb− (a− b))

is called quantum relative entropy.

Corollary 3.4. The quantum relative entropy is (jointly) convex on Ω×Ω.

Lemma 3.5. Let ξl, ηl : [a, b] → R, αl ∈ R, l = 1, . . . , M. If

M∑

l=1

αlξl(λ)ηl(µ) ≥ 0,

for all λ, µ ∈ [a, b]. Then for u, v ∈ V, spec(u) ⊂ [a, b], spec(v) ⊂ [a, b],

tr(
M∑

l=1

αlξl(u)ηl(v)) ≥ 0.

Proof. Let

u =
r∑

i=1

λici, v =
r∑

i=1

µidi

be spectral decompositions u, v,respectively (see Theorem 2.7). Then

ξl(u) =
r∑

i=1

ξl(λi)ci, ηl(v) =
r∑

i=1

ηl(µi)di

and, consequently

tr(
M∑

l

αlξl(u)ηl(v)) =
r∑

i=1

r∑
j=1

〈ci, dj〉
M∑

l=1

αlξl(λi)ηl(µj) ≥ 0,

since 〈ci, dj〉 ≥ 0, for all i, j.
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Proposition 3.6.

D(a, b) ≥ 0,∀(a, b) ∈ Ω× Ω.

Proof. The function φ(λ) = λ ln λ is convex forλ > 0. Hence,

φ(λ)− φ(µ) ≥ φ′(µ)(λ− µ),

for any λ, µ > 0. Consequently,

λ ln λ− λ ln µ− (λ− µ) ≥ 0, λ, µ > 0.

By Lemma 3.5 D(a, b) ≥ 0.

Proposition 3.7. Let b ∈ Ω. Then

tr(b) = max{tr(a ln b− a ln a + a) : a ∈ Ω}.

Proof. Since D(a, b) ≥ 0,∀(a, b) ∈ Ω× Ω, we have:

tr(b) ≥ tr(alnb− alna + a), ∀a ∈ Ω.

But for a = b we obtain the equality.

Theorem 3.8. Given h ∈ V, the function f2 : Ω → R,

f2(a) = tr(exp(h + ln a))

is concave on Ω.

Proof. Take b = exp(h + lna) in Proposition 3.7. Then:

tr(exp(h + lna)) = max{tr(v(h + lna)− vlnv + v) : v ∈ Ω} =

max{tr(vh)−D(v, a) + tr(a) : v ∈ Ω}. (1)

Since the function D(v, a) is jointly convex in (v, a), (1) shows that f2(a) is

concave on Ω.

Proposition 3.9. For a ∈ Ω

ln a =

∫ +∞

0

(
e

1 + τ
− (a + τe)−1)dτ. (2)
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Proof. Let

a =
r∑

i=1

λici

be a spectral decomposition of a.See Theorem 2.7. Then

ln a =
r∑

i=1

ln λici.

On the other hand, for R > 0

∫ R

0

(
1

1 + τ
− (a + τe)−1)dτ =

r∑
i=1

[

∫ R

0

(
1

1 + τ
− 1

λi + τ
)dτ ]ci.

But ∫ R

0

(
1

τ + 1
− 1

λi + τ
)dτ = ln(

1 + R

λi + R
) + ln λi.

Taking limit when R → +∞, we obtain the result.

The expression (2) allows one to compute (using Proposition 2.4 i) ) the

Frechét derivative of ln a :

D ln(a)h = [

∫ +∞

0

P (a + τe)−1dτ ]h, h ∈ V.

Following the original paper of E.Lieb [11], we will introduce notation Ta for

the linear operator

Ta(h) = [

∫ +∞

0

P (a + τe)−1dτ ]h.

Note that

〈Ta(h), h〉 = D2φ(a)(h, h),

where φ(a) = tr(a ln a), a ∈ Ω,i.e. Ta is the Hessian of the quantum entropy.

In this connection, it is important to calculate the inverse of Ta. Obviously, Ta

is positive definite for any a ∈ Ω.

Proposition 3.10.

T−1
a =

∫ 1

0

P (a1−τ , aτ )dτ.
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Proof. Let

a =
k∑

i=1

λici

be the spectral decomposition of a such that λ1 > λ2 > . . . > λk > 0. (see

Theorem 2.6). Let, further,

V =
⊕

1≤i≤j≤k

Vij

be the corresponding Peirce decomposition. Then P (a + τe)−1 restricted to

Vij acts by multiplication by

1

(λi + τ)(λj + τ)
.

Hence, for h ∈ Vij :

Ta(h) =

∫ +∞

0

dτ

(λi + τ)(λj + τ)
h =

ln λj − ln λi

λj − λi

h, i 6= j, (3)

Ta(h) =
h

λi

, i = j.

Consider

Ia =

∫ 1

0

P (a1−τ , aτ )dτ.

For h ∈ Vij;

P (a1−τ , aτ )h = [2L(a1−τ )L(aτ )− L(a)]h =
λ1−τ

i λτ
j + λτ

i λ
1−τ
j

2
h.

Hence,

Ia(h) =
λj − λi

ln λj − ln λi

h, i 6= j, (4)

Ia(h) = λih, i = j.

Comparing this with (3), we conclude that Ia = T−1
a .

Proposition 3.11. The function q : V × Ω → R,

q(a, h) = 〈h, Ta(h)〉

is jointly convex in (h, a).
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Proof. Fix a, b ∈ Ω, 0 < λ < 1. Denote λa + (1− λ)b by c. Consider quadratic

forms:

Γ1(u, v) = λq(a, u) + (1− λ)q(b, v),

Γ2(u, v) = q(c, λu + (1− λ)v)

on V × V. Note that Γ1 is positive definite. Consider an optimization problem

φ(u, v) =
Γ2(u, v)

Γ1(u, v)
→ max,

(u, v) ∈ V × V \ {0, 0}. Let γ be the maximal value of φ. If γ ≤ 1 (for all

choices of a, b ∈ Ω, 0 < λ < 1), then the result follows. The stationary points

(u∗, v∗) of the optimization problem should satisfy the equation:

DΓ2(u
∗, v∗)(g, h)− φ(u∗, v∗)DΓ1(u

∗, v∗)(g, h) = 0

for all (g, h) ∈ V × V. This leads to equations:

〈λTc(λu∗ + (1− λ)v∗), g〉+ 〈(1− λ)Tc(λu∗ + (1− λ)v∗), h〉 =

φ(u∗, v∗)(〈λTa(u
∗), g〉+ 〈(1− λ)Tb(v

∗), h〉),
and hence

∆ = Tc(w) = γTa(u
∗), Tc(w) = γTb(v

∗), (5)

where γ = φ(u∗, v∗), w = λu∗ + (1 − λ)v∗. If γ = 0 (and consequently less or

equal than one), we are done. If not,

u∗ =
1

γ
T−1

a (∆), v∗ =
1

γ
T−1

b (∆)

by (5). Note that ∆ 6= 0 (otherwise, (u∗, v∗) = (0, 0).). Since T−1
c (∆) =

λu∗ + (1− λ)v∗, we obtain:

λT−1
a (∆) + (1− λ)T−1

b (∆) = γT−1
c (∆). (6)

By Proposition 3.10 the relationship (5) means:
∫ 1

0

[λP (aτ , a1−τ ) + (1− λ)P (bτ , b1−τ )− γP (cτ , c1−τ )]∆dτ = 0. (7)

However,

〈∆, [λP (aτ , a1−τ ) + (1− λ)P (bτ , b1−τ )]∆〉 ≤ 〈∆, P (cτ , c1−τ )∆〉,

0 ≤ τ ≤ 1 by Theorem 3.1. Hence, γ ≤ 1.
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Recall that

Ta(h) = D ln(a)h = [

∫ +∞

0

P (a + τe)−1dτ ]h.

Since

DP (a)g =
1

2
P (a, g), a, g ∈ V,

we can calculate the second Frechet derivative of ln using the chain rule. Let

ψ(a) = (a + τe)−1, φ(a) = P (ψ(a))h.

Then

Dφ(a)g = (DP (ψ(a))Dψ(a)g)h = 2P (ψ(a),−P (a + τe)−1g)h =

−2P ((a + τe)−1, P (a + τe)−1g)h =

−2P (P ((a + τe)−1/2)e, P (a + τe)−1/2P (a + τe)−1/2g)h =

−2P (a + τe)−1/2P (e, P (a + τe)−1/2g)P (a + τe)−1/2h =

−2P (a + τe)−1/2[L(P (a + τe)−1/2)g)(P (a + τe)−1/2h)].

Hence,

D3(tr(a ln a))(h1, h2, h3) = 〈h1, D
2 ln(a)(h2, h3〉 = (8)

−2

∫ +∞

0

tr[(M(a, τ)h1)(M(a, τ)h2)(M(a, τ)h3)]dτ,

a ∈ Ω, h1, h2, h3 ∈ V, M(a, τ) = P (a + τe)−1/2.

Lemma 3.12. Let C be a convex cone in a vector space and let F : C → R

be a convex function such that

lim
F (a + tb)− F (a)

t
, t → 0+,

exists and is denoted by G(a, b) for all a, b ∈ C. Assume that F is homogeneous

of order 1, i.e. , F (λa) = λF (a), a ∈ C, λ > 0. Then

G(a; b) ≤ F (b),∀a, b ∈ C.
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Proof. For t > 0, a, b ∈ C :

F (a+tb) = F ((1+t)(
a

1 + t
+

t

1 + t
b)) = (1+t)F (

a

1 + t
+

t

1 + t
b) ≤ (1+t)(

1

1 + t
F (a)+

t

1 + t
F (b)) =

F (a) + tF (b).

Hence,
F (a + tb)− F (a)

t
≤ F (b).

Note that the function q(a, h) = 〈h, Ta(h)〉 is homogeneous of order 1 on

the cone Ω× V.

Indeed,

q(λa, λh) =

∫ +∞

0

〈λh, P (λa + τe)−1λh〉dτ =

∫ +∞

0

〈h, P (a +
τ

λ
e)−1h〉dτ = λq(a, h).

The last equality is obtained by making the change of variables τ̃ = τ
λ
. Ap-

plying Lemma 3.12 to q, we obtain

Dq(a, h)(b, g) = 2〈Ta(h), g〉 − 〈Ra(h), b〉 ≤ 〈g, Tb(g)〉 (9)

for all a, b ∈ Ω, g, h ∈ V. Here

Ra(h) = 2

∫ +∞

0

P (a + τe)−1/2[P (a + τe)−1/2h]2dτ,

(see (8)). The relationship (9) is crucial in [11] for proving various convexity

inequalities.

Since the exponential is the inverse of logarithm, we have:

ln(exp(a)) = a, a ∈ V.

Using the chain rule, we obtain:

D(ln(exp(a))(D(exp(a))h = h,

h, a ∈ V. Consequently,

Texp(a)(D(exp(a))h) = h,



Leonid Faybusovich 15

or

D(exp(a))h = T−1
exp(a)(h) =

[

∫ 1

0

P (exp(aτ), exp(a(1− τ)))dτ ](h), (10)

where in the last equality we used Proposition 3.10.

We say that a, b ∈ V commute, if

[L(a), L(b)] = 0.

Proposition 3.13. The elements a, b ∈ V commute if and only if, there

exists a Jordan frame c1, . . . , cr in V and λi, µi ∈ R, i = 1, . . . r, such that

a =
r∑

i=1

λici, b =
r∑

i=1

µici.

This is Lemma X.2.2 in [7]. For a detailed discussion of commutavity in

the above sense see [12]. The following Theorem is a Jordan-algebraic version

of the Golden-Thomson inequality.

Theorem 3.14. Let u, v, w ∈ V. Then

tr(exp(w)Texp(−u)(exp(v))) ≥ tr(exp(u + v + w)).

If u commutes with v, then

tr(exp(u) exp(v) exp(w)) ≥ tr(exp(u + v + w)).

Remark 3.15. Recall that

tr(u(vw)) = tr((uv)w),∀u, v, w ∈ V.

See Proposition 2.5.

Proof. Let a = exp(−u), b = exp(v), l = u + w. By Theorem 3.8 the function

φl : Ω → R,

φl(c) = −tr(exp(l + ln c))

is convex. It is also clear that φl(λc) = λφl(c) for any λ > 0. Hence, by Lemma

3.12:

Dφl(a)b ≤ φl(b).
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Note that:

Dφl(a)b = −tr(Ta(b) exp(l + ln(a)).

Substituting expressions for a, b, l we obtain:

tr(exp(u + v + w)) ≤ tr(exp(w)Texp(−u)(exp(v))).

If u commutes with v, then computing the corresponding integral in common

for u and v Jordan frame, we obtain:

Texp(−u)(exp(v)) =

∫ +∞

0

(exp(−u) + τe)−2 exp(v)dτ = exp(u) exp(v).

4 Noncommutative Bernstein inequality

Let V be an Euclidean Jordan algebra. Suppose that v1, . . . , vMare inde-

pendent random variables on a probability space X ( with probability measure

Pr defined on σ-algebra A of subsets of X) with values in V. We denote by E
the mathematical expectation with respect to Pr. In other words, if v : X → V

is a random variable, then

E [v] =

∫

X

v(ω)dPr(ω).

Given v ∈ V with spec(v) = {λ1, . . . λs} and λ1 > λ2 > . . . > λs, then

λmax(v) := λ1 and

‖v‖∞ := max{λmax(v), λmax(−v)}.

Note that ‖v‖∞ defines a norm on V invariant under the action of the group

of automorphisms of V (see e.g. [5]). In this section we prove the following

result.

Theorem 4.1. Let v1, . . . vM : X → V be independent random variables

such that E [vi] = 0, i = 1, . . .M. Suppose that

λmax(vi) ≤ K
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almost surely for all i = 1, . . . M. Here K is a fixed positive number. Denote

σ2 = ‖
M∑
i=1

E [v2
i ]‖∞. (11)

Then, for t > 0

Pr(λmax(
M∑
i=1

vi) ≥ t) ≤ r exp(− σ2

K2
h(

Kt

σ2
)) ≤

r exp(− t2

σ2 + Kt/3
).

Here r is the rank of V and

h(λ) = (1 + λ) ln(1 + λ)− λ, λ ≥ 0.

In case where V is the Jordan algebra of complex Hermitian matrices, this

result is due to [14]. Note that we do not assume that V is simple. One

can even consider infinite-dimensional spin-factors (as in [3]) as irreducible

components. It does not effect the proof.

Corollary 4.2. Let v1, . . . vM : X → V be independent random variables

such that E [vi] = 0, i = 1, . . .M. Suppose that

‖vi‖∞ ≤ K

almost surely forall i = 1, 2, . . .M. Then, for t > 0

Pr(‖
M∑
i=1

vi‖∞ ≥ t) ≤ 2r exp(− σ2

K2
h(

Kt

σ2
)) ≤

2r exp(− t2

σ2 + Kt/3
).

In our proof ofTheorem 4.1 we follow [8], making necessary Jordan-algebraic

adjustments.

Proposition 4.3. Let v : X → V be a random variable. Then, given t > 0,

P r(λmax(v) ≥ t) ≤ inf{exp(−θ)E [tr(exp(θv)] : θ > 0}.
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Proof. We have:

Pr(λmax(v) ≥ t) = Pr(exp(λmax(θv)) ≥ exp(θt)) ≤

exp(−θt)E [exp(λmax(θv)].

The last inequality is just the standard Markov inequality. Furthermore, given

ω ∈ X,

exp(λmax(θv(ω))) = λmax(exp(θv(ω))) ≤
r∑

j=1

λj(exp(θv(ω))) = tr(exp(θv(ω))).

Here λj(exp(θv(ω)) are eigenvalues of exp(θv(ω)). Hence,

Pr(λmax(v) ≥ t) ≤ exp(−θt)E [tr exp(θv)],

for every θ > 0.

Proposition 4.4. Let h ∈ V and v : X → V be a random variable. Then

E [tr exp(h + v)] ≤ tr exp(h + ln(E [exp(v)])).

Proof. By Theorem 3.8 the function φh : Ω → R,

φh(a) = tr exp(h + ln a)

is concave. By Jensen’s inequality

E [φh(exp v)] ≤ φh(E [exp v]),

i.e.,

E [tr exp(h + v)] ≤ tr exp(h + ln E [exp(v)]).

Proposition 4.5. Let v1, . . . , vM : X → V be independent random vari-

ables. Then for any θ ∈ R

E [tr(exp(θ
M∑
i=1

vi))] ≤ tr exp(
M∑
i=1

ln E [exp(θvi)]).



Leonid Faybusovich 19

Proof. Without loss of generality we may assume θ = 1. Let

hi = ln E [exp(vi)], i = 1, . . .M.

Since vi are independent, we can write Evi
for the expectation with respect to

vi (i.e., the expectation conditional on v1, . . . , vi−1, vi+1, . . . vM). Using Fubini

theorem, we obtain:

∆ = E [tr(exp(
M∑
i=1

vi))] = Ev1Ev2 . . . EvM
[tr exp(

M−1∑
i=1

vi + vM)].

By Proposition 4.4

∆ ≤ Ev1 . . . EvM−1
[tr exp(

M−1∑
i=1

vi + ln E [exp(vM)])] =

Ev1 . . . EVM−1
[tr exp(

M−2∑
i=1

vi + hM + vM−1)] ≤

Ev1 . . . EvM−2
[tr exp(

M−2∑
i=1

vi + hM + hM−1)] ≤ . . . ≤ tr exp(
M∑
i=1

hi),

where we repeatedly used Proposition 4.4.

Proposition 4.6. Let v1, . . . vM → V be independent random variables.

Suppose that there exists a function g : (0,∞) → [0,∞) and fixed u1, . . . uM ∈
V such that

E [exp(θvi)] ¹ exp(g(θ)ui), i = 1, . . . M,

(u ¹ v for u, v ∈ V means that v − u ∈ Ω̄). Let ρ = λmax(
∑M

i=1 ui). Then

Pr(λmax(
M∑
i=1

vi) ≥ t) ≤ r inf{exp(−θt + g(θ)ρ) : θ > 0}.

Lemma 4.7. Let x, y ∈ V and x º y Â 0, i.e., x− y ∈ Ω̄, y ∈ Ω. Then

ln x º ln y

.



20 E. Lieb convexity inequalities and Bernstein inequality...

Proof. By Proposition 3.9

ln a =

∫ +∞

0

[
e

1 + τ
− (a + τe)−1]dτ, a ∈ Ω.

Hence, it suffices to show that

(x + τe)−1 ¹ (y + τe)−1 (12)

for any τ ≥ 0. But x − y ∈ Ω̄ is equivalent to (x + τe) − (y + τe) ∈ Ω̄.

Consequently,

P (y + τe)−1/2(x + τe)− e ∈ Ω̄, (13)

since P (u) ∈ GL(Ω),∀u ∈ V.(see Theorem 2.8. Similarly, (12) is equivalent to

e− P (y + τe)1/2(x + τe)−1 ∈ Ω̄. (14)

Let

P (y + τe)−1/2(x + τe) =
r∑

i=1

λici, λi > 0, i = 1, . . . r,

be the spectral decomposition. Then (13) is equivalent to λi ≥ 1, i = 1, . . . , r

whereas (14) is equaivalent to 1−1/λi ≥ 0, i = 1, . . . r, since P (y+τe)−1/2(x+

τe) = P (y + τe)−1/2(x+ τe) = P (y + τe)1/2(x+ τe)−1]−1by Proposition 2.4 ii).

However, these are the same conditions.

Lemma 4.8. If x, y ∈ V, x º y, then

tr exp(x) º tr exp(y). (15)

Proof. Each Euclidean Jordan algebra is a direct sum of simple Euclidean

Jordan algebras, i.e. ,

V = V1 ⊕ . . .⊕ Vs,

where Vi are simple Euclidean Jordan algebras. Note that

Ω = Ω1 ⊕ . . .⊕ Ωs,

where Ωl is the cone of invertible squares in Vl. Moreover, if

x =
s∑

i=1

xl,
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the corresponding decomposition of x ∈ V, then

tr(exp(x) =
s∑

l=1

tr(exp(xl).

Thus, to prove (15) it suffices to consider the case where V is simple. Let

spec(x) (resp. spec(y)) = {λ1(x), . . . λr(x)} (resp. {λ1(y), . . . λr(y)}, where

λ1(x) ≥ λ2(x) . . . λr(x) (resp. λ1(y) ≥ λ2(y) . . . λr(y)). Then x º y implies

λi(x) ≥ λi(y), i = 1, . . . r (see [10]). Consequently,

tr exp(x) =
r∑

i=1

exp(λi(x) ≥
r∑

i=1

exp(λi(y)) = tr(exp(y).

We are now in position to prove Proposition 4.6.

Proof. By Propositions 4.3,4.5

∆ = Pr(λmax(
M∑
i=1

vi) ≥ t) ≤ inf{exp(−θt)tr exp(
M∑
i=1

ln E [exp(θvi)] : θ > 0}.

Using Lemma 4.7 and Lemma 4.8, we obtain:

∆ ≤ inf{exp(−θt)tr exp(
M∑
i=1

g(θ)ui) : θ > 0}.

Now,

tr(exp(g(θ)
M∑
i=1

ui) ≤ rλmax(exp(g(θ)
M∑
i=1

ui)) =

r exp(g(θ)λmax(
r∑

i=1

ui)) = r exp(ρg(θ)).

Fix θ > 0 and consider the function

f(λ) = λ−2(exp(θλ)− θλ− 1), (16)

for λ 6= 0, f(0) = θ2/2.

Lemma 4.9. Function f is monotonically nondecreasing on R.
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For a proof see [8], p. 222.

Hence, f(λ) ≤ f(1) if λ ≤ 1. We will assume that in the formulation of

Theorem 4.1 K = 1 (otherwise, substitute vi by vi/K). Since all eigenvaues of

vi are bounded by one from above, we have:

f(vi(ω)) ≤ f(1)e, ω ∈ X, i = 1, . . . M.

The identity exp(θλ) = 1 + θλ + λ2f(λ) implies

exp(θvi(ω)) = e + θvi(ω) + v2
i (ω)f(vi(ω)) =

e + θvi(ω) + P (vi(ω))f(vi(ω)) ¹ e + θvi(ω) + P (vi(ω))f(1)e =

e + θvi(ω) + f(1)v2
i (ω).

Hence,

∆ = E [exp(θvi)] ¹ 1 + f(1)E [v2
i ] ¹ exp(f(1)E [v2

i ]),

where we used an obvious inequality exp(λ ≥ 1 + λ, λ ∈ R. Recalling the

definition of f (see (16), we obtain:

∆ ¹ exp((exp(θ)− θ − 1)E [v2
i ]), i = 1, . . . M.

By Proposition 4.6:

Pr(λmax(
M∑
i=1

vi) ≥ t) ≤ r inf{exp(−θt + g(θ)σ2) : θ > 0}, (17)

where g(θ) = exp(θ)− θ − 1. Here

σ2 = λmax(
M∑
i=1

E [v2
i ]) = ‖

M∑
i=1

E [v2
i ]‖∞.

Lemma 4.10. Let h(λ) = (1 + λ) ln(1 + λ)− λ, λ > −1,

g(θ) = exp(θ)− θ − 1.

Then, for µ > 0, η ≥ 0

inf{θη + g(θ)µ : θ > 0} = −µh(η/µ)

and

h(λ) ≥ λ2/2

1 + λ/3
, λ ≥ 0.

For a proof see [8], Lemma 8.21 . Combining (17) and Lemma 4.10, we

obtain Theorem 4.1.
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5 Proof of the main theorem

Several proofs of the original version of Theorem 3.1 are known (see [13],[11],[4],[6]).

However, it seems none of them admits an immediate generalization to Jordan-

algebraic setting. We have chosen an approach developed in[4] mostly for the

case of finite-dimensional C∗-algebras. C∗-algebras are associative but not

necessarily commutative, whereas Jordan algebras are commutative but typi-

cally nonassociative. However, both classes are power associative which makes

spectral theory quite similar for both of them. We provide (almost) all details

for the Jordan-algebraic case.

Let V be an Euclidean Jordan algebra. We define its complexification V C

as the set V with the following operations:

α + iβ)(x, y) = (αx− βy, βx + αy), α, β ∈ R, i =
√−1,

(x, y) + (x′, y′) = (x + x′, y + y′).

Then V C is a vector space over C (and hence it makes sense to talk about

holomorpic functions on open subsets of V C. One considers V as a subset of

V C under the identification x ∼ (x, 0). The elements of V C can be written

as x + iy with x, y ∈ V. The vector space V C has a distinguished conjugation

operation:

x + iy = x− iy.

We define on V C the structure of Jordan algebra over C:

(x + iy)((x′ + iy′) = (xx′ − yy′) + i(yx′ + xy′).

Each R-linear map A : V → V can be extended to C-linear map:

A(x + iy) = A(x) + iA(y).

Recall that on V there exists the canonical scalar product:

〈x, x′〉 = tr(xx′).

We can extend it to C-bilinear form on V C :

〈x + iy, x′ + iy′〉 = (〈x, x′〉 − 〈y, y′〉) + i(〈x, y′〉+ 〈y, x′〉).
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We define a Hermitian scalar product on V C :

〈〈w, w′〉〉 = 〈w, w̄′〉, w, w′ ∈ V C.

Then

‖w‖ = 〈〈w, w〉〉1/2.

Consider

TΩ = V + iΩ ⊂ V C.

Each w ∈ V C has a unique representation

w = <w + i=w

with <w,=w ∈ V. Hence, w ∈ TΩ if and only if =w ∈ Ω.

Theorem 5.1. The map w → −w−1 is an involutive holomorphic automor-

phism of TΩ, having ie as its unique fixed point. In particular, w ∈ TΩ implies

w is inverible and −=(w−1) ∈ Ω.

This is Theorem X.1.1 in [7].

Let w ∈ TΩ and λ ∈ C,=λ ≤ 0. Then =(w − λe) = =w − (=λ)e ∈ Ω,i.e.,

w − λe ∈ TΩ and consequently is invertible. In particular,

spec(w) ⊂ {λ ∈ C : =λ > 0}. (18)

Let R− = {λ ∈ C : =λ = 0,<λ ≤ 0}, and

U = {v ∈ V C : spec(v) ⊂ C \R−}.

Theorem 5.2. Let f : U → C be a holomorphic function with the following

properties:

(i)=f(v) ≥ 0, if =v ∈ Ω;

(ii) f(v) = f(v̄), v ∈ U ;

(iii) f(ρv) = ρf(v), ρ > 0, v ∈ U.

Then the restriction of f on Ω is concave. More precisely, let a ∈ Ω, h ∈ V.

Then for sufficiently small real t and integers n ≥ 1

d2nφ

dt2n
(t) ≤ 0,

where φ(t) = f(a + th).
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Remark 5.3. A more general version of this Theorem is considered in [4] in

C∗-algebras settings. The corresponding Jordan-algebraic counterpart is also

true.

Proof. Given a ∈ Ω, h ∈ V, consider two holomorphic functions

F (λ) = f(a + λh), G(λ) = f(h + λa).

Note that F is defined for λ ∈ C such that | λ |< 1/τ and G is defined for

λ ∈ C such that <λ > τ or =λ 6= 0. Here

τ = ‖h‖‖a−1‖.

Indeed, consider

∆(µ) = a + λh− iµe, µ ∈ R.

Then <∆(µ) = a + <λh = P (a1/2)(e + <λP (a−1/2)h). Let λ1, . . . λr be (real!)

eigenvalues of P (a−1/2)h. Then 1+<λ1, . . . 1+<λλr are eigenvalues of P (a−1/2)<∆(µ).

If | <λ || λj |< 1 for all j, then <∆(µ) ∈ Ω and hence ∆(µ) is invertible by

Theorem 5.1. Hence, a + λh ∈ U. The conditions | <λ || λj |< 1 for all j are

satisfied if

| λ |< 1

max{| λj |: j ∈ [1, r]} .

But

max{| λj |: j ∈ [1, r]} ≤ ‖P (a−1/2)h‖ ≤ ‖P (a−1/2)‖‖h‖ ≤ ‖h‖‖a−1‖

Hence, a + λh ∈ U if | λ |< 1
‖h‖‖a−1‖ . Similarly, for λa + h, consider

∆1(µ) = λa + h− iµe, µ ∈ R.

Since

<∆1(µ) = <λa + h = P (a1/2)(<λe + P (a−1/2)h),

we have: <∆1(µ) ∈ Ω if <λ + λj > 0 for all j. This condition is satisfied if

<λ > max{| λj |: j ∈ [1, r]}. But max{| λj |: j ∈ [1, r]} < τ. Consequently,

∆1(µ) is invertible for <λ > τ. This means that λa + h ∈ U if <λ > τ.

Furthermore,

=∆1(µ) = =λa− µe.
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Thus,for µ ≤ 0,=λ > 0, we have: =∆1(µ) ∈ Ω and hence,∆1(µ) is invertible

by Theorem 5.1. This means that λa + h ∈ U, if =λ > 0. But then λa + h =

λ̄a + h ∈ U, i.e. , λa + h ∈ U, if =λ 6= 0.

Note that due to condition (iii)

G(ρ) = ρF (ρ−1), ρ > 0.

Hence, by the principle of analytic continuation

G(λ) = λF (λ−1), (19)

if <λ > τ (both functions are analytic for <λ > τ and coincide for real λ

greater than τ). Note,further, that the function λ → λF (λ−1) is analytic for

| λ |> τ and hence G can be analytically continued across the real axis from

−∞ to −τ. Consequently, G is analytic in the complement of the cut

{λ ∈ C : =λ = 0, | λ |≤ τ}.

Due to condition i), G is also the Herglotz function (i.e., =λ > 0 implies

=G(λ) ≥ 0). Due to (19) G is bounded by a constant times | λ | at the

infinity. Hence, (see e.g. [1], section V.4)

G(λ) =

∫ τ

−τ

dν(t)

t− λ
+ ξλ + η,

for all λ in the complement of the cut {λ ∈ C : =λ = 0, | λ |≤ τ}. Here ν is

a positive finite measure with support in [−τ, τ ], and ξ, η are some constants.

However,

F (λ) = λG(λ−1) =

∫ τ

−τ

λ2dν(t)

λt− 1
+ ηλ + ξ

for all λ in the complement of the cut{λ ∈ C : =λ = 0, | λ |≥ τ−1}. But then

for n ≥ 2
dnF

dλn
(λ) = −n!

∫ τ

−τ

tn−2dν(t)

(1− tλ)n+1
,

which is nonpositive when n is even and λ is real and | λ |< τ−1.

Let Z be a Jordan algebra over C. Given x ∈ Z, let p(Y ) ∈ C[Y ] be the

minimal polynomial of x,

p(Y ) =
k∏

j=1

(Y − λj)
νj .
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Proposition 5.4. There exists a complete system of orthogonal idempotents

c1 . . . ck in C[Y ], i.e., c2
j = cj, cjcl = 0, j 6= l, c1 + . . . ck = e, such that for any

polynomial q ∈ C[Y ],

q(x) =
k∑

j=1

νj−1∑

l=0

(x− λje)
l

l!
q(l)(λj)cl.

Futhermore,

(x− λje)
νjcj = 0, j = 1, . . . k.

This is Proposition 8.3.2 from [7].Note that spec(x) = {λ1, . . . , λk}.
An element x ∈ Z is said to be semi-simple if its minimal polynomial has

only simple roots. For such an element

x =
k∑

j=1

λjcj, q(x) =
k∑

j=1

q(λj)cj, q ∈ C[Y ].

An element x ∈ Z is said to be nilpotent if xm = 0 for some integer m.

Proposition 5.5. Every element x ∈ Z can be uniquely written in the form

x = x′ + x′′

with x′, x′′ ∈ C[x], x′ is semisimple and x′′ is nilpotent.

If f is holomorphic in an open set U of C containing spec(x), we can define

(following [7], p. 152)

f(x) =
k∑

j=1

νj−1∑

l=0

(x− λje)
l

l!
f (l)(λj)cj. (20)

Note that f(x) ∈ C[x] and if f, g are two such functions, then

(fg)(x) = f(x)g(x).

Proposition 5.6.

f(x) =
1

2πi

∫

C

f(z)(ze− x)−1dz,

where C is a closed contour in U surrounding spec(x).
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Proof. Consider the function

φz(λ) =
1

z − λ
, λ ∈ C \ {z}.

Then

φ(l)
z (λ) =

l!

(z − λ)l+1
, l = 1, 2 . . . .

Hence, according to (20)

(ze− x)−1 =
k∑

j=1

νj−1∑

l=0

(x− λje)
l

l!

l!

(z − λj)l+1
cj =

k∑
j=1

νj−1∑

l=0

(x− λje)
l

(z − λj)l+1
cj.

Hence,

1

2πi

∫

C

f(z)(ze− x)−1dz =
k∑

j=1

νj−1∑

l=0

(x− λje)
lcj

1

2πi

∫

C

f(z)dz

(z − λj)l+1
.

By residue theorem:

1

2πi

∫

C

f(z)dz

z − λj)l+1
=

f (l)(λj)

l!
.

Remark 5.7. Due to Proposition 5.6 one can develop a standard functional

calculus on Z similar to,e.g. , [9], chapter 9.

Consider a holomorhic branch

ln λ = ln | λ | +iargλ, (21)

where −π < argλ < π. We ,then, can define

λp = exp(p ln λ), p ∈ C, λ ∈ C \R−.

Recall that R− = {λ ∈ C : =λ = 0,<λ ≤ 0}. If U = {z ∈ Z : spec(z) ⊂
C \R−, we can define ln z, zp, using Proposition 5.4 or Proposition 5.6. Since,

according to our definitions,

λp =
∞∑

j=0

pj(ln λ)j

j!
, λ ∈ C \R−,
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we will have correspondingly (according to standard functional calculus; see

e.g.[9], chapter 9).

zp =
∞∑

j=0

pj(ln zj)

j!
= exp(p ln z), z ∈ U.

We will need yet another characterization of functions ln z, zp on U.

Proposition 5.8. We have:

lnz =

∫ +∞

0

[
e

τ + 1
− (τe + z)−1]dτ, (22)

zα =
sin(πα)

α

∫ +∞

0

τα(
e

τ
− (τe + z)−1)dτ, (23)

z ∈ U, 0 < α < 1.

Proof. We will prove (23). Note that

λα =
sin(πα)

α

∫ +∞

0

τα(
1

τ
− 1

τ + λ
)dτ,

λ ∈ C \R−, 0 < α < 1, since both sides are holomorphic functions on C \R−
which coincide for real positive λ (see e.g. [2], p. 106 ). Let z ∈ U,i.e.,

spec(z) = {λ1, . . . , λr} ⊂ C \R−. Then by Proposition 5.4:

(τe + z)−1 =
r∑

j=1

νj−1∑

l=0

(z − λje)
l

l!
ψ(l)

τ (λj)cj,

where

ψτ (λ) =
1

τ + λ
.

Consequently,

∆ =
sin(πα)

α

∫ +∞

0

τα(
e

τ
− (τe + z)−1)dτ =

sin(πα)

α
[

r∑
j=1

∫ +∞

0

τα(
1

τ
− ψτ (λj))dτ −

r∑
j=1

(

νj−1∑

l=1

(z − λje)
l

l!

∫ +∞

0

ταψ(l)
τ (λj)dτ)cj.

(24)

By (23):
dn(λα)

dλn
= −sin(πα)

α

∫ +∞

0

[
dn

dλn
ψτ (λ)]ταdτ, (25)
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n ≥ 1. Combining (23), (24), (25), we obtain:

∆ =
r∑

j=1

λα
j cj +

r∑
j=1

νj−1∑

l=1

(z − λje)
l

l!
(λα)(l)cj = zα,

where the last equality is due to Proposition 5.4.

Lemma 5.9. For z ∈ U,

ln(z−1) = − ln(z).

Proof. By (22)

ln(z−1) =

∫ +∞

0

[
e

τ + 1
− (τe + z−1)−1]dτ =

∫
[

e

τ + 1
− z

τ
(z +

e

τ
(z +

e

τ
)−1]dτ.

Further,

z(z +
e

τ
)−1 = e− 1

τ
(z +

e

τ
)−1.

Consequently,

ln(z−1) =

∫ +∞

0

1

τ 2
[− e

1 + 1/τ
+ (z + e/τ)−1]dτ.

Making change of variables τ̃ = 1/τ, we obtain the result.

We now return to the case Z = V C (i.e. , the complexification of an

Euclidean Jordan algebra).

Lemma 5.10. If z ∈ TΩ, then ln(−z) = −iπe + ln z. If −z ∈ TΩ, then

ln(−z) = iπe + ln z.

Proof. If p(Y ) ∈ C[Y ] isa minimal polynomial for z, then p(−Y ) is a minimal

polynomial for −z. Consequently, by Proposition 5.4, if

ln z =
r∑

j=1

νj−1∑

l=0

(z − λj)
l

l!
ln(l)(λj)cj, spec(z) = {λ1, . . . , λr},

then

ln(−z) =
r∑

j=1

νj−1∑

l=0

(−z + λj)
l

l!
ln(l)(−λj)cj.

But

ln(l)(λ) =
(−1)l−1(l − 1)!

λl
, l ≥ 1, λ ∈ C \R−.
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Consequently,

ln(z)− ln(−z) =
r∑

j=1

[ln λj − ln(−λj)]cj.

Since by (18), =λj > 0, j = 1, . . . , r for z ∈ TΩ, the result follows (see

(21).

Proposition 5.11. Given z ∈ TΩ, we have:

ln z ∈ TΩ, iπe− ln z ∈ TΩ.

Proof. If z ∈ TΩ then τe + z ∈ TΩ for all real τ. Hence, −(τe + z)−1 ∈ TΩ

by Theorem 5.1. But then ln z ∈ TΩ by (22). We also have that −z−1 ∈ TΩ.

Hence,

ln(−z−1) = − ln(−z) = −(−iπe + ln z) = iπe− ln z ∈ TΩ,

where we used Lemmas 5.9,5.10.

Proposition 5.12. If z ∈ TΩ, 0 < α < 1, then zα ∈ TΩ,− exp(iαπ)zα ∈ TΩ.

Proof. By (23), zα ∈ TΩ. Besides, u = −z−1 ∈ TΩ. Hence, uα ∈ TΩ. Conse-

quently, (−uα)−1 ∈ TΩ. However,

uα = exp(α ln u) = exp(α ln(−z−1)) = exp(α(iπe− ln z)) =

exp(απi) exp(−α ln z).

Hence,

(−uα)−1 = − exp(−απi) exp(α ln z) = − exp(−iαπ)zα.

Thus, − exp(−iαπ)zα ∈ TΩ.

Proposition 5.13. Let u, v ∈ TΩ,− exp(−iα)u ∈ TΩ,− exp(−iβ)v ∈ TΩ, α >

0, β > 0, α + β < π. Then

tr(uv) ⊂ {λ = ρ exp(iθ), ρ > 0, 0 < θ < α + β}.

Proof. Let u = u1 + iu2, v = v1 + iv2; uj, vj ∈ V, j = 1, 2. Then

=tr(uv) = tr(u1v2) + tr(u2v1).



32 E. Lieb convexity inequalities and Bernstein inequality...

Furthermore,

exp(−iα)u = (cos α + sin α) + i(cos αu2 − sin αu1).

Hence, the assumptions imply:

u1 − cot αu2 ∈ Ω, u2 ∈ Ω,

and similarly

v1 − cot βv2 ∈ Ω, v2 ∈ Ω.

Consequently,

tr(u1v2) = tr(P (v2)
1/2u1) > cot αtr(P (v2)

1/2u2) = cot αtr(u2v2).

Similarly,

tr(u2v1) > cot βtr(u2v2).

Hence,

=tr(uv) > (cot α + cotβ)tr(u2v2) =
sin(α + β)

sin α sin β
tr(u2v2) > 0.

Consider

u′ = exp(−iα)u, v′ = exp(−iβ)v.

Then by assumptions: −=u′ ∈ Ω,−=v′ inΩ,=(exp(iα)u′) ∈ Ω,=(exp(iβ)v′) ∈
Ω. Consequently,

u′ = exp(iα)ū, v′ = exp(iβ)v̄

satisfy original assumptions. Hence, by what we have already proved:

=tr(u′v′) > 0,

or

=tr(u′v′) < 0,

i.e., =tr(exp(−i(α + β))uv) < 0. Let tr(uv) = ρ exp(iθ),−π < θ ≤ π. Since

=tr(uv) > 0, we have 0 < θ < π. Then

tr(exp(−i(α + β))uv) = ρ exp(i(θ − (α + β)),

=tr(exp(−i(α + β))uv) = ρ sin(θ − (α + β)) < 0

implies θ < α + β.
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Remark 5.14. Note that, if assumptions of proposition are satisfied, they

also satisfied for α−ε, β−ε for some small positive ε. Consequently, proposition

holds true , if α + β = π.

Example 5.15. Consider

f1(v) = tr(exp(h + ln v), h ∈ V, v ∈ U ⊂ V C.

If v ∈ TΩ, then ln v, iπe − ln v ∈ TΩ by Proposition 5.11. But then, since

=h = 0, we also have h + ln v, iπe− (lnv + h) ∈ TΩ. By (18)

spec(h + ln v) ⊂ {λ ∈ C : π > =λ > 0}. (26)

If (26) is satisfied, then

spec(exp(h + ln v)) ⊂ {λ ∈ C : =λ > 0}.

This obviously implies that =f1(v) > 0, if =v ∈ Ω. It is also clear that f1(ρv) =

ρf1(v), ∀ρ > 0, v ∈ U. By Theorem 5.2 the restriction of f1 on Ω is concave.

This is out Theorem 3.8.

Example 5.16. Let f2(u, v) = tr((P (k)up)v1−p), (u, v) ∈ U × U ⊂ V C ×
V C ∼= (V × V )C. Here 0 ≤ p ≤ 1, k ∈ V are fixed. If (u, v) ∈ TΩ × TΩ,

then up ∈ TΩ, v1−p ∈ TΩ,− exp(−ipπ)up ∈ TΩ,− exp(−i(1 − p)π)v1−p ∈ TΩ

by Proposition 5.12. It is clear that P (k)up possesses the same properties as

up. Hence, by Proposition 16 =f2(u, v) > 0 for (u, v) ∈ TΩ × TΩ = TΩ×Ω.

It is also clear that f2(ū, v̄) = f2(u, v) and f2(ρu, ρv) = ρf2(u, v) for ρ > 0.

Consequently, the restriction of f2 on Ω × Ω is concave. This is our main

Theorem 3.1.

6 Conclusion

In this paper we developed a Jordan-algebraic version of E. Lieb inequal-

ities. As an application, we proved a version of noncommutative Bernstein

inequality. Possible further applications include optimization, statistics and

quantum information theory through the Jordan-algebraic version of quantum
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entropy. It also would be interesting to see what asymptotic properties of

random matrix ensembles admit Jordan-algebraic generalizations.
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