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Abstract 

In this study, five criteria of residual analysis in time series modelling and 

forecasting are evaluated using three study variables namely, Nigeria’s Gross 

Domestic Product (GDP), Total Debts Accumulation (TDA) and Rate of Inflation 

(INFL). Considering five Auto Regressive Integrated Moving Average (ARIMA) 

specifications each for GDP and TDA and four ARIMA specifications for INFL, it 

was observed that  four of the five criteria  selected ARIMA(2,2,2) for the GDP I(2) 

while all the five criteria selected ARIMA(2,2,3) for TDA I(2) process. 

ARIMA(1,0,2) was also selected by all the criteria for INFL I(0) process. It is 

observed here that there is no particular criterion that clearly dominate others in the 

search for the “best” model specification and this suggests that modellers should 

consider the use of more than one criterion in model selection, especially when the 

family of ARIMA(p,d,q) models are of interest. 
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1 Introduction 

Several statistical methodologies can be applied to model a phenomenon. These 

methods include the regression analysis and analysis of variance. Specifically, a 

member of the family of regression models is useful in providing models when time 

series data are encountered. Whenever a model of such is fitted to the data and 

predictions are made, residuals are usually generated especially, when the data in 

question is a random sample drawn from a population. The process of modelling 

apart from obtaining the functional expression describing the data set requires 

modellers to assess the validity of the model, perform certain diagnostic testing and 

set up optimality and robustness criteria for which the ‘best’ model is determined. 

In the theory of estimation and testing, residuals play a very important role 

especially, in drawing inference for linear models (Clarke, 2008). The analysis of 

residuals commences with the plot which may appear to exhibit non-normal pattern 

especially when a model is inappropriately specified or when there is non-

homogeneity of error variance, or perhaps, the number of residuals is too small to 

provide a pattern of sufficient stability to permit valid statistical inference 

(Kleinbaum and Kupper, 1978). 

In this study, we consider the family of linear stochastic time series model of the 

autoregressive integrated moving average (ARIMA) with the aim of identifying or 

defining residuals and their measures, review their usefulness in model diagnosis, 

validity check and of course determination of optimality criteria. Finally, empirical 

study is performed using three set of time-series data namely Nigeria’s GDP series 

(1982-2011), Nigeria’s Total Debts Outstanding (1982-2011) and Nigeria’s rate of 

inflations series (1960-2011). 
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2 Time Series Model Specification 

In this study, the Autoregressive Integrated Moving Average model is 

considered. 

Definition 1. 𝑥𝑡 is an ARIMA (p,d q) process if {𝑥𝑡} is stationary and if for every t,  

                                        Φ(𝐵)∇𝑑𝑥𝑡 = 𝜃(𝐵)𝜀𝑡                 (1) 

which is further expressed as  

                                        Φ(𝐵)𝑤𝑡 = Θ(𝐵)𝜀𝑡                               (2) 

where 𝑤𝑡 =∇𝑑𝑥𝑡, ∇ denotes differencing whose order is denoted as d . The subscript t 

is used to denote the time period so that ∇𝑑𝑥𝑡 = 𝑥𝑡 − 𝑥𝑡−1,  𝑥𝑡 = ∑𝑤𝑡 reverts 𝑤𝑡 to 

𝑥𝑡 while {𝜀𝑡} ~ 𝑊𝑁(0,𝜎2) otherwise, called a white noise process. 

                                           Φ(𝐵) = �1 − 𝜑1𝐵1 − 𝜑2𝐵2 − …− 𝜑𝑝𝐵𝑝�  

and  

                                          Θ(𝐵) = �1 − θ1𝐵1 − θ2𝐵2 − …− θ𝑞𝐵𝑞�  

 are transfer functions for Auto-Regressive (AR) and Moving-average (MA) portions 

respectively. When d = 0, {xt} is assumed stationary at its level so that  

                                              Φ(𝐵)𝑥𝑡 = Θ(𝐵)𝜀𝑡                                           (3) 

The process defined in (2) above can be thought of as a pth order autoregressive 

process Φ(𝐵)𝑤𝑡 = 𝜀𝑡 with 𝜀𝑡 following the qth order moving average process or, as 

𝑤𝑡 = Θ(𝐵)𝜀𝑡 with 𝑤𝑡 following the pth autoregressive process.  For d ≥1, 𝑥𝑡 =

Σ𝑑𝑤𝑡 is called an invertible process. It is worth to note here Θ(𝐵)is invertible when 

the root of Θ(𝐵) = 0 lies outside the unit circle. Similarly, Φ(𝐵) is assumed 

stationary with Φ(𝐵) = 0 lying outside the unit circle.  

Box and Jenkins(1976) presented the algorithm for estimating the parameters of 

an ARIMA process with 𝑤𝑡 =∇𝑑𝑥𝑡 otherwise, an integrating process. This occurs in 

three stages thus: 

(i) The AR parameters 𝜑1,𝜑2, … ,𝜑𝑝 are estimated from the autocovariances 

denoted as 𝐶𝑞−𝑝+1,  … ,𝐶𝑞+𝑝; 
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(ii) Using the estimate of 𝜑�  obtained in (i) above, the first q+1 autocovariances 

denoted as 𝐶𝑗′, (𝑗 = 1,2, … , 𝑞)of the derived series 𝑤𝑡
′ = 𝑤𝑡 − 𝜑�1𝑤𝑡−1 − ⋯−

𝜑�𝑝𝑤𝑡−𝑝 are calculated; 

(iii) Thirdly, the autocovariances 𝐶0′ ,𝐶1′ , … ,𝐶𝑞′  are used in an iterative calculation to 

compute initial estimate of the MA parameters θ1, θ2 … , θ𝑞 and the residual 

variance, 𝜎𝜀2. 

According to Pindykt and Rubbinfed (1981), estimates of the model’s parameters 

can be obtained for the p-autoregressive and q-moving average parameters by 

choosing parameter values that will minimize the sum of squared differences 

between the actual time series  𝑤𝑡 =∇𝑑𝑥𝑡 and the fitted time series 𝑤𝑡 in terms of the 

residual error from ARIMA process. Thus,  

                                                                       𝜀𝑡 = Θ−1(𝐵)Φ(𝐵)𝑤𝑡              (4) 

So that the estimate of Φ = (ϕ1,ϕ2, … ,ϕp) and Θ = (θ1, θ2, … , θp) are obtained by 

                                                                      𝑆(𝜃,𝜙) = ∑ 𝜀𝑡2𝑖                (5) 

The expression in (5) is non-linear in parameters if MA terms are present. For this 

reason, an iterative method of non-linear estimation is used to estimate the model’s 

parameters. 

 

 

3 Residuals analysis 

Given the model defined in (1) above, the residuals generated by the model 

for the corresponding values of 𝑤𝑡 =∇𝑑𝑥𝑡 are denoted by 𝜀𝑡 , t = 1,2, ...,n as in (4) 

above.  Here, it is assumed that the unobserved residuals are normally distributed 

with zero mean and common variance, that is, 𝜀𝑡 ∽ 𝑁(0,𝜎2). The first of its 

significance is that it provides a diagnostic procedure for checking whether the 

initial specification of the model is correct. The expectation is that the residuals 

should resemble a white noise process which by assumption, are un-autocorrelated. 

If they are autocorrelated, new specifications are given for p, d and q and another 
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diagnostic check is performed. In this study, the following methods, otherwise rules 

of residual analysis namely, Durbin Watson (DW) Test, Ljung-Box-Pierce (Q) Test, 

Akaike Information Criteria (AIC), Standard Error (SE) of the Regression 

(otherwise, the time series model) and Mean Absolute Percentage Error (MAPE) are 

considered and applied to determine the  specification that best model the series 

under study.  

Rule 1: Durbin Watson Test:- This test proposed by Durbin and Watson (1951) 

considers the test of the Null hypothesis Ho: ρ = 0 and the test statistic is based on 

residuals from the Ordinary Least Squares (OLS)  regression procedure and is 

defined as : 

                                                      𝑑 = ∑ (𝜀�𝑡−𝜀�𝑡−1)2𝑁
𝑡=2
∑ 𝜀�𝑡−12𝑁
𝑡=1

                (6) 

Chatfield(1982) observes that the coefficient 𝑑 is related to the first order 

autocorrelation coefficient of the residual so that the numerator in expression (6) 

above can be represented as 

                                                 ∑ (𝜀�̂� − 𝜀�̂�−1)2𝑁
𝑡=2 = 2∑ 𝜀�̂�−22𝑁

𝑡=1 − 2∑ 𝜀�̂�𝜀�̂�−1𝑁
𝑡=2  

For which  

                                                                𝐷𝑊 = 2(1 − 𝑟1)               (7) 

where  

                                                               𝑟1 = ∑ 𝜀�𝑡𝜀�𝑡−1𝑁
𝑡=2
∑ 𝜀�𝑡−12𝑁
𝑡=1

               (8) 

Heinnushek and Jackson(1977) identifies two functions of Durbin Watson as 

firstly testing for serial correlation and secondly, a way to estimate this correlation 

which can be used to obtain generalised least squares (GLS) estimates. 

The statistic 𝐷𝑊 is asymptotically equivalent to the test on 𝑟1. If 𝑟1 = 0, then 

𝐷𝑊 = 2. Positive serial correlation is associated with DW< 2. Generally, the range 

of 𝐷𝑊 is 0 < 𝐷𝑊 < 4 so that the values of DW near 2 indicates no first order serial 

correlation. 
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It is worth to note here that the distribution of 𝐷𝑊 depends on the sample size, 

number of coefficients being estimated and also the sample values of the explanatory 

variables. 

Rule 2: Akaike Information Criteria. This is given by  

                                                             𝐴𝐼𝐶 = 𝑙𝑜𝑔𝜎�𝑘2 + 𝑛+2𝑘
𝑛

               (9) 

where 𝜎�𝑘2 = 𝑆𝑆𝐸𝑘
𝑛

 which is also based on residuals of the ARIMA model. 

Rule 3: Standard Error of the Regression. This is the summary measure based on 

the estimated variance of the residuals and it is given by  

                                                     𝑆𝐸 𝑅𝑒𝑔 = �∑ 𝜀𝑡2𝑇
𝑡=1
𝑇−𝑘

�
1 2⁄

              (10) 

where T is the length of time and k is the number of estimated ARIMA parameters. 

Rule 4: Box – Pierce Test. Box and Pierce (1970) considered the large sample 

properties of all the residual autocorrelated coefficients for any ARIMA process. 

Their results showed that 1 √𝑁⁄  supplies the upper bound for the standard error of 

the autocorrelation coefficients up to lag k, 𝑟𝑘 computed from the residuals. Thus, 

when 𝑟𝑘’s are computed, the values that lie outside the range ± 2 √𝑁⁄  are certainly 

significant different from zero. 

Ljung, Box and Pierce (1978) also described what they called a portmanteau lack of 

fit test. Thus, instead of looking for 𝑟𝑘 separately, a group up to the first lag k are 

considered using the test statistic given as; 

                                       𝑄 = 𝑛(𝑛+2)
(𝑛−𝑘)

∑ 𝑟𝑘2𝑘=1                (11) 

Where n is the number of terms in the difference series and the test statistics has a 

chi-squared distribution with k-p-q degree of freedom denoted as 𝑄~𝜒𝑘−𝑝−𝑞2  

Rule 5: Mean Absolute Percentage Error (MAPE). This measure the percentage 

departure of an observation from its forecasted values and is given by  

                                           𝑀𝐴𝑃𝐸 = 100 ∗ ∑ �𝑦�𝑡−𝑦𝑡
𝑦𝑡

� /ℎ𝑇+ℎ
𝑡=𝑇+1              (12) 

where h (>0) denotes the forecast length. 
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3.1 Dominating Criterion 

Definition 2.  Let R1, R2, ...,R5 be the model selection rule, then a specification say, 

Si dominates another specification Sj, when Si < Sj  for all i and Si ≤ Sj for some i 

(i=1,2,...,5).  

Considering the models specified for the data set, one common and interesting 

feature of these criteria is the fact that they select the model with the least value of 

the statistic except in the case of DW statistic which seeks for values that are very 

close to 2, and the Q statistic which checks for the value of autocorrelations of the 

residuals close to zero. Although, it is always difficult to have all the criteria agree 

on same decision line however, it is possible to have more of these statistics 

agreeing on a certain decision. Thus, it will be convenient to conclude by selecting 

that model with most agreeable decisions rule. In other word, decision on the 

“bestness” of a model specification should be determined by considering that 

specification with dominating criteria. 

 

 

4 Data for Analysis 

In this study, three data sets namely gross domestic product (GDP), total debt 

accumulation (TDA) of Nigeria for the period 1981 to 2009 and Nigeria’s rate of 

inflation (INFLA) for the period 1961 to 2008 are considered. Statistical analyses of 

interest in this study are the various residual analyses performed on the Auto 

Regressive Integrated Moving Average models specified for the series under study 

and the associated tests including the unit roots test as shown on Table 1 below 

using the Eviews-5 statistical package commonly used for the analysis of 

econometrics and time series problem. Results are shown on Tables 2 to 4 below for 

GDP, TDO and INFLA series.  
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Table 1: Characterization of GDP, TDA and INFLA series under unit root 

hypothesis. 

S/No Variable ADF-

Level 0 

ADF- 

Level 1 

ADF- 

Level 2 

Order of 

Stationarity I(k) 

1 GDP 0.380 -2.451 -4.013* I(2) 

2 TDA -2.438 -3.477 -6.637 I(2) 

3 INFLA -3.7579   I(0) 

     * Shows level at which the series is stationary (no unit root). I(k) shows the order of  

         integration, k=0,1,2. 

 

The result above suggests that GDP and TDA are non-stationary series and 

stationarity can only be induced when the series are differenced twice. However, 

INFLA series shows an I(0) stationary process indicating that the series is stationary 

at its level. The essence of this investigation is to help modeller to determine the 

order of integration for the ARIMA model. Certainly, a modeller is interested in that 

model that has significant parameters in the first place and also, satisfying certain 

optimality conditions. In the works of Box and Jenkins(1976) and furthered by 

various scholar including Chatfield(1982) among others, it has been shown that it is 

possible to have a set of ARIMA specifications with significant parameters and so, it 

becomes  necessary to perform further diagnostic and optimality checks based on 

residual analysis to select the ‘best’ model. 

For GDP series, six models are specified as shown in Table 2 below. These are 

ARIMA(1,0,0), ARIMA(1,1,0), ARIMA(1,1,2), ARIMA(1,0,2), ARIMA(2,2,2) and 

ARIMA(2,0,1). For these specifications, the parameters of the models are all 

significant and hence the model. This provides a class of models satisfying the 

criteria of significant parameters. However, the choice of the “best” model criteria 

has to be determined, and of course the consistency of these criteria as shown on 

Table 2 below. 
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Table 2: Various ARIMA specifications for GDP series 

Criterion ARIMA 

(1,0,0) 

ARIMA 

(1,1,0) 

ARIMA 

(1,1,2) 

ARIMA 

(1,0,2) 

ARIMA 

(2,2,2) 

ARIMA 

(2,0,2) 

SE Reg. 15736.22 15607.55 14405.59 12937.57 13959.21* 13959.4 

AIC 22.1991 22.1840 22.0896 21.8714 22.066* 22.066 

DW 1.01694 2.4038 2.0546* 2.1029 2.322 2.322 

Q  6.97 

(p<.05) 

(p>.05) (p>.05)* (p>.05)* (p>.05)* 6.83 

(p<.05) 

MAPE 52.58 70.88 48.91 53.78 26.47* 26.47 

* The model gives the best specification in terms of model residuals. P <.05 suggests  

   significant autocorrelation in the residual for at least one lag. 

 

Considering the SE of the ARIMA models in Table 2 above,  ARIMA(1,0,2) 

specification  has the least SE value, followed by ARIMA(2,2,2) specification. 

However, from the AIC, it is clear that ARIMA(2,2,2) has the least AIC value of 

20.066 than ARIMA(1,0,2). Although ARIMA(2,2,2) and ARIMA(2,0,2) have the 

same value of  AIC, ARIMA(2,2,2) has the smallest SE of Regression when 

compared with ARIMA(2,0,2). Apart from ARIMA(1,0,0) that exhibit weak positive 

autocorrelation, all other specifications exhibit weak negative autocorrelation. Thus, 

in the class of weak negative autocorrelation, it is evidenced that ARIMA(2,2,2) and 

ARIMA(2,0,2) have the smallest MAPE of 26.47% each. The value of the Q-

statistics is suggests non-significant autocorrelation of the residuals for 

ARIMA(1,1,0), ARIMA(1,1,2) ARIMA(1,0,2) and ARIMA(2,2,2). The search for 

the best model is therefore narrowed down to ARIMA(2,2,2) with several criteria 

suggesting that it dominate all other specifications, even as evidenced in Table 1 

which shows that GDP series is an I(2) process.  
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Table 3: Various ARIMA specifications for TDA series 

Criterion ARIMA 

(1,0,0) 

ARIMA 

(0,0,1) 

ARIMA 

(0,0,2) 

ARIMA 

(0,0,3) 

ARIMA 

(2,2,0) 

ARIMA 

(2,2,3) 

SE Reg. 873768 1879153 1433952 1181176 1005077 836713.9* 

AIC 30.233 31.763 31.254 30.89 30.553 30.283* 

DW 1.865 0.4514 1.269 1.990 1.977 1.994* 

Q (p>.05)* (p<.05) (p<.05) (p<.05) (p>.05)* (p>.05)* 

MAPE 87.9 100 100 100 86.53 85.83* 

* The model gives the best specification in terms of model residuals. P <.05 suggests 

significant autocorrelation in the residual for at least one lag. 

 

TDA series has six possible ARIMA(p,d,q) specifications with significant 

parameters as shown in Table 3 above. These are ARIMA(1,0,0), ARIMA(0,0,1), 

ARIMA(0,0,2), ARIMA(0,0,3), ARIMA(2,2,0) and ARIMA(2,2,3). Again, when SE 

of ARIMA models are considered, the ARIMA(2,2,3) specification  has the least SE 

value of 836713.9 followed by ARIMA(1,0,0) with SE of 873768. It is clear that 

ARIMA(1,0,0) has the least AIC value of 30.23 than ARIMA(2,2,3) with AIC value 

of 30.283. Although ARIMA(1,0,0) appeared to have the least value of AIC, 

ARIMA(2,2,3) has the smallest SE. Both specifications have positive autocorrelation 

with ARIMA(2,2,3) having almost zero autocorrelation. In terms of suitability, 

ARIMA(2,2,3) possesses the desirable qualities in terms of DW. In terms of MAPE, 

ARIMA(2,2,3) has MAPE of 85.83% and is followed by ARIMA(2,2,0) with MAPE 

of 86.53%. Again, the value of Q-statistics suggests non-significant autocorrelation 

of the residuals for ARIMA(1,0,0), ARIMA(2,2,0) and ARIMA(0,0,3) so that the 

search for the best model is pointing at ARIMA(2,2,3) which dominates other 

specification. Similarly, a critical examination of TDA series suggests a non-

stationary process of I(2) like GDP series. Thus, it will be sufficient to recommend 

ARIMA(2,2,3) specification as the best for the TDA series. 
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Table 4: Various ARIMA specifications for INFLA series 

Criterion ARIMA 

(1,0,0) 

ARIMA 

(0,0,1) 

ARIMA 

(1,0,2)* 

ARIMA 

(0,0,2) 

ARIMA 

(1,0,1)* 

SE Reg. 15.59 17.7 14.283** 16.686 15.597 

AIC 8.352 8.6 8.237** 8.508 8.37 

DW 1.957 1.510 1.868** 1.838 2.28 

Q P<.05 P<.05 p>.05** p>.05** P<.05 

MAPE 108.46 100 277.47 100 117.47 

* The model has a constant term.  

** is the model that gives the best specification in terms of model residuals. P <.05 suggests  

    significant autocorrelation in the residual for at least one lag. 
 

 

For INFLA series, there are five possible ARIMA(p,d,q) specifications whose 

parameters are significant as shown in Table 4 above. These are ARIMA(1,0,0), 

ARIMA(0,0,1), ARIMA(1,0,2), ARIMA(0,0,2) and ARIMA(1,0,1). Using the SE of 

ARIMA models criterion,  ARIMA(1,0,2) has the smallest SE and AIC of 14.28 and 

8.237 respectively. In terms of DW, ARIMA(102)  specification among others have 

weak positive auto-correlation except for ARIMA(1,0,1) which also has negative 

auto-correlation. ARIMA(1,0,2)  has  MAPE of 277.47% which is higher than all 

other specifications. The Q-statistics suggests non-significant autocorrelation of the 

residuals for ARIMA(1,0,2), and ARIMA(0,0,2) so that the search for the best 

model is pointing at ARIMA(1,0,2) which dominates other specification  for more 

than  50% of the criteria under consideration.  

 

 

5 Concluding Remark 

The process of time series modelling has been described by Box and Jenkins 

among others and several methods of model selection have been suggested. The plot 
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of Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) do 

not give sufficient information on the most suitable model specified hence the need 

to utilize every meaningful statistical procedure to identify the most suitable model 

for any series among the entertained models. 

In order to fit a suitable stochastic model for each of the time series namely, 

GDP, TDA and INFLA, this study utilized the Augmented Dickey-Fuller Test to 

examined the series for stationarity and hence order of integration to be specified 

and thereafter, entertained several specifications for each series.  

Using the specified methods of residual analysis, it was found that it is not 

always sufficient to utilize a single method of residual analysis to select the ‘best’ 

model hence, the need to consider several methods and identify the specification that 

dominates others in terms of the selection criteria. In this study, it has been found 

that the SE of Regression, AIC and Q statistics are frequently in agreement and in 

some cases, the DW and MAPE tests leading to the selection of ARIMA(2,2,2), 

ARIMA(2,2,3) and ARIMA(1,0,2) respectively for GDP, TDA and INFLA series. 

The study concludes by suggesting the joint use of SE of regression, AIC and Q 

statistics as important criteria in determining the most suitable model for any 

specified series especially when the class of ARIMA models are to be entertained. 
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