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Abstract

The aim of this work is to develop and analyze a mathematical model
for a predator-2 preys system arising in marine environments. We are
interested in the evolution of fish population depending of plankton.
We first look at the model; this yields a singular system of ordinary
differential equations having interesting dynamical futures, such as fi-
nite time extinction and persistence of populations. In addition, the
mathematical analysis permits to isolate extinction conditions in finite
or infinite time. Finally, the numerical simulations permits to establish
the effect of the fishing on the evolution of fish population in spite of
abundance resource and it’s permit to know if area is severely exploited
or not.
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1 Introduction

We are interested in some deterministic mathematical population dynam-

ics model motivated by biological problems in the marine environment. The

problem of the management of bio-diversitie resources in generally and partic-

ularly, the resources halieutic management, interest many researchers. Almost

47% of the world fish stocks commercial are maximum exploited [6, 11].

To contribute to resolve the fish resource preservation, here, we develop a de-

terministic model which govern the dynamic of the fish and her diet (plankton).

In previous works [6, 8, 9], a mathematical model has been developed to

model the interactions between a native prey and alien predators and preys

in insular environments, taking into account the spatial heterogeneity in the

habitat. Problems of persistence and extinction of species have been studied

in [3, 6], and invasion processes have been analyzed.

In this paper, we develop a mathematical model to better understand inter-

actions between diet (plankton) and fish population in a marine environment,

taking into account heterogeneities in the distribution of the species. Some

modeling work in this direction concerning unstructured populations has been

previously developed in [1, 7] for two and three species.

We extended the unstructured model of Courchamp and Sugihara [2, 3, 6] to

the case of fish-plankton. Along the same line, we derive a predator (fish)-

2prey (zooplankton and phytoplankton) model based on Courchamp and al,

[5]. The models study in the present work use predator-2prey ratio instead of

prey density. It’s about to develop Fish-zooplankton-phytoplankton determin-

istic model.

First, we consider fish and phytoplankton population dynamic, so F-B

model. After we consider fish and zooplankton system and zooplankton and

phytoplankton system for to develop F-R and R-B models. In end, com-

bining of these dynamic, we develop the final model B-R-P of the system

phytoplankton-zooplankton-fish. One novelty of these models, involving sys-
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tems of ordinary differential equations, is the possibility for species to go ex-

tinct in finite and infinite time; This feature is closely related to a specific

mathematical difficulty: the occurrence of singularities i.e vanishing determi-

nators, in the systems of ordinary differential equations (ODE).

The paper is organized as follows. In section 2, we present the different

mathematical models of our problem. Section 3 provides the mathematical

analysis of the final model. Computational simulations are performed in sec-

tion 4 and finally, in the last section, the section 5 we end with some conclusions

remarks and future works.

2 Mathematical models

In this first section, we briefly describe a mathematical models devised in

F. Courchamp and Sugihara and Courchamp et al [3] on the Predator-preys

models.

2.1 Fish-Phytoplankton model

If we consider the Fish-Phytoplankton system without the Zooplankton,

the dynamic system is governed by the following Figure 1.

State variables are: B, the phytoplankton density and P , the fish density. Let

Figure 1: Fish-Phytoplankton model

µb, the annual individual intake of phytoplankton per fish, q the catchability

coefficient fish, E the fishing effort. The carrying capacity of the introduced

fish population is
B

µb

, [4, 8] and the fishing mortality rate is qE.

Then according to the figure 1, we obtain the following system of two differ-
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ential equations singular at B = 0.
dB

dt
= rbB

(
1− B

Kb

)
− µbP, B(0) = B0 > 0

dP

dt
= rpP

(
1− µbP

B

)
− qpP, P (0) = P0 > 0

(2.1)

where

rp is the natural growth-rate of the fish population

rb is the net increase-rate of the phytoplankton quantity.

qp is the fishing mortality rate

Kb is the carrying capacity of the phytoplankton

2.2 Fish-Zooplankton model

If we consider the Fish-Zooplankton system without the phytoplancton, the

dynamic system is governed by the following Figure 2, [10].

Figure 2: Fish-Zooplankton model

State variables are: R, the zooplankton density and P , the fish density.

Let µr, the annual individual intake of the zooplankton per fish, the carrying

capacity of the introduced fish population is
R

µr

, [9].

Then according to the Figure 2, we obtain the following system of two differ-

ential equations singular at R = 0.
dR

dt
= rrR

(
1− R

Kr

)
− µrP, R(0) = R0 > 0

dP

dt
= rpP

(
1− µrP

R

)
− qpP, P (0) = P0 > 0

(2.2)

Where

rp is the natural growth-rate of the fish population
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rr is the growth-rate of the zooplankton population.

qp is the fishing mortality rate.

Kr is the carrying capacity of the zooplankton.

2.3 Zooplankton-Phytoplankton model

If we consider the Zooplankton-Phytoplankton system without the fish, the

dynamic system is governed by the following Figure 3, [10, 11].

Figure 3: Zooplankton-Phytoplankton model

State variables are: B, the phytoplankton density and R, the zooplankton

density. Let δb, the annual individual intake of phytoplankton per zooplank-

ton, the carrying capacity of the introduced zooplankton population is
B

δb

.

Then according to the Figure 3, we obtain the following system of two differ-

ential equations singular at B = 0.
dB

dt
= rbB

(
1− B

Kb

)
− δbR, B(0) = B0 > 0

dR

dt
= rrP

(
1− δbR

B

)
, R(0) = R0 > 0

(2.3)

where

rr is the natural growth-rate of the zooplankton population

rb is the net increase-rate of the phytoplankton quantity.

Kb is the carrying capacity of the phytoplankton.

2.4 Phytoplankton-Zooplankton-Fish model

If we consider the Phytoplankton-Zooplankton-Fish system, the dynamic sys-

tem is governed by the following Figure 4, [8, 9].
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Figure 4: -Phytoplankton-Zooplankton-Fish model

Let µb and µr the annual individual intake of preys phytoplankton and

zooplankton per individual fish, so that the carrying capacity of the fish is
B

µb

+
R

µr

. Let β > 0, the preference coefficient for the phytoplankton and

zooplankton and µζ the annual individual intake of prey phytoplankton per

individual zooplankton .

Then according to the Figure 4, we obtain the following system of three

differential equations singular at B = R = 0.

dB

dt
= rbB

(
1− B

Kb

)
− µζRB − βB

βB + R
µbP, B(0) = B0 > 0

dR

dt
= rrR

(
1− R

Kr

)
− R

βB + R
µrP, R(0) = R0 > 0

dP

dt
= rpP

(
1− µbµr

P

µrB + µbR

)
− qpP, P (0) = P0 > 0

(2.4)

3 Mathematical analysis

3.1 Two species model

We study a mathematical problem arising in modeling Fish-Phytoplankton

interaction in marine environment. The dynamic is presented by the following
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system: 
dB

dt
= rbB

(
1− B

Kb

)
− µbP, B(0) = B0 > 0

dP

dt
= rpP

(
1− µbP

B

)
− qpP, P (0) = P0 > 0

(3.1)

Herein B is the phytoplankton species density with growth-rate, rb, and car-

rying capacity, Kb. P is the Fish density with growth-rate rp, while, µb, is the

annual intake of phytoplankton per individual fish, [3, 8].

Hypothesis 1: All parameters in the system (3.1) are positives constants.

The mathematical analysis simplifies upon introducing a new state variable

F =
P

B
, yielding a non singular locally Lipschitz continuous system of ODEs.

Sure enough, we have
dB

dt
=

[
rb

(
1− B

Kb

)
− µbF

]
B, B(0) = B0 > 0

dF

dt
=

[
rp − rb + rb

B

Kb

− µb

(
rp − 1− qp

)
F

]
F, F (0) = F0 > 0

(3.2)

System (3.1) has a solution if and only if system (3.2) has a solution.

Proposition 3.1. System (3.2) has unique componentwise positive solution

(B, F ), defined on a maximal existence interval,
[
0, Tmax(B0, F0)

[
.

Proof: Sure enough, the system (3.2) can be written by the following form

dB

dt
= ϕ1(B, F )B,

dF

dt
= ϕ2(B, F )F.

The functions ϕ1 and ϕ2 are C∞, so according to the Cauchy-Lipschitz, system

(3.2) has an unique componentwise positive solution, (B, F ), defined on a

maximal existence interval,
[
0, Tmax

[
if B0 > 0 and F0 > 0.

Proposition 3.2. (0, 0)(unstable),
(
Kb, 0

)
(unstable) and(

0,
1

µb

rp − rb

rp − qp − 1

)
(stable) if and only if (rp − rb)(rp − qp − 1) > 0 are the

stationaries states of the System (3.2).

Therfore we have a third on with positive components(
B∗ =

rb − 1

rb

Kb, F
∗ =

1

µb

)
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if and only if

rb − 1 > 0.

Proof: A direct calculating gave the four states.

Concerning to the stability and instability, we consider the Jacobian matrix of

the system.

Sure enough, we have

J(B, F ) =


rb − 2

rbB

Kb

− µbF −µbB

rb
F

Kb

rp − rb +
rbB

Kb

− 2µb(rp − qp − 1)F


Let specter(J) the set of eigenvalues of the Jacobian matrix.

• The Jacobian matrix at (0, 0) and at (Kb, 0) show that, these states are

always unstable.

• The Jacobian matrix at

(
0,

1

µb

rp − rb

rp − qp − 1

)
if 1 > rp, is



rp

(
1− rb

)
1− rp

0

rb

(
rb − rp + qp

)
Kbµb

(
1− rp

) rb − rp + qp


So, this state is asymptotically stable if (rp − rb)(rp − qp − 1) > 0 ie

rb < 1 < rp − qp

• The Jacobian matrix at state
(
B∗ =

rb − 1

rb

Kb, F
∗ =

1

µb

)
is


1− rb −µbKb

rb − 1

rb

rb

Kbµb

1− rp + qp


Equally, the state is stable if 1 > rb
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Concerning to the global solution existence, we assume the following assump-

tion, [3, 5, 8]:

Hypothesis 2 : rp − qp > 1.

Proposition 3.3. According to the assumption 2, system (3.2) has global so-

lution (B, F ), defined on interval,
[
0, +∞

)
.

Proof: We have

dF

dt
≤
(
rp − qp + rbmax

(
B0

Kb

, 1

)
− µb(rp − qp − 1)F

)
F

for all t ∈
[
0, Tmax

]
and then, according to the hypothesis 2 and by integrating,

we obtain

0 ≤ F (t) ≤ max

(
F0,

rp − qprb + rbmax

(
B0

Kb

, 1

)
µb(rp − qp − 1)

)
, so Tmax = +∞

3.2 Three species model

We are interested of the mathematical analysis of Fish-Phytoplankton-Zooplankton

model, [3, 5, 8]. The mathematical model associate is the following differential

system singular at B = R = 0.

dB

dt
= rbB

(
1− B

Kb

)
− µζRB − βB

βB + R
µbP, B(0) = B0 > 0

dR

dt
= rrR

(
1− R

Kr

)
− R

βB + R
µrP, R(0) = R0 > 0

dP

dt
= rpP

(
1− µbµr

P

µrB + µbR

)
− qpP, P (0) = P0 > 0

(3.3)

3.2.1 Global analysis

Concerning to the analysis of the system (3.3), we rescale the state vari-

ables, [1, 2, 3].

Indeed, let take B̂ = βB, K̂b = βKb, µ̂b = βµb and assume β = 1. Then, using

H = R + B (the total ressource),
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φ =
R

B + R
(the proportion of zooplankton within the total ressource

quantity)

and

Q =
P

R + B
(the ratio fish/ressource ).

Our aim is to reduce the nonsingular system in the following form

dH

dt
= g1(H, φ, Q),

dφ

dt
= g2(H, φ, Q),

dQ

dt
= g3(H, φ, Q),

(3.4)

Under the hypothesis 0 ≤ φ ≤ 1, we obtain

dH

dt
=

dR

dt
+

dB

dt
=

rbB
(
1− B

Kb

)
− µζRB − βB

βB + R
µbP + rrR

(
1− R

Kr

)
− R

βB + R
µrP .

When we develop and we replace H, φ and Q by their values, we get that

dH

dt
=
[(

rb−µbQ
)
(1−φ)+ (rr−µrQ)φ− rb

(1− φ)2

Kb

− rr
φ2

Kr

+µζΦ(1−φ)
]
H.

Likewise, we have:

dφ

dt
= φ

(
rr −

rrφH

Kr

− µrQ + rpQ− rb − µζφH
)
(1− φ) + (1− φ)2φH

rb

Kb

and

dQ

dt
=
[
rp − rrφ− rb(1− φ) +

rb

Kb

(1− φ)2H + µζφ(1− φ)H +
rr

Kr

φ2H −

rpµbµrQ−
(
µrφ + µb(1− φ)

)(
µr(1− φ) + µbφ

)
Q

µr(1− Φ) + µbφ
− qp

]
Q.
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By seetting :



G1(φ, Q) =
(
rb − µbQ

)(
1− φ

)
+
(
rr − µrQ)φ

)
,

G2(φ) = rb

(
1− φ

)2

Kb

+ rr
φ2

Kr

+ µζφ
(
1− φ

)
,

L(φ) =
(
1− φ

)2

φ
rb

Kb

,

V1(φ) = rp − rrφ− rb

(
1− φ

)
,

V2(φ) =
rb

Kb

(
1− φ

)2

+ µζφ(1− φ) +
rrφ

2

Kr

,

V3(φ) =
rpµbµr − (µrφ + µb(1− φ))(µr(1− φ) + µbφ)

µr(1− φ) + µbφ
.

we obtain the following system regular if 0 ≤ φ ≤ 1 .



dH

dt
=
[
G1(φ,Q)−G2(φ)H

]
H = g1

(
H, φ, Q

)
,

dφ

dt
=
[
rr

(
1− φH

Kr

)
−
(
µrµb

)
Q− rbµζφH

]
φ(1− φ) + HL(φ) = g2

(
H, φ, Q

)
,

dQ

dt
=
[
V1(φ) + V2(φ)H − V3(φ)Q

]
Q = g3

(
H, φ, Q

)
,

(3.5)

Solutions of model system (3.3) exist if and only if the solutions of model

system (3.5) exist, [6, 7].

Proposition 3.4. The system (3.5) admit one maximal unique solution

(
H(t), φ(t), Q(t)

)
definite on a [0, Tmax[. More, the set

{
H ≥ 0, 0 ≤ φ ≤ 1, Q ≥ 0

}
is positively

invariant for the system (3.5).

Proof: The local existence of system (3.5) solution result from the fact

that this system is locally Lipschitz.
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According to the system (3.5), we obtain

g1

(
0, φ, Q

)
= 0, for 0 ≤ φ ≤ 1 and Q ≥ 0,

g2

(
H, φ = 0, Q

)
= 0, for H ≥ 0 and Q ≥ 0,

g2

(
H, φ = 1, Q

)
= 0, for H ≥ 0 and Q ≥ 0,

g3

(
0, φ, Q

)
= 0, for 0 ≤ φ ≤ 1 and H ≥ 0.

we conclude that
{

H ≥ 0, 0 ≤ φ ≤ 1, Q ≥ 0
}

is positively invariant for the

system (3.5).

Proposition 3.5. A state variable Q of system (3.5) explode in finite time

under hypothesis: 1 > rp > max(rr, rb) > 0, i.e that exist Tmax < +∞ such as

Q(t) −→ +∞ when t −→ +∞. The Cauchy problem admit one global unique

solution at time
(
H > 0, 0 ≤ φ ≤ 1, Q > 0

)
i.e Tmax = +∞ under hypothesis

µ2
b + 2µbµr + µ2

r

4µbµr

< rp.

Proof: We have

• V2 > 0 for 0 ≤ φ ≤ 1.

• again, we obtain V3(φ) < 0 when rp < 1

• and V3(φ) ≥ 0 when rb < rp and rr < rp.

In this case Q(t) −→ +∞ when t −→ Tmax(Tmax < +∞), i.e that Q explodes in

the finite time if 1 > rp > max(rr, rb) > 0. Inversely, always under hypothesis

0 ≤ φ ≤ 1, we have V2 > 0. On the other hand V3(φ) > 0 means that

rpµbµr −
(
µrφ + µb(1− φ)

)(
µr(1− φ) + µbφ

)
µr(1− φ) + µbφ

> 0

If we set or define

λ(φ) =
µbµr −

(
µrφ + µb(1− φ)

)(
µr(1− φ) + µbφ

)
µrµb

,

we obtain V3(φ) > 0 if rp > λ(φ).

Under condition 0 ≤ φ ≤ 1, the function λ(φ) admit a minimum in
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φ =
1

2
and λ

(
1

2

)
=

µ2
b + 2µbµr + µ2

r

4µbµr

.

so V3(φ) > 0 if

rp > λ

(
1

2

)
=

µ2
b + 2µbµr + µ2

r

4µbµr

.

If we proceed in the same way, we can said that Q(t) can not tighten to infinity

when

t −→ Tmax(Tmax < +∞) with the condition
µ2

b + 2µbµr + µ2
r

4µbµr

< rp.

When, 0 ≤ φ ≤ 1 we necessary obtain V2 ≥ 0. It result of this last result and

expression of V2 that state variable H is narrow.

3.2.2 Equilibrium stability analysis

3.2.2.1 Stationaries states

Proposition 3.6. The stationaries states of system (3.3) are:

(E1) :
(
B = Kb, R = 0, P = 0

)
,

(E2) :
(
B = 0, R = Kr, P = 0

)
,

(E3) :
(
B =

rb − µζKr

rb

Kb, R = Kr, P = 0
)

eligible if only if rb > µζKr,

(E4) :
(
B = 0, R =

rprr − rp + qp

rprr

Kr, P =
rrrp − rp + qp

rrr2
pµr

Kr(rp − qp)
)

eligi-

ble if only if rr >
rp − qp

rp

,

(E5) :
(
B =

rprb − rp + qp

rprb

Kb, R = 0, P =
rbrp − rp + qp

rbr2
pµb

Kb(rp − qp)
)

feasi-

ble if only if rb >
rp − qp

rp

.

Proof: We search the equilibrium states with positive or zero components.
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For this, we must solve the following system:

rbB
(
1− B

Kb

)
− µζRB − βB

βB + R
µbP = 0,

rrR
(
1− R

Kr

)
− R

βB + R
µrP = 0,

rpP
(
1− µbµr

P

µrB + µbR

)
− qpP = 0,

(3.6)

So we get:

• if P = R = 0 and B 6= 0, we obtain B = Kb

• if P = B = 0 and R 6= 0, we have R = Kr

Now, we consider the states with one nil component. So we have if B = 0,

then R and P verify the following equation:

rrR
(
1− R

Kr

)
− µrP = 0 and rpP

(
1− µrP

R

)
− qpP = 0.

As we search P 6= 0, pulling the value of R in the second equation of system

(3.6) we find R =
rpµrP

rp − qp

and we obtain

R =
rprr − rp + qp

rprr

µrKr and P =
rrrp − rp + qp

rrr2
p

Kr(rp − qp)

which exist if and only if rr >
rp − qp

rp

.

In the similar way, supposing that R = 0 we get

B =
rprb − rp + qp

rprb

µbKb and P =
rbrp − rp + qp

rbr2
p

Kb(rp − qp)

which exist if and only if rb >
rp − qp

rp

.

Finally, for C = 0 the states variable R and B must verify the following

equation

rbB

(
1− B

Kb

)
− µζBR = 0 and rrR

(
1− R

KR

)
= 0.
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Since we are looking for variables B and R strictly positive, we have rb −
rb

B

Kb

− µζR = 0 and R = Kr. As a result there will B =
rb − µζKr

rb

Kb which

exist if and only if rb > µζKr.

Proposition 3.7. The states E1 ,E2 and E3 are always stable according to the

Lyapunov theorem. Equally, according to the Lyapunov theorem, state E4 is

localy asymptoticaly stable if and only if

rb −
µζKr

rprr

(
rprr − rp + qp

)
− βµb

rpµr

(rp − qp) < 0 ,rp + rr + qp(
2

rp

− 1) > 2 and

rp(rr − 1) + qp > 0

and state E5 localy asymptoticaly stable if and only if

rr −
−µr

βµbrp(rp − qp)
< 0, rp + rb + qp(

2

rp

− 1) > 2 et rp(rb − 1) + qp > 0

Proof: Let J(B, R, P ), the Jacobian matrix of the system (3.3), we have:

J(B,R, P ) =

rb − 2
rb

Kb
B − µζR−

βµbRP

(βB + R)2
−µζB − βµbBP

(βB + R)2
− βµbB

βB + R

βµrRP

(βB + R)2
rr − 2

rr

Kr
R− βµrBP

(βB + R)2
− µrR

βB + R

rpµ
2
rµbP

2

(µrB + µbR)2
rpµ

2
bµrP

2

(µrB + µbR)2
rp −

2rpµrµbP

µrB + µbR
− qp


Let specter(J) set of the eigenvalues of the Jacobian matrix:

• we have specter(J(E1)) = {−rb, rr, rp − qp}, so, the state (E1) is unstable.

• we obtain also specter(J(E2)) = {−rr, rb − µζKr, rp − qp}, so this state is
unstable.

• concerning to the state (E3), we have specter(J(E3)) = {−rr, rb−2µζKr, rp−
qp}, this state is also unstable.

• for to the state (E4), the eigenvalues of J(E4) are:

γ1 = rb −
µζKr

rprr

(
rprr − rp + qp

)
− βµb

rpµr

(
rp − qp

)
, γ2 and γ3 satisfactory

γ2 + γ3 = −
(rprr − 2rp + 2qp + r2

p − rpqp

rp

)
and

γ2γ3 =
−rprr + rp − qp

rp

(
qp − rp

)
.
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So state (E4) is localy asymptoticaly stable if and only if γ1 < 0 ,γ2 + γ3 < 0

and γ2γ3 > 0 , i.e rb −
µζKr

rprr
(rprr − rp + qp) −

βµb

rpµr
(rp − qp) < 0, rp + rr +

qp(
2
rp
− 1) > 2 and rp(rr − 1) + qp > 0

• in the end, the eigenvalues of state J(E5) are:

γ1 = rr −
−µr

βµbrp(rp − qp)
, γ2 and γ3 satisfactory

γ2 + γ3 =
−rprb + 2rp − 2qp − r2

p + rpqp

rp
and γ2γ3 =

−rprb + rp − qp

rp
(qp− rp).

So state (E5) is localy asymptotically stable if and only if γ1 < 0, γ2 + γ3 < 0
and γ2γ3 > 0, i.e

rr −
−µr

βµbrp(rp − qp)
< 0, rp + rb + qp(

2
rp
− 1) > 2 and rp(rb − 1) + qp > 0.

3.2.2.2 Component strictly equilibrium

Consider the functions π at φ define by:

π(φ) = a2φ
2 + a1φ + a0, (3.7)

with

a0 =
rbKr

βKb

( µr

βµb
− 1
)(rp − qp

)
rp

a1 =

(
rp − qp

)
rp

[
rb

(
1− rbKr

βKb

)
−Kr

( rb

βKb

)(
1− µr

rrβµb

)
− 1
]

(3.8)

a2 =
µr

βµb

[
Kr

rr

( rb

βKb
− µζ

)
+

βµb

µr

]
(rp − qp)

rp

Consider the affine functions h and l define at [0, 1] to R by:

h(φ) = rr −
(rp − qp)

rp

(
φ + (1− φ)

µr

βµb

)
l(φ) = rb −

(rp − qp)
rp

(βµb

µr
+ (1− φ)

)
The following proposition gives us the necessary and sufficient conditions for the
existence of strictly positive equilibrium, [6, 8, 9]:

Proposition 3.8. There is a strictly positive component to equilibrium (B > 0, R >

0, P > 0) of system (3.3) exist if and only if there exists a solution φ ∈]0, 1[ of
π(φ) = 0 equation as one of the following assertions holds:



W. Ouedraogo, B. Sangare and S. Traore 17

(i) h(φ) > 0 ,
(ii) l(φ) > 0.

Proof: With the previous results we have the following equations:

rb − rb
B

Kb
− µζR−

β

βB + R
µbP = 0, (3.9)

rr − rr
R

Kr
− 1

βB + R
µrP = 0, (3.10)

rpβµbµrP = (rp − qp)β(µrB + µbR), (3.11)

By performing the scale change of variable:

µb = βµb, B = βB and Kb = βKb,

we obtain the following equation:

rb − rb
B

Kb
− µζR−

1
βB + R

µbP = 0, (3.12)

rr − rr
R

Kr
− 1

B + R
µrP = 0, (3.13)

rpµbµrP = (rp − qp)(µrB + µbR), (3.14)

Then, we consider the states variable

• H = R + B (the total resource),

• φ =
R

B + R
(proportion of zooplankton within the total resource quantity),

• Q =
P

R + B
(ratio fish/ total resource).

When, we use them expression
B = H(1− φ), R = φH, P = QH, the above equations become:

rb −H
( rb

Kb
(1− φ) + µζφ

)
− µbQ = 0, (3.15)

rr −
rr

Kr
φH − µrQ = 0, (3.16)

rpµbµrQ =
(
rp − qp

)(
µr

(
1− φ

)
+ µbφ

)
, (3.17)

Consequently, through these equations we have the expressions of H and Q

Q =

(
rp − qp

)
rpµbµr

[
µr

(
1− φ

)
+ µbφ

]
and H =

Kr

rrφ

[
rr −

(rp − qp)
rp

(µr

µb
(1− φ) + φ

)]
(3.18)
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After a substitution in (3.17), we obtain:

rb−
Kr

rrφ

[
rr−

(
rp − qp

)
rp

(
µr

µb

(
1−φ

)
+φ)

]( rb

Kb

(
1−φ

)
+µζφ))−(rp − qp)

rpµr

[
µr

(
1−φ

)
+µbφ

)]
= 0

(3.19)
we get the following equation by multiplying (3.19) by φ

a2φ
2 + a1φ + a0 = 0 (3.20)

with

a0 =
rbKr

βKb

( µr

βµb
− 1
)(rp − qp

)
rp

a1 =
(rp − qp)

rp

[
rb

(
1− rbKr

βKb

)
−Kr(

rb

βKb
)
(
1− µr

rrβµb

)
− 1
]

(3.21)

a2 =
µr

βµb

(Kr

rr

( rb

βKb
− µζ

)
+

βµb

µr

)(rp − qp

)
rp

.

We search the triplets (H,φ, Q) verifying 0 < φ < 1, H > 0 and Q > 0.
Consequently, it’s about to find the root 0 < φ < 1 of function polynomial π.
Existence of this root 0 < φ < 1 give us the existence of equilibrium state at com-
ponent strictly positive of the system (3.5), [9, 10, 11]. Indeed, suppose that φ has
a root 0 < φ < 1. According to (3.18) we have Q > 0 and H which write

H =
Kr

rrφ
h(φ) with h(φ) = rr −

(
rp − qp

)
rp

(µr

µb
(1− φ) + φ

)
. (3.22)

In the same manner using the equations (3.15) and (3.16) we can write H in the
following style.

H =
1( rb

Kb
(1− φ) + µζφ

) l(φ) with l(φ) = rb −
((rp − qp)

rp

)(µb

µr
φ + (1− φ)

)
(3.23)

As we have 0 < φ < 1, according to (3.22) H > 0 if and only if h(φ) > 0. Likewise
H > 0 in (3.21) if and only if h(φ) > 0.

Remark 1. In practice, it is sufficient to check whether at least one of the following
conditions is satisfied:
(i) h(0) ≥ 0 and h(1) > 0
(ii) h(0) > 0 and h(1) ≥ 0
(iii) h(0) > 0 and h(1) < 0
(iv) h(0) < 0 and h(1) > 0
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Proposition 3.9. The polynomial (3.7) has a single positive root strictly if and only
if one of the following is true:
(a) −signe(a0) = signe(a1) = signe(a2)
(b) a2

1 = 4a0a2 and signe(a0) = signe(a2) = −signe(a1)
(c) signe(a0) = −signe(a1) and a2 = 0
(d) signe(a0) = −signe(a1) and a2 = 0
(e) signe(a1) = −signe(a2) and a0 = 0
In fact, the polynomial (3.7) admit two strictly positive root if and only if a2

1−4a0a2 >

0 and signe(a0) = signe(a2) = −signe(a1)

Proof: First, we consider the case a0 6= 0, a2 6= 0 and a1 6= 0. Let 4 =
a2

1 − 4a0a2.

(i) When 4 > 0 we have a following case:
a) Two roots χ1 > 0 and χ2 > 0 if and only if

a0

a2
> 0 and

a1

a2
< 0 i.e

−signe(a0) = signe(a1) = signe(a2);
b) One strictly positive root χ0 > 0 if and only if

a0

a2
< 0 and

a1

a2
> 0 i.e

−signe(a0) = signe(a1) = signe(a2);

(ii) If 4 = 0, we have an unique root χ =
−a1

2a2
> 0 if and only if −signe(a0) =

signe(a1) = signe(a2);

We look at now of the particular case:

• first, if a0 6= 0, a2 = 0 and a1 6= 0, then we have only root χ =
−a0

a1
> 0 if and

only if −signe(a0) = signe(a1);

• then, if a0 6= 0, a2 6= 0 and a1 = 0, so we have one root χ =
√
−a0
a2

> 0 if and
only if signe(a0) = −signe(a2);

• at last, if a0 = 0, a2 6= 0 and a1 6= 0, so we have one root χ =
−a1

a2
> 0 if and

only if signe(a1) = −signe(a2).

4 Numerical experiments and results

In this section, we present a synthesis of results observing during our numerical
simulations of these different mathematical models.
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4.1 Numerical simulations of two species system

For ours simulations, we use the following parameters, [8, 9, 10, 11].

Parameters B0 R0 µr µb P0 q

Value used 100000 10000 180 180 300 1

4.1.1 Fish-Phytoplankton(B-P)

In this simulation, we take rb = 1, 52, rp = 0, 53 and E = 0. We consider that
the system evolve in no exploited area i.e there is no fishing in this area.

The Figure 5 show the existence of the orbits of solution. As overall result, we
have the existence and dynamic stability in long time for the system fish-phytoplankton(B-
P). So we can say that if the area is not exploited the dynamic of Fish-Phytoplankton
system remains stable.

Figure 5: Fish-Phytoplankton(B-P) model with E = 0

Then, we consider that the system Fish-Phytoplankton evolve in exploited area
i.e that fishing is practiced in this area. In this simulation, we take rb = 1, 45,
rp = 0, 5 and E = 0, 5.

The Figure 6 show the existence of the orbits of solution. As overall result, we
have the existence and dynamic stability in long time for the system fish-phytoplankton
(B-P). We observe a slight perturbation of this dynamic. We can say that if area
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Figure 6: Fish-Phytoplankton(B-P) model with E = 0, 5

is exploited with a fishing effort E = 0, 5 , the dynamic of Fish-Phytoplankton is
stable. In this case, we speak about area normally exploited.

We continue the computational simulation and we consider that the system Fish-
Phytoplankton evolve in exploited area i.e that fishing is practiced in this area. In
this simulation, we take rb = 1, 42, rp = 0, 58 and E = 2, 3.
The Figure 7 show the existence of the orbits of solution. As a consequence global
we have extinction with large time of this dynamic. We observe a real disturbance
of this dynamic. We can say that if , area is exploited with a fishing effort E = 2, 3,
the dynamic of Fish-Phytoplankton is unstable. In this case, we speak about the
severely exploitation of the area.

Figure 7: Fish-Phytoplankton(B-P) model with E = 2, 3
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4.1.2 Fish-Zoooplankton(R-P)

We take rr = 1, 52, rp = 0, 53 and E = 0 for the simulation. We consider that
the system evolve in no exploited area i.e that is no fishing in this area.

The Figure 8 show the existence of the orbits of solution. As a consequence
global existence with large time stabilization of this dynamic is observed. We can
say that if, area is not exploited, the dynamic of Fish-Zoooplankton(R-P) is stable.

Figure 8: Fish-Zooplankton(P-R) model with E = 0

Then, we consider that the system Fish-Zooplankton evolve in exploited area i.e
that fishing is practiced in this area. In this simulation, we take rr = 1, 45, rp = 0, 5
and E = 0, 5.

The Figure 9 show the existence of the orbits of solution. As a consequence global
existence with large time stabilization of this dynamic is observed. We observe also
a slight perturbation of this dynamic. We can say that if, area is exploited with a
fishing effort E = 0, 5 , the dynamic of Fish-Phytoplankton is stable. In this case,
we say that the area is normally exploited.

We continue the computational simulation and we consider that the system
Fish-Zooplankton evolve in exploited area. In this simulation, we take rb = 1, 42,
rp = 0, 58 and E = 2, 3.

The Figure 10 show the existence of the orbits of solution. We observe a real
disturbance of this dynamic. We can say that if, area is exploited with a fishing
effort E = 2, 3, the dynamic of Fish-Phytoplankton is unstable. In this case, we say
about severely exploited of area.
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Figure 9: Fish-Zooplankton(P-R) model with E = 0, 5

Figure 10: Fish-Zooplankton(P-R) model with E = 2, 3

4.1.3 Zooplankton-Phytoplankton(B-R)

The numerical simulation, show that for rb = 1, 53, rr = 0, 53 , we have the
existence of orbits of solution. As a consequence global we have the existence with
large time stabilization of this dynamic.The Figure 11 show this observation.

4.2 Numerical simulations of three species: Phytoplankton-

Zooplankton-Fish

In this subsection, for our simulations, the set of the demographic parameters
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Figure 11: Zoooplankton-Phytoplankton(B-R)

used are given by the following list, [3, 6, 8, 9].

Parameters B0 R0 µr µb P0 q Kr Kb µζ β

Value used 50000 2000 180 180 100 1 20000 100000 0,02 1,5

4.2.1 Numerical simulations on the Phytoplankton-Zooplankton-

Fish system evolve in no exploited area

First, we look at the Phytoplankton-Zooplankton-Fish system which evolve in
no exploited area and so we take the fishing effort E = 0.

The Figure 12 explain the stability of the different populations. As a consequence
global we have the existence with large time stabilization of this dynamic.

4.2.2 Numerical simulations of the Phytoplankton-Zooplankton-

Fish system evolve in exploited area

Second, we continue ours numerical simulations supposing that the Phytoplankton-
Zooplankton-Fish system evolve in exploited area with a fishing effort E = 0, 5.

The Figure 13 explain the stability of the Zooplankton and phytoplankton, and a
imbalance of the fish populations. As a global consequence we observe the existence
with large time of the fish population and his a imbalance. In this case, we speak
about to the normally exploited of area. So, if a fish area is exploited with a fishing
effort E = 0, 5, there is not risk for the fish population.
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Figure 12: Evolution of three species: Phytoplankton-Zooplankton-Fish sys-

tem evolve in no exploited area

Figure 13: Evolution of the Phytoplankton-Zooplankton-Fish system evolve in

normally exploited area

4.2.3 Numerical simulations on the Phytoplankton-Zooplankton-

Fish system evolve in severly exploited area

Finally, we consider that the system Phytoplankton-Zooplankton-Fish evolve in
exploited area with a fishing effort E = 2, 3.

The Figure 14 show the stability of the Zooplankton and phytoplankton species,
and endangered fish species. So we have the extinction with large time of the fish
species. In this case, we speak about the severely exploitation of the area. We can
say that, if a fish area is exploited with a fishing effort E = 2, 3, there is a risk for
the fish population and so it’s necessary to develop political management for this
area, otherwise fish species risk to disappear.

5 Conclusion

In this paper, we are interested in the study of fish population dynamic under a
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Figure 14: Evolution of the Phytoplankton-Zooplankton-Fish system evolve in

severely exploited area

diet of a plankton (phytoplakton and zooplakton). A mathematic model associate
of this dynamic based ODE singular system, the denominator of one the reaction
terms being concelable,[9]. The mathematical analysis permits to isolate extinction
condition based on a growth-rate, in finished or persisting time. We use numerical
experiments to point out the main effects of the fishing on the dynamic. It is
important to note that, for the fish dynamic, we could obtain stable coexistence.
Equally, computational simulations, show that if the fishing effort is E = 0, 5 area
is exploited normally, while if E > 0, 5 area is overexploited. In the future, we shall
extend this work by taking into account two classes of the fish population: Larva
and adult. This approach should give additional numerical results and should help
us to determine which will be the more efficient strategy to protect the fish species.
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