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Abstract 

We propose a new distribution with extra shape parameter named a truncated 

quasi Lindley distribution which is more flexible than many well-known 

distributions. Mathematical and statistical properties of truncated quasi Lindley 

distribution are given only for upper truncated version of quasi Lindley 

distribution to reduce the mathematical complexity. An important property of the 

upper truncated quasi Lindley distribution is that it can have bathtub-shaped 

failure rate function. We present some of its mathematical properties including 

ordinary moments, quantile and moment generating functions, order statistics. The 

method of maximum likelihood to estimate the model parameters is discussed and 

the behavior of maximum likelihood estimator is studied. The importance of the 

new distribution is illustrated by means of the wind speed data and the capability 

in modeling wind speed is evaluated. The results indicate that the truncated 

version of quasi Lindley distribution can provide better fits than Exponential, 
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Lindley, quasi Lindley and Weibull distributions in estimating wind speed 

distribution. Therefore, truncated quasi Lindley can be an alternative for use in the 

assessment of wind energy potential.  
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1 Introduction 

The Lindley was introduced by Lindley [1] as a new distribution useful to 

analyze failure time data especially in applications modeling stress-strength 

reliability. The motivation of the Lindley distribution arises from its ability to 

model failure time data with increasing, decreasing, unimodal and bathtub shaped 

hazard rates. The distribution represents a good alternative to the exponential 

failure time distribution that suffer from not exhibiting unimodal and bathtub 

shaped failure rates [2]. Ghitany et al. [3] obtained some properties of the Lindley 

distribution and showed that the Lindley distribution provides a better modeling 

for some applications than the exponential distribution. Mazucheli and Achcar [4] 

also found that many of the mathematical properties are more flexible than those 

of the exponential distribution and proposed the Lindley distribution as a possible 

alternative to the exponential distribution. The probability distribution function 

(pdf) and cumulative distribution function (cdf) of the Lindley distribution are 

given by, respectively, 
2

- x
Lf (x) (1 x)e ,    x 0,  0

1
θθ

= + > θ >
+ θ

                               (1) 

- x
L

1 xF (x) 1- e ,    x 0,  0
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θθ + + θ
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θ+
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The Lindley distribution is a mixture of exponential ( )θ  and gamma (2, )θ  

distributions with their mixing proportions are (1 (1 )θ+  and ( )( )1θ θ+ . Let us 

point out that some researchers proposed new classes of distributions based on 

modifications of the Lindley distribution, including also their properties. The 

generalized Lindley distribution was proposed in Zakerzadeh and Dolati [5]. The 

Poisson-Lindley distribution was introduced by Sankaran [6]. The zero-truncated 

Poisson-Lindley distribution and generalized Poisson-Lindley distribution were 

considered in Ghianty et al. [7]. Recently, Shanker and Mishra [8] have introduced 

a two parameter quasi Lindley (QL) distribution which is the particular case of the 

Lindley distribution. They showed that the QL distribution provides better fits 

than the Lindley distribution based on different data sets. The QL distribution is 

defined by its pdf and cdf as, respectively,   

x
QL

( x )f (x) e ,      x 0,   , 0
1

−θθ α + θ
= > θ α >

α +
                             (2) 

x
QL

1 xF (x) 1 e ,      x 0,  , 0
1

−θ+ α + θ
= − > θ α >

α +
 

In Eq. (2), the QL distribution reduces to the Lindley and gamma (2, )θ  

distributions for α θ=  and 0α = , respectively.  

A truncated distribution is defined as a conditional distribution that results 

from restricting the domain of the statistical distribution. Hence, truncated 

distributions are used in cases where occurrences are limited to values which lie 

above or below a given threshold or within a specified range. If occurrences are 

limited to values which lie below a given threshold, the lower (left) truncated 

distribution is obtained. Similarly, if occurrences are limited to values which lie 

above a given threshold, the upper (right) truncated distribution arises [9, 10]. 

Truncated versions of the well-known statistical distributions are proposed by 

many researchers to model the truncated data in various fields. Zhang and Xie [11] 

studied the characteristics of the truncated Weibull distribution and illustrated the 

applicability of this distribution to modeling lifetime data. Ahmed et al. [12] 
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proposed the truncated version of the Birnbaum-Saunders (BS) distribution and 

showed that truncated BS distribution is more appropriate than the classical BS 

model for describing the financial loss data from a commercial bank. Recently, 

Singh et al. [13] have introduced the truncated version of the Lindley distribution 

and discussed statistical properties of proposed distribution and showed that 

truncated version of the Lindley distribution provides a better modeling than 

Weibull, Lindley and exponential distributions based on a real data. As far as we 

know, truncated version of the QL distribution has not been investigated. 

Therefore, the aim of this study is to obtain a truncated QL distribution which is 

more flexible than the exponential, Lindley, quasi Lindley, and lower truncated 

quasi distributions. 

Accurately modeling wind speed is critical in estimating the wind energy 

potential of a certain region. Several statistical distributions have been studied in 

order to model wind speed data smoothly. The Erlang, inverse normal and Gumbel 

distributions presented as wind speed distributions in [27], while a generalized 

extreme value distribution was used in [14]. Chang [15] introduced mixture 

truncated normal distributions, while Usta and Kantar [16] proposed certain 

flexible families of distributions as an alternative to the exponential distribution in 

estimating wind speed distribution. Philippopoulos et al. [17] compares various 

distributions and shows that the gamma distribution could be an efficient 

alternative to the exponential distribution. Consequently, the mentioned studies 

[18–21] emphasize that exponential distribution does not present good 

performance in the modeling of wind speed data in comparison for all wind types 

encountered in nature, such as low or high, skewed or kurtotic, or skewed and 

kurtotic wind speed. Thus, in order to minimize errors in wind speed estimation, it 

is necessary to select the most appropriate distribution for the description of wind 

speed measured for a specific area. An upper truncated distribution is applicable to 

this situation where the range of random variable is bounded from above by an 

unknown cut-off point, called a truncation point. In other words, if the values of 
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random variables are observed in the interval [0, T], then the upper truncated 

distribution can be used. The wind speed measurements are generally observed in 

the range of [0, V], and therefore, the upper truncated distribution can be applied 

to model the wind speed data. Therefore, this paper also proposes, for the first 

time, the use of the upper truncated QL (UTQL) distribution, in modeling wind 

speed data. In addition, a comparison is made between UTQL distribution and 

well known distributions using wind speed data.  

The paper is organized as follows: Section 2 introduces the probability 

density, cumulative density, survival and hazard functions of UTQL distribution. 

Then the plots of the proposed distribution for several values of parameters are 

presented.  In Section 3, some statistical properties of the UTQL distribution, 

such as ordinary moments, moment generating and quantile functions, skewness 

and kurtosis, order statistics are derived and mean and variance for the several 

values of the parameters are obtained. Section 4 provides the maximum likelihood 

estimation of the model parameters. The wind speed data is used to evaluate the 

performance of truncated versions of the UTQL distribution in Section 5. Section 

6 concludes the study with the obtained results and certain suggestions for further 

research.  

 

 

2 Upper Truncated Quasi Lindley Distribution 

2.1. The probability density and cumulative density functions 

The cdf of a double truncated distribution is given by 

F(x) F(v)G(x) ,    v x ,   v
F( ) F(v)

−
= < < ζ −∞ < < ζ < ∞

ζ −
           (3) 

where  and v ζ  are the intervals of the truncated distribution. The pdf of the 

truncated distribution is defined as 
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f (x)g(x) ,    v x ,   v
F( ) F(v)

= < < ζ −∞ < < ζ < ∞
ζ −

                  (4) 

where f (x)  and F(x)  are the pdf and the cdf of the baseline distribution, 

respectively. It is easily seen from Eq. (4) that the distribution reduces the baseline 

distribution for 0v =  and ζ →∞ .  

Eq. (4) is called as the upper truncated distribution for any baseline distribution for 

0v = . If  QLf (x)  in Eq. (2) is considered as a baseline distribution and using the 

Eqs. (3) and (4), we obtain the pdf and the cdf of the UTQL distribution 

respectively as follows: 
x

UTQL
( x)eg (x) ,    x 0,   ,  0,  0 x

(1 )(1 e ) e

−θ

−θζ −ζθ

θ α + θ
= > θ α > < < ζ

+α − + ζθ
            (5) 

( )( )( )( x) x

UTQL

e 1 1 e x
G (x) ,  x 0,   ,  0,  0 x

(1 )(1 e )

θ ζ− θ

ζθ

+ α − + θ
= > θ α > < < ζ

+α − + ζθ
         (6)                       

The density function in Eq. (5) is much more flexible than the Lindley and quasi 

Lindley density functions. Thus it can allow for greater flexibility of the tails. It 

can exhibit different behavior depending on the parameter values. Note that the 

probability density in Eq. (5) is reduced the quasi Lindley distribution for 0ζ = .  

To obtain the mode of the UTQL distribution, we give the first derivate of (5) as  

( )
( )( )

x 2
UTQLg (x) e x 1

x 1 e 1 e

−θ

−ζθ −ζθ

∂ θ α + θ −
=

∂ α + − + ζθ
                                 (7) 

Solving the Eq. (7) for zero point, gives 1x −α
=

θ
. When 1a < , 1x −α

=
θ

 is 

the maximum point of the distribution. Then, the mode of the UTQL distribution 

can be defined as 

1 ,   1
Mode

0,          o/w

−α α <= θ


                                            (8) 

Figure 1 illustrates some of the possible shapes of the pdf of the UTQL 

distribution for selected values of the parameters. 
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           Figure 1: Plots of the UTQL density functions for given  

                   0.5,  1, 1.5 0.5,  1, 1.5 and =10θ α ζ= =  

 

As seen from Figure 1, decreasing θ  parameter yields to fat-tail structure 

and θ  parameter specifies the shape of the distribution. In fact, plots in Figure 1 

reveals that the mode of the pdf increases as θ . It is evident that the UTQL 

distribution is much more flexible than the Lindley distribution, i.e. the additional 

shape parameter θ  allow for a high degree of flexibility of the UTQL 

distribution. Hence, the new model can be very useful in many practical situations 

for modeling positive real data sets such as wind speed data. 

 

 

2.2. Survival and Hazard Rate Functions 

Central role is playing in the reliability theory by the ratio of the probability 
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density and survival functions. The survival function of the UTQL distribution is 

obtained from Eq. (6) as  

( )( )( )( x) x

UTQL

e 1 1 e x
S(x) 1 G (x) 1

(1 )(1 e )

θ ζ− θ

ζθ

 + α − + θ = − = −  
+ α − + ζθ  

                      (9)                                               

Figure 2 represents plots of the survival function for the UTQL distribution for 

several parameter values ,   and α θ ζ .  

 

 
      Figure 2: Plots for the survival functions of UTQL distribution for given  

              0.5,  1, 1.5 0.5,  1, 1.5 and =10θ α ζ= =  

 

The other characteristic of interest of a random variable is the hazard rate 

function. It can be loosely interpreted as the conditional probability of failure, 

given it has survived to time t. We obtain the hazard function of the UTQL 

distribution as  
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( )( )( )

x

UTQL

( x) x
UTQL

( x)e
g (x) (1 )(1 e ) eh(x)

1 G (x) e 1 1 e x
1

(1 )(1 e )

−θ

−θζ −ζθ

θ ζ− θ

θζ

θ α + θ
+ α − + ζθ= =

−  + α − + θ −  + α − + ζθ  

 

Figure 3 illustrates the hazard rate function of the UTQL distribution for different 

values of the parameters ,   and α θ ζ . 

 

 

 
       Figure 3: Plots for the hazard functions of the UTQL distribution for  

               given 0.5,  1, 1.5 0.5,  1, 1.5 and =10θ α ζ= =  

 

Figure 3 shows that the hazard rate function of the UTQL distribution is 

flexible for several values of parameters. It is seen in Figure 3 that the hazard rate 

function are increasing. 
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3 Main Properties 

We derive computational sum–representations and explicit expressions for 

the ordinary and central moments, skewness, kurtosis, generating and quantile 

functions, order statistics of X. These expressions can be evaluated analytically or 

numerically using packages such as Mathematica, Matlab and Maple. 

 

 

3.1. Moments  

Some key features of a distribution such as skewness and kurtosis can be 

studied through its moments. We derive closed-form expressions for the ordinary 

moments, generating function, skewness and kurtosis of X. We obtain the ordinary 

moments of the UTQL distribution as 

( )

( ) ( )
( )

r r x

0

r

E(X ) x ( x)e dx
1 F( )

             
r 1 r 1, 1         =

1 F( )

ζ
−θθ

= α + θ
α + ζ

Γ + −Γ + ζθ
θ α + ζ

∫
                               (10)                                                              

where (.)Γ  and (.,.)Γ  are gamma and upper incomplete gamma functions, 

respectively, and defined as follows: 

 s 1 x

0

(s) x e dx,
∞

− −Γ = ∫                                                (11)                                                                  

s 1 x

t

(s, t) x e dx.
∞

− −Γ = ∫  

From Eq. (10), the mean and variance of the UTQL distribution are obtained 

using the first and the second ordinary moments as 

 
2 22e 2 e 2E(X) ,

( e e 1)

ζθ ζθ

ζθ ζθ

α − + ζθ−α + ζ θ +αζθ+
= µ =

θ α − + ζθ−α +
                      (12) 
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2 2 3 3 2 2
2

2

2 6e 6 2 e 3 2 6E(X )
( e b e 1)

ζθ ζθ

ζθ ζθ

α − + ζθ− α + ζ θ + ζ θ +αζ θ + αζθ+
=

θ α − + ζ −α +
.                            

The mean and variance 2( )σ  of the UTQL distribution are presented in Table 1 

for different values of parameters ,   and α θ ζ . Note that variance 

{ }22 2V(X) E(X ) E(X)= σ = −  is found from Eq. (12). 

 

 Table 1: Mean and variance of the UTQL distribution for several values of the  

        parameters 

θ  α  
5ξ =  10ξ =  15ξ =  

µ  2σ  µ  2σ  µ  2σ  

0.1 

0.25 2.7219 1.9798 5.3677 7.6760 7.7444 16.9309 

0.75 2.5026 2.0655 4.8594 8.1311 6.9664 17.8787 

1 2.4599 2.0711 4.7396 8.1631 6.7633 17.9269 

0.25 

0.25 2.6373 1.8994 4.6299 7.1384 5.8916 14.1595 

0.75 2.3789 2.0116 4.1306 7.3616 5.2129 14.1105 

1 2.3144 2.0188 3.9864 7.3333 5.0068 13.9133 

0.5 

0.25 2.3149 1.7846 3.2960 5.1894 3.5470 7.1269 

0.75 2.0653 1.8404 2.8986 5.0279 3.1016 6.6901 

1 1.9932 1.8333 2.7757 4.9140 2.9626 6.4725 

1 

0.25 1.6480 1.2973 1.7962 1.9250 1.7999 1.9592 

0.75 1.4493 1.2570 1.5685 1.7889 1.5714 1.8157 

1 1.3879 1.2285 1.4974 1.7251 1.5000 1.7495 

 

 

Table 1 shows that the mean and variance decrease when θ  increases for a 

fixed α . Besides, for a fixed θ , while mean decreases, variance increases when 

the α increases. Assuming α  and θ  is kept fix, the mean and variance increase 

whenξ  increases.  
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Further, the central moments ( rµ ) and cumulants ( rκ ), r 1,  2,...,=  of the 

UTQL distribution can be obtained from 

r
k r

r 1 r k
k 0

r
( 1)

k −
=

  ′ ′µ = − µ µ 
 

∑  and 
r

k r
r r 1 n r

k 0

r
( 1)

k −
=

 ′ ′ ′κ = µ − − µ µ 
 

∑            (13) 

Here 1 1′κ = µ , 2
2 2 1′ ′κ = µ −µ , 3

3 3 2 1 13 2′ ′ ′ ′κ = µ − µ µ + µ , 

2 2 4
4 4 3 1 2 2 1 14 3 12 6′ ′ ′ ′ ′ ′ ′κ = µ − µ µ − µ + µ µ − µ  etc. The skewness 3/2

1 3 2/γ = κ κ  and 

kurtosis 2
2 4 2/γ = κ κ   are also computed from the second, third and fourth 

cumulants. 

 

 

3.2. Moment Generating Function  

The moment generating function (mgf) is widely used as an alternative way 

to analytical results compared with working directly with pdf and cdf. Here, we 

give a formula for the mgf txM(t) E(e )=  of X as  

( )
( ) ( )( )( )

( ) ( )( ) ( )( )
( )( )

2 22 tt

x

1 t e t 1 te 1
M (t)

1 e 1 et 1 e 1 e

ξ −ξθξ −ξθ

−ξθ −ξθ−ξθ −ξθ

θ θ− − ξθ− ξ + θ−αθ −
= −

α + − + ξθθ− α + − + ξθ
   (14) 

Using the Eq. (14), the ordinary moments of the UTQL distribution can be 

also calculated.  

 

 

3.3. Quantile Function  

The quantile function of a probability distribution is the inverse of the cdf 

and defined as follows: 

1

Q(p) inf{x : p F(x)}
        F (x)−

= ∈ ≤

=



                                        (15) 

We obtain the quantile function of the UTQL distribution from Eqs. (6) and 
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(15) as 

( )( )(1 )

UTQL

1+ +W (1 ) e 1 p p e
Q (p)

2

ξθ − +α+ξθ  α +α − +  =
 θ
 

                  (16) 

where W(.)  is a Lambert-W function which is a multi-valued complex function 

defined as the solution of the equation 

W(z)exp[W(z)] z=                                               (17) 

Here, z  is a complex number [12]. 

Simulating UTQL distribution random variable is straightforward. Let p be a 

uniform variable on the unit interval (0, 1). Thus, by means of the inverse 

transformation method, the random variable X given by 

( )( )(1 )1+ +W (1 ) e 1 p p e
X

2

ξθ − +α+ξθ  α +α − +  =
 θ
 

                        (18) 

 

 

3.4. Skewness and Kurtosis 

The effects of the parameters on the skewness and kurtosis of X can be based 

on quantile function in Eq. (16). There are many heavy tailed distributions for 

which this measure is infinite. So, it becomes uninformative precisely when it 

needs to be. The Bowley’s skewness is based on quartiles: 

Q(3 / 4) 2Q(1/ 2) Q(1/ 4)S
Q(3 / 4) Q(1/ 4)
− +

= −
−

 

and the Moors’ kurtosis is based on octiles: 

Q(7 / 8) Q(5 / 8) Q(3 / 8) Q(1/ 8)K
Q(6 / 8) Q(2 / 8)

− − +
= −

−
, 

where (.)Q  represents the quantile function of X. These measures are less 

sensitive to outliers and they exist even for distributions without moments. 

Skewness measures the degree of the long tail and kurtosis is a measure of the 
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degree of tail heaviness. When the distribution is symmetric, S 0=  and the when 

the distribution is right (or left) skewed, S 0>  (or S 0).<  As K increases, the tail 

of the distribution becomes heavier. From Eq. (16), skewness and kurtosis of the 

UTQL distribution are obtained and presented in Table 2. 

 

Table 2: Skewness and kurtosis of the UTQL distribution for several values of the   

       parameters 

θ  α  
5ξ =  10ξ =  15ξ =  

Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis 

0.1 

0.25 0.0207 0.0414 0.0354 0.0712 0.0453 0.0914 

0.75 0.0199 0.0398 0.0318 0.0639 0.0406 0.0817 

1 0.0174 0.0348 0.0294 0.059 0.0374 0.0752 

0.25 

0.25 0.0409 0.0823 0.0558 0.1131 0.0605 0.1227 

0.75 0.0391 0.0787 0.0498 0.1005 0.0538 0.1089 

1 0.0338 0.068 0.0457 0.0922 0.0494 0.0997 

0.5 

0.25 0.0558 0.1131 0.0618 0.1256 0.0624 0.1266 

0.75 0.0533 0.1078 0.055 0.1113 0.0554 0.1122 

1 0.0457 0.0922 0.0504 0.1019 0.0508 0.1027 

1 

0.25 0.0618 0.1256 0.0624 0.1267 0.0624 0.1267 

0.75 0.055 0.1113 0.0555 0.1123 0.0555 0.1123 

1 0.0504 0.1019 0.0509 0.1027 0.0509 0.1028 

 

The values in Table 2 indicate a narrow range for the skewness of X, similary, 

the kurtosis does not vary much. 
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3.5. Order Statistics 

Order statistics make their appearance in many areas of statistical theory and 

practice. Suppose 1 2X ,X ,...,Xn  is a random sample from the UTQL distribution. 

Let 1: 2: :, ,...,n n n nX X X  be a ordered statistics and : ( )s ng t represents the pdf of the 

:s nX  
s i

n s
UTQL UTQLi

s:n
i 1 UTQL UTQL

G (t, ) g (t, )n s1g (t) ( 1)
iB(s, n s 1) G ( , ) G (t, )

+
−

=

 θ θ− 
= −    − + ξ θ θ  

∑  

where ( , 1)B s n s− +  is beta function, UTQLg (t)  and UTQLg (t)  are the pdf and 

cdf of the UTQL distribution, respectively.  

For 1s = , the pdf of the first order statistics is defined as 

( )( )( )

( )( )( )

i
t tt

n s
i

1:n i 1
i 1

e e 1 1 e t( t)e
(1 )(1 e ) e (1 )(1 e )

g (t) n ( 1)
e e 1 1 e

B(n i, i 1)
(1 )(1 e )

ζθ −θ θ−θ

−θζ −ζθ ζθ
−

+
ζθ −θγ θγ=

ζθ

 + α − + θ θ α + θ    + α − + ζθ +α − + ζθ  = −
 + α − + θγ
 − +
 + α − + ζθ
 

∑  (19) 

Similarly, the pdf of :n nX  can be obtained by taking s n= . 

 

 

4 Parameter Estimation  

Several approaches for parameter point estimation were proposed in the 

literature but the maximum likelihood estimation (MLE) method is the most 

commonly employed. The MLEs enjoy desirable properties and can be used when 

constructing confidence intervals and regions and also in test statistics. In this 

section, the parameter estimation of the UTQL distribution is obtained using the 

maximum likelihood estimation (MLE) procedure. Let 1 2, ,... nx x x  be a random 

sample from the UTQL distribution. The likelihood function of the UTQL 
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distribution is given as 
n

i
i 1

n n x

i
i 1

L( , , | x) ( x )e
(1 )(1 e ) e

=

−θ

θζ −θζ
=

∑ θ
α θ ζ = α + θ + α − −θζ 

∏                (20) 

and the log-likelihood function is obtained as 

( )( )
n n

i i
i 1 i 1

ln L( , , | x) n ln( ) ln 1 1 e e ln( x ) xθζ −θζ

= =

 α θ ζ = θ − +α − −θζ + α + θ −θ  ∑ ∑     (21) 

The log-likelihood function can be maximized either directly by using the SAS 

(PROCNLMIXED) or the Ox program (sub-routine MaxBFGS) or by solving the 

nonlinear likelihood equations obtained by differentiating Eq. (21). Here, the 

log-likelihood function is maximized by solving nonlinear equations obtained by 

differentiating the log- likelihood function. The first derivatives of the 

log-likelihood function with respect to the parameters are 

( )
n n

i
i

i 1 i 1i

xln L( , , | x) n e (1 ) e (1 )n x
x(1 ) 1 e e

ξθ −ξθ

ξθ ξθ
= =

 ∂ α θ ζ −ξ +α −ξ + ξθ
 = + + −

∂θ θ α + θ+α − −ξθ  
∑ ∑    (22) 

n

i 1 i

ln L( , , | x) 1 e 1n
(1 )(1 e ) e x

θξ

θξ −θξ
=

 ∂ α θ ζ −
= − + ∂α +α − −ξθ α + θ 

∑               (23)                        

The given equations can be solved using iterative methods such as Newton 

Raphson method. The MLE of ξ  is taken as { }1 2
ˆ max , ,..., nx x xξ = , ξ̂  is the 

largest value in sample. Let 0θ  and 0α  be the initial values of θ  and α , 

respectively. Then, we have 
2 2

2
0

2 2
0

2

log log log
ˆ

logˆlog log

L L L

LL L
θ θθ θ α θ
α α

αθ α α

 ∂ ∂ ∂ 
    −∂ ∂ ∂ ∂  =    ∂−∂ ∂    
   ∂ ∂ ∂ ∂ 

                             (24)                                                                  

where 
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( ) ( )( )

( ) ( )( ) ( )

2 2 2

22 2

23 2 2 n
i

2
i 1 i

ln L( , , | x) n n( e e ( 1) e )

1 e 1 e

xn( e 2 e e ( 1))                           ,
1 e 1 e x

−ζθ ζθ −ζθ

ζθ −ζθ

−ζθ −ζθ ζθ

ζθ −ζθ
=

∂ α θ ζ ζ + ζ α + − ζ θ
= +

∂θ θ α + − + ζθ
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5 Application 

In this section, we provide applications to a real data set to demonstrate the 

potentiality of the truncated versions of quasi Lindley distribution. A set of real 

test data representing wind speed reported by [22] is used to evaluate the 

performance of the truncated quasi Lindley distribution. It consists of the 

observations listed in Table 3. 

As seen from Table 3, each data point represents the average wind speed over 

some time period. Then, the descriptive statistics for the wind speed data are given 

in Table 4. 

Table 4 shows that the wind speed data is positively skewed. . According to 

kurtosis value, wind speed data distribution is flatter than a normal distribution 

with a wider peak. This means that the probability for extreme values of wind 

speed is less than for a normal distribution, and the values are wider spread around 

the mean. Here, we have fitted the data with the exponential, Lindley, QL, upper, 

lower and double truncated Quasi Lindley distributions. We obtain the pdf of the 

lower truncated Quasi Lindley (LTQL) and double truncated Quasi Lindley 
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(DTQL) distribution as 

    

(v x)

LTQL
e ( x)g (x) ;    x v;   ,  0
( v 1)

θ −θ α + θ
= > θ α >

α + θ +              (28)                                                              

x

DTQLD v

e ( x)g ;   v, , ,  0
e ( 1) e ( v 1)

−θ

−ζθ − θ

−θ α + θ
= ζ θ α >

α + ζθ+ − α + θ+              (29)    

 

Table 3: Wind speed data (m/s) 

3.3 5.7 4 4.5 4.7 6.3 

3.8 8.5 4 5.8 4.5 9.4 

4.2 8.9 2 4.8 4.2 7.7 

3.3 9.3 2.7 4.8 5.7 6 

2.8 6.5 2.7 5.5 2.7 8.9 

3 4.2 3.3 5.7 4.3 7.7 

4 4.3 2.7 5 4.3 6.2 

2.7 3.7 2.7 4.3 4.5 5.7 

5.2 4 5.8 4 4.5 5.7 

6.7 2.8 5.7 3.5 6 7.5 

6.8 3.7 6.2 5 10.4 7.5 

6.8 3.3 6.5 3.7 6.7 5.3 

 

 

Table 4: Descriptive statistics for the wind speed data 

n Minimum Median Mean Maximum Variance Skewness Kurtosis 

72 2 4.75 5.12 10.4 3.498 0.722 0.041 

 

 

The log-likelihood function of UTQL and DTQL can be obtained using the 

Eq. (28) and (29) to estimate the parameters of UTQLD and DTQL distributions. 
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We estimate the unknown parameters of the distributions by the maximum 

likelihood. Table 5 represents the fitting summary of these distributions including 

the estimates of parameters, log-likelihood, Akaike information criterion (AIC), 

Corrected Akaike information criterion (AICC), and Bayesian information 

criterion (BIC) which are calculated by given equations, 

AIC 2log(L) 2k,
2k(k 1)AICC AIC
(n k 1)

BIC 2log(L) k log(n)

= − +
+

= +
− −

= − +

                        (30) 

where k  is the number of parameters and n  is the sample size. 

According to the AIC, AICC and BIC statistics values, the DTQL 

distribution gives the best fitting to the wind speed data. Figure 4 represents the 

fitting performance of the DTQL distribution graphically, including the 

quantile-quantile (Q-Q) plot, probability-probability (P-P) plot, empirical and 

theoretical densities and empirical and theoretical cumulative distribution 

functions. 

 

Table 5: Maximum likelihood estimates, AIC, AICC, BIC statistics values under  

       considered distributions based on wind speed data 

Distribution Parameter Estimations LogL AIC AICC BIC 

( )Exp λ  ( )ˆ 0.1952λ =  189,6184 381,2368 381,29 381,0941 

W( , )k λ  ( )ˆ ˆ, (2.93,5.75)k λ =  146,496 296,9912 297,17 296,7059 

( )L θ  ( )ˆ 0.341θ =  174,552 351,104 351,16 350,9613 

( , )QL θ α  ( ) ( )ˆ ˆ, 0.390,0.001θ α =  166,462 336,924 337,1 336,6387 

( , , )UTQL θ α ζ  ( )ˆ ˆˆ, , (0.269,0.013,10.4)=θ α ζ  156,366 318,732 319,08 318,304 

( , , )LTQL vθ α  ( )ˆ ˆ ˆ, , (0.390,0.0002,2)=vθ α  166,462 338,924 339,28 338,496 

( , , , )DTQL vθ α ζ  ( )ˆ ˆˆ ˆ, , , (0.387,0.014,2,10.4)=vθ α ζ  143,643 295,286 295,88 294,7153 
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Figure 4: Fitting performance of the DTQL distribution based on wind speed data 

 

Figure 4 shows that the wind speed data fits very well to the DTQL distribution. 

 

 

6 Conclusion 

In this study we propose a new model, the so-called the distribution which 

extends the Lindley distribution in the analysis of data with real support. An 

obvious reason for obtaining a standard distribution is because the generalized 

form provides larger flexibility in modeling real data. We derive expansions for 

the moments, quantile function, order statistics, survival function, hazard function, 

moments and for the moment generating function. The estimation of parameters is 

approached by the method of maximum likelihood, also the information matrix is 

derived. The wind speed data is modeled by the lower, upper and double truncated 

quasi Lindley distributions, exponential, Lindley, quasi Lindley and Weibull 

distributions to evaluate the performance of the truncated versions of quasi 

Lindley distribution. Fitting performance of these distributions are compared 
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according to AIC, AICC and BIC statistics values and clearly the wind speed data 

is best modeled by DTQL distribution. The present study might provide different 

and useful insights to scientists dealing with wind energy by firstly introducing a 

truncation parameter into QL distribution. 
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