Perturbation Least-Squares Chebyshev method for solving fractional order integro-differential equations

Taiwo, O. Adebayo ${ }^{1}$ and Fesojaye, M. Olalekan ${ }^{2}$

Abstract

A numerical scheme based on the perturbation Least-Squares Chebyshev procedure for solving fractional order integro - differential equations is presented in this paper. An approximate solution taken together with the Least - Squares method are utilized to reduce the fractional integro-differential equations to system of algebraic equations, which are solved for the unknown constants associated with the approximate solution. Three numerical examples are considered to demonstrate the accuracy and effectiveness of the method. The results obtained are in good agreement with existing results in literature to a reasonable extent and converge to the exact solutions of the chosen problems when such existed in closed form .

Keywords: Perturbation; curve fitting; fractional integro-differential and Least-squares

[^0]Article Info: Received : May 7, 2015. Revised : June 12, 2015.
Published online: October 1, 2015.

1 Introduction

Fractional Calculus entails Fractional Differential equations and Fractional Integro-Differential Equations. Fractional Integro-Differential Equations FIDEs arose in many phenomena in Applied Sciences and Engineering. It is a known fact that many occurrences found in Physics, Chemistry, Biology, Mathematics, Acoustics, Biotechnology and so on are more accurately modeled with FIDEs. Still, many of these models do not have analytic or exact solutions. So researchers have lately proposed many numerical and analytic approaches for proffering solutions for this class of problems. [1], used the Adomian Decomposition Method to solve fractional Integro-differntial equations. Homotopy Perturbation and Homotopy Analysis methods were applied to solve initial value problems of fractional order by [2]. [3] employed Variational Iteration Method and Homotopy perturbation Method for finding the numerical solutions of fourth-order fractional integro- differential equations. B-spline Wavelets was applied to solve FIDEs by [4]. [5] gave an application of Chebyshev wavelets Method for the solutions of class of nonlinear fractional integro-differential equations in large interval. FIDEs was also solved with the Laplace Decomposition Method by [6]. [7] applied Least squares method and Shifted Chebyshev Polynomial for the numerical solutions of Fractional Integro-Differential Equations.
In this paper, we are presenting a perturbation Least squares Chebyshev method for the solution of Fractional Integro- differential equations of the type:

$$
\begin{equation*}
D^{\alpha} u(t)=f(t)+\int_{0}^{1} k(t, s) u(s) d s, \quad 0 \leq t \leq 1 \tag{1}
\end{equation*}
$$

with initial condition $y(0)=y_{0}$
where $k(t, s), f(t)$ are given smooth functions and $\mathrm{u}(\mathrm{t})$ is the unknown function to be determined.

2 Definitions of relevant terms of calculus of fractional order

In this section, we give brief definitions and properties of fractional deriva-
tives relevant to the presentation in the next sections.
Definition 2.1. A real function $f(t), t \in N$ is said to be in space C_{μ}, μ $\in R$ if there exist a real number $\rho>\mu$, such that

$$
\begin{equation*}
f(t)=t^{\rho} f_{1}(x) \tag{2}
\end{equation*}
$$

where $f_{1}(t)=c(0, \infty)$. If $\beta \leq \mu$, then $c_{\mu} \in c_{\beta}$.
Definition 2.2. The Riemann-Liouville integral operator of order $\alpha>0$ of a function, $f \in c_{u}, u \geq-1$ is defined as [8]:

$$
\begin{equation*}
J^{\alpha} f(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\tau)^{\alpha-1} f(\tau) d \tau, \alpha>0, t>0 \tag{3}
\end{equation*}
$$

Listed here are some of the properties of Riemann-Liouville fraction integration. For $f \in c_{u}, u \geq-1, a, b \geq 0, c>-1$:

$$
\begin{gather*}
J^{a} J^{b} f(t)=J^{a+b} f(t) \tag{4}\\
J^{a} J^{b} f(t)=J^{b} J^{a} f(t) \tag{5}\\
J^{a} t^{c}=\frac{\Gamma(c+1)}{\Gamma(a+c+1)} t^{a+c} \tag{6}
\end{gather*}
$$

Definition 2.3. The fractional derivative of $f(t)$ in the Caputo sense is defined as [9].

$$
\begin{equation*}
D_{*}^{\alpha} f(t)=\frac{1}{\Gamma(m-\alpha)} \int_{0}^{t}(t-\tau)^{m-\alpha-1} f^{(m)}(\tau) d \tau \tag{7}
\end{equation*}
$$

for $m-1<\alpha \leq m, m \in N, t>0$; where $\alpha \geq 0$ is the order of the derivative. Stated here, are basic properties of Caputo derivatives; if k, k_{1}, k_{2} are constants, then;

$$
\begin{gather*}
D_{*}^{\alpha} f(k)=0 \tag{8}\\
D_{*}^{\alpha} f\left(t^{n}\right)=0, i f, n \in N_{0}, n<\lceil\alpha\rfloor \tag{9}\\
D_{*}^{\alpha} f\left(t^{n}\right)=\frac{\Gamma(n+1)}{\Gamma(n+1-\alpha)} i f, n \in N_{0}, n \geq\lceil\alpha\rfloor \tag{10}
\end{gather*}
$$

$\lceil\alpha\rfloor$ is a function called the smallest integer greater than or equal to α and α an element of N_{0} is the integer order derivative. $N_{0}=(0,1,2, \cdots)$

$$
\begin{equation*}
D_{*}^{\alpha} J^{\alpha} f(t)=f(t) \tag{11}
\end{equation*}
$$

$$
\begin{gather*}
J^{\alpha} D_{*}^{\alpha} f(t)=f(t)-\sum_{k=0}^{m-1} f^{(k)}\left(0^{+}\right) \frac{t^{k}}{k!}, t>0 \tag{12}\\
D_{*}^{\alpha}\left(k_{1} f(t)+k_{2} f(t)\right)=k_{1} D_{*}^{\alpha} f(t)+k_{2} D_{*}^{\alpha} f(t) \tag{13}
\end{gather*}
$$

3 Basic properties of Chebyshev Polynomials

The Chebyshev polynomials of the first kind and of degree k are defined on the interval $[-1,1][10]$ as;

$$
\begin{gather*}
T_{k}(t)=\cos ^{-1}(k \cos (t)) \tag{14}\\
T_{0}(t)=1, \quad T_{1}(t)=t, \quad T_{2}(t)=2 t^{2}-1 \tag{15}
\end{gather*}
$$

and the recurrence relation is given as

$$
\begin{equation*}
T_{k+1}(t)=2 t T_{k}(t)-T_{k-1}(t), \quad k=2,3 \cdots \tag{16}
\end{equation*}
$$

Snyder(1966) also stated shifted Chebyshev polynomials of degree n on the closed interval [0,1] as;

$$
\begin{equation*}
T_{n}^{*}(t)=T_{n}(2 t-1) \tag{17}
\end{equation*}
$$

The recurrence formula on the closed form interval $[0,1]$ is ;

$$
\begin{equation*}
T_{n+1}^{*}(t)=2(2 t-1) T_{n}^{*}(t)-T_{n-1}^{*}(t) ; \quad n \geq 1 \tag{18}
\end{equation*}
$$

Also, few terms are listed thus:

$$
\begin{equation*}
T_{0}^{*}(t)=1, T_{1}^{*}(t)=2 t-1, T_{2}^{*}(t)=8 t^{2}-8 t+1 \tag{19}
\end{equation*}
$$

3.1 Perturbation Least - Squares Chebyshev Polynomials Method

The Least - Squares curve fitting is a procedure for fitting a unique curve through giving set of data points. The method of curve fitting is discussed in detail by [11]. The Least Squares - Chebyshev Polynomials method as

Taiwo, O. Adebayo and Fesojaye, M. Olalekan
applied to fractional integro differential equations is hereby presented in this subsection. In this approach, we employ an approximate solution of the form:

$$
\begin{equation*}
u_{k}(t)=\sum_{k=0}^{m} c_{k} T_{k}^{*}(t)+\sum_{k=0}^{n} \tau_{k} T_{k}^{*}(t) \tag{20}
\end{equation*}
$$

where $u_{k}(t)$ denotes the approximate solution of the given problem in equation (1), c_{k} and τ_{k} are unknown constants defined for $k=0,1,2, \ldots m$ and $k=$ $0,1,2, \ldots n$ also $T_{k}(t)$ is the shifted Chebyshev Polynomials defined in equation (14) with the recurrence relation given in equation (18). Now, we substituted equation (20) into (1) to get;

$$
\begin{align*}
& D^{\alpha}\left(\sum_{k=0}^{m} c_{k} T_{k}^{*}(t)+\sum_{k=0}^{n} \tau_{k} T_{k}^{*}(t)\right)=f(t) \tag{21}\\
& +\int_{0}^{1} k(t, s)\left[\sum_{k=0}^{m} c_{k} T_{k}^{*}(t)+\sum_{k=0}^{n} \tau_{k} T_{k}^{*}(t)\right] d t
\end{align*}
$$

We computed the error in equation (21) above and is denoted by $E\left(t, c_{0}, c_{1}\right.$, \cdots, c_{k}) and given as:

$$
\begin{gather*}
E\left(t, c_{0}, c_{1}, \cdots, c_{k}\right)=D^{\alpha}\left(\sum_{k=0}^{m} c_{k} T_{k}^{*}(t)+\sum_{k=0}^{n} \tau_{k} T_{k}^{*}(t)\right)-f(t) \\
-k(t, s)\left[\sum_{k=0}^{m} c_{k} T_{k}^{*}(t)+\sum_{k=0}^{n} \tau_{k} T_{k}^{*}(t)\right] d t \tag{22}
\end{gather*}
$$

Simplifying equation (22) gives;

$$
\begin{align*}
E\left(t, c_{0}, c_{1}, \cdots, c_{k}\right)= & \sum_{k=0}^{m} c_{k} D^{\alpha}\left(T_{k}^{*}(t)\right)+\sum_{k=0}^{n} D^{\alpha} \tau_{k} T_{k}^{*}(t)-f(t) \\
& -\int_{0}^{1} k(t, s)\left[\sum_{k=0}^{m} c_{k} T_{k}^{*}(t)+\sum_{k=0}^{n} \tau_{k} T_{k}^{*}(t)\right] d t \tag{23}
\end{align*}
$$

Let $w(s)$ be the positive weight function defined in $(0,1)$ and because it is defined in this interval, $w(s)=1$. Consequently, we have:

$$
\begin{equation*}
S\left(c_{0}, c_{1}, \cdots, c_{k}\right)=\int_{0}^{1} E\left[\left(s, c_{0}, c_{1}, \cdots, c_{k}\right)\right]^{2} w(s) d s \tag{24}
\end{equation*}
$$

$$
\begin{align*}
S\left(c_{0}, c_{1}, \cdots, c_{k}\right)= & \int_{0}^{1}\left\{\sum_{k=0}^{m} c_{k} D^{\alpha} T_{k}^{*}(t)+\sum_{k=0}^{n} D^{\alpha} \tau_{k} T_{k}^{*}(t)-f(t)\right. \\
& \left.-\int_{0}^{1} k(t, s)\left[\sum_{k=0}^{m} c_{k} T_{k}^{*}(t)+\sum_{k=0}^{n} \tau_{k} T_{k}^{*}(t)\right] d t\right\}^{2} d s \tag{25}
\end{align*}
$$

The values of $c_{0}, c_{1}, \cdots, c_{k}$ give the coefficients of the approximate solution of equation (1). To get these values using least squares method, we need to find the minimum value of $S\left(c_{0}, c_{1}, \cdots, c_{k}\right)$. This is done by finding partial derivatives of $S\left(c_{0}, c_{1}, \cdots, c_{k}\right)$ and equating the results to zero. Consequently the results in $(m+1)$ system of equations are expressed in matrix form as:

$$
\left(\begin{array}{ccclcllll}
A_{11} & A_{12} & A_{13} & \cdots & A_{1 m} & \tau_{11} & \tau_{12} & \cdots & \tau_{1 m} \\
A_{21} & A_{22} & A_{23} & \cdots & A_{2 m} & \tau_{21} & \tau_{22} & \cdots & \tau_{2 m} \\
\vdots & \vdots & \vdots & & & & & & \\
\vdots & \vdots & \vdots & & & & & & \\
\vdots & \vdots & \vdots & & & & & & \\
\vdots & \vdots & \vdots & & & & & & \\
\vdots & \vdots & \vdots & & & & & & \\
A_{m 1} & A_{m 2} & A_{m 3} & \cdots & A_{m n} & \tau_{m 1} & \tau_{m 2} & \cdots & \tau_{m n}
\end{array}\right)\left(\begin{array}{c}
c_{0} \\
c_{1} \\
\vdots \\
c_{m} \\
\tau_{1} \\
\tau_{2} \\
\vdots \\
\tau_{n}
\end{array}\right)=\left(\begin{array}{c}
B_{1} \\
B_{2} \\
\vdots \\
B_{m} \\
\vdots \\
\vdots \\
\vdots \\
B_{m+1}
\end{array}\right)
$$

The matrix is then solved with the Gaussian elimination method to get the unknown constants.

4 Numerical Experiments

The method discussed above is hereby demonstrated with the following numerical examples. The examples are Fractional integro-differential equations of fractional order.
Example 1. Consider the fractional order Integro- Differential equation.

$$
\begin{equation*}
D^{\frac{1}{2}} u(t)=\frac{\left(\frac{8}{3} t^{\frac{3}{2}}-2 t^{\frac{1}{2}}\right)}{\sqrt{\pi}}+\frac{t}{12}+\int_{0}^{1} t s u(s) d s, 0 \leq t, s \leq 1 \tag{26}
\end{equation*}
$$

subject to $u(0)=0$. This problem has an exact solution of $t^{2}-t$ [7]. We take $m=5, n=1$ and use the Perturbation Least-Squares Chebyshev Method
in equation (20). Also, we make use of six terms of the shifted Chebyshev Polynomials for $k=5$.

$$
\begin{gather*}
u_{5}(t)=\sum_{k=0}^{5} c_{k} T_{k}^{*}(t)+\sum_{k=0}^{1} \tau_{k} T_{k}^{*}(t) \tag{27}\\
u_{5}(t)=c_{0} T_{0}^{*}(t)+c_{1} T_{1}^{*}(t)+c_{2} T_{2}^{*}(t)+c_{3} T_{3}^{*}(t)+c_{4} T_{4}^{*}(t) \\
+c_{5} T_{5}^{*}(t)+\tau_{0} T_{0}^{*}+\tau_{1} T_{1}^{*}(t) \tag{28}
\end{gather*}
$$

Substituting (28) into (26) and simplifying further we got the following equations:

$$
\begin{array}{r}
1.166666667 a_{0}+0.4951966673 a_{1}-0.6241542824 a_{2} \\
+0.5583454737 a_{3}-0.4160499541 a_{4}+0.4322016693 a_{5} \\
+0.6063077784 \tau_{1}=-0.2238526193 \\
0.8249855834 a_{1}+0.4951966673 a_{0}+1.159046793 a_{2} \\
-.8272909647 a_{3}+.8444844662 a_{4}-.7634975441 a_{5} \\
+0.9407015114 \tau_{1}=0.08298126588 \\
6.476952936 a_{2}-.6241542824 a_{0}+1.159046793 a_{1} \\
-0.2395141584 a_{3}+0.4786277972 a_{4}-0.5156700155 a_{5} \\
+1.286917482 \tau_{1}=0.8876384042 \\
9.994458600 a_{3}+0.9061289423 a_{5}-0.8729937326 \tau_{1} \\
+.5583454737 a_{0}-0.8272909647 a_{1}-0.2395141584 a_{2} \\
-0.8030659854 a_{4}=-0.09973243609 \\
13.63643757 a_{4}-1.195029765 a_{5}+0.8967522289 \tau_{1} \\
-0.4160499541 a_{0}+0.8444844662 a_{1}+.4786277972 a_{2} \\
-.8030659854 a_{3}=0.1118348224 \\
17.05283883 a_{5}+.9061289423 a_{3}-1.195029765 a_{4} \\
-0.8064432488 \tau_{1}+0.4322016693 a_{0}-0.7634975441 a_{1} \\
-0.5156700155 a_{2}-=0.1184832081
\end{array}
$$

These equations were solved for unknowns to get following values;

$$
\begin{align*}
& a_{0}=-0.1247251552, a_{1}=0.004448370365, a_{2}=0.1250465289 \\
& a_{3}=-0.4787098650 \times 10^{-5}, a_{4}=0.1163226749 \times 10^{-5} \tag{36}\\
& a_{5}=-3.182034463 \times 10^{-7}, \tau_{1}=-0.4108697853 \times 10^{-2}
\end{align*}
$$

On substitution into the approximate solution we have;

$$
\begin{array}{r}
u_{5}(t)=-0.004120728171-0.9916147915 t+1.000915409 t^{2} \\
-0.0008073610644 t^{3}+0.0005561934352 t^{4}-0.0001629201645 t^{5} \tag{37}
\end{array}
$$

Example 2. Consider the fractional order Integro- Differential equation.

$$
\begin{equation*}
D^{\frac{5}{6}} u(t)=f(t)+\int_{0}^{1} t e^{x} u(x) d x, 0 \leq t, x \leq 1 \tag{38}
\end{equation*}
$$

subject to $u(0)=0$, where

$$
f(t)=-\frac{3}{91} \frac{t^{\frac{1}{6}} \Gamma\left(\frac{5}{6}\right)\left(-91+216 t^{2}\right)}{\pi}+(5-2 e) t
$$

with the exact solution $u(t)=t-t^{3}$ (Mohammed, 2014).
Similarly, substituting (37) into(26) and simplifying further we got the following approximate solution:

$$
\begin{gather*}
u_{5}(t)=-0.00006848728738+1.000106452 t-0.000233146 t^{2} \\
-0.9994447054 t^{3}-0.0007128815566 t^{4}+0.0003168631342 t^{5} \tag{39}
\end{gather*}
$$

Example 3. Consider the fractional order Integro- Differential equation.

$$
\begin{equation*}
D^{\frac{5}{3}} u(t)=\frac{3 \sqrt{3} \Gamma\left(\frac{2}{3}\right) t^{\frac{1}{3}}}{\pi}-\frac{1}{5} t^{2}-\frac{1}{4} t+\int_{0}^{1}\left(t x+t^{2} x^{2}\right) u(x) d x, 0 \leq t, x \leq 1 \tag{40}
\end{equation*}
$$

with the exact solution $u(t)=t^{2}[7]$.
Also, substituting (39) into(26) and simplifying further we got the following approximate solution:

$$
\begin{array}{r}
u_{5}(t)=-0.000004105902790+0.000557383 t+1.000011307 t^{2} \\
+0.00005868537207 t^{3}+0.000000605187348 t^{4}+0.000002099039719 t^{5} \tag{41}
\end{array}
$$

The numerical results for these three problems are tabulated in the tables below.

Table 1: Table of Results for Example 1

t	Exact	Approx	Error
0.00	0.000000000000	-0.004120728171	$4.1207 \mathrm{e}-03$
0.10	-0.090000000000	-0.093273806580	$3.2738 \mathrm{e}-03$
0.20	-0.160000000000	-0.162412691200	$2.4127 \mathrm{e}-03$
0.30	-0.210000000000	-0.211540468200	$1.5405 \mathrm{e}-03$
0.40	-0.240000000000	-0.240659280200	$6.5928 \mathrm{e}-04$
0.50	-0.250000000000	-0.249770521100	$2.2948 \mathrm{e}-04$
0.60	-0.240000000000	-0.238875031900	$1.1250 \mathrm{e}-03$
0.70	-0.210000000000	-0.207973296600	$2.0267 \mathrm{e}-03$
0.80	-0.160000000000	-0.157065637400	$2.9344 \mathrm{e}-03$
0.90	-0.090000000000	-0.086152409740	$3.8476 \mathrm{e}-03$
1.00	0.000000000000	0.004765801506	$4.7658 \mathrm{e}-03$

Table 2: Table of Results for Example 2

t	Exact	Approx	Error
0.00	0.000000000000	-0.000068487287	$6.8487 \mathrm{e}-05$
0.10	0.099000000000	0.098940313620	$5.9686 \mathrm{e}-05$
0.20	0.192000000000	0.191946880500	$5.3120 \mathrm{e}-05$
0.30	0.273000000000	0.272952453900	$4.7546 \mathrm{e}-05$
0.40	0.336000000000	0.335957323900	$4.2676 \mathrm{e}-05$
0.50	0.375000000000	0.374961210900	$3.8789 \mathrm{e}-05$
0.60	0.384000000000	0.383963644800	$3.6355 \mathrm{e}-05$
0.70	0.357000000000	0.356964345900	$3.5654 \mathrm{e}-05$
0.80	0.288000000000	0.287963605100	$3.6395 \mathrm{e}-05$
0.90	0.171000000000	0.170962663900	$3.7336 \mathrm{e}-05$
1.00	0.000000000000	-0.000035904822	$3.5905 \mathrm{e}-05$

Table 3: Table of Results for Example 3

t	Exact	Approx	Error
0.00	0.000000000000	-0.000004105903	$4.1059 \mathrm{e}-06$
0.10	0.010000000000	0.010051804240	$5.1804 \mathrm{e}-05$
0.20	0.040000000000	0.040108294100	$1.0829 \mathrm{e}-04$
0.30	0.090000000000	0.090165721140	$1.6572 \mathrm{e}-04$
0.40	0.160000000000	0.160224449300	$2.2445 \mathrm{e}-04$
0.50	0.250000000000	0.250284851500	$2.8485 \mathrm{e}-04$
0.60	0.360000000000	0.360347312000	$3.4731 \mathrm{e}-04$
0.70	0.490000000000	0.490412229800	$4.1223 \mathrm{e}-04$
0.80	0.640000000000	0.640480019600	$4.8002 \mathrm{e}-04$
0.90	0.810000000000	0.810551115700	$5.5112 \mathrm{e}-04$
1.00	1.000000000000	1.000625973000	$6.2597 \mathrm{e}-04$

5 Conclusion

Perturbation Least - Squares Chebyshev method was successfully used to solve fractional order integro differential equations. The method used an approximate solution that reduced the FIDEs into a system of equations. The procedure provided realistic solutions which converged to exact solutions of the problems. This showed that the method agreed with the exact solutions when such exist to a reasonable decimals and hence confirmed that the method could handle the class of problems discussed effectively.

References

[1] Mittal, R. C. and Nigam, R., Solution of Fractional Integro-differential Equations by Adomian Decomposition Method, Int. Journal of Appl. Math.and Mech., 4(2), (2008), 87-94.
[2] Hashim, I., Abdulaziz, O and Momani, S., Homotopy Analysis Method for IVPs, Communication in Nonlinear Science and Numerical Simulation, 14, (2009), 674-684.
[3] Nawaz, Y., Variational Iteration Method and Homotopy Perturbation Method for Fourth-Order Fractional Integro-Differential Equations, Computers and Mathematics Applications., 61, (2011), 2330-2341.
[4] Khosrow, M., Monireh, N. S. and Azadeh, O., Numerical Solution of Fractional Itegro-differential Equation by Using Cubic B-Spline Wavelets, Proceedings of the World Congress on Engineering London U.K., 1(number of issue), (2013).
[5] Heydari, M. H., Hooshmansl, F. M., Maalek,G. and Ming, L., Chebshev Wavelets Method for Solution of Nonlinear Fractional integrodifferential Equations in a Large Interval, Advances in Mathematical Physics, 14, (2013), ID482083. 12pages.
[6] Yang, C. and Hou, J., Numerical solution of integro-differential equation of fractional order by Laplace decomposition method, WSEAS Transaction on Mathematics, 12(12), (2013), 2224-2880.
[7] Mohammed, D. Sh., Numerical Solution of Fractional Integro-differential Equations by Least Squares Method and Shifted Chebyshev Polynomial, Journal of Mathematical Problems in Engineering, (2014), ID431965, 5pages.
[8] Oldham, K. B., and Spanier, J. The Fractional Calculus, Academic Press, New York, 1974.
[9] Podlubny, I. Fractional Differential Equations, Academic Press, New York, 1999.
[10] Snyder, M. A. Chebyshev Methods in Numerical Approximation, Prentice -Hall, Inc., New Jersey, 1966.
[11] Sastry, S. S. Introductory Methods for Numerical Analysis, Asoke K. Gohsh, PHI Learning Private Limited, New Delhi, 2010.
[12] Yang, Y.,Chen, Y. and Haug, Y., Spectral-collocation method for fractional Fredholm integro-differential equation, J. Korea Math. Soc., 51(1), (2014), 203-224.

[^0]: ${ }^{1}$ Department of Mathematics, Faculty of Physical Sciences, University of Ilorin, Ilorin, Nigeria. E-mail: tomotayoadebayo@yahoo.com
 ${ }^{2}$ Department of Mathematics and Statistics, School of Applied Arts and Sciences, Federal Polytechnic, Bida, Nigeria.

