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Bounded solutions to the differential equation of 

planetary motion under general relativity 

Allan J. Kroopnick
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 Abstract 

In this brief note, the nonlinear differential equation describing planetary 

motion under general relativity is studied using polar coordinates and the 

phase space (𝑟, 𝑟′). Conditions are then given when the relativistic equation 

yield bounded solutions by looking at the equilibrium points of first integrals 

of the equation. 
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1 Introduction 

In this note, a straightforward account will be given of the well-known 

nonlinear differential equation for planetary motion under general relativity. For the 

derivation of the relativistic model see [1, pp. 270-276] while for a thorough 

discussion of the Newtonian or classical model of planetary motion see [2, pp. 471-
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496]. Planetary motion is an integral part of celestial mechanics.  For an excellent 

introduction to this subject see [3].   

 

2 Main results 

The relativistic equation is given by 

𝑢′′(𝜃) + 𝑢(𝜃) − 𝑐1𝑢(𝜃)2 = 𝑐2 (1.1) 

where = 1
𝑟⁄  , 𝑟 being the radius from the given object to a foci and 𝑐1  

 and  𝑐2 are positive constants. 

 

First, multiply (1.1) by 2𝑢′  and integrate for 0 to θ obtaining 

𝑢′(𝜃)2 + 𝑢(𝜃)2 −
2𝑐1𝑢(𝜃)3

3
= 2𝑐2𝑢(𝜃) − 2𝑐2𝑢(0) + 𝑢′(0)2 + 𝑢(0)2

− 2𝑐1𝑢(0)3/3 

(1.2) 

 

Next, using the fact that 𝑢 = 1 𝑟⁄  and  𝑢′ = −𝑟 𝑟2⁄  and then multiplying equation 

(1.2) by 𝑟4 transforms equation (1.2) into 

𝑟′(𝜃)2 + 𝑟(𝜃)2 −
2𝑐1𝑟(𝜃)

3
= 2𝑐2𝑟(𝜃)3 − 2𝑐2𝑟(𝜃)4𝑢(0) + 𝑘𝑟(𝜃)4 (1.3) 

where 𝑘 = 𝑢′(0)2 + 𝑢(0)2 − 2𝑐1𝑢(0)3/3.   

 

If 𝑘 − 2𝑐2𝑢(0) < 0, then should r → ∞ the LHS of (1.3) approaches ∞ while the 

RHS approaches -∞ which is impossible.  In other words, the solutions must remain 

bounded as t→∞ given these conditions. Should 𝑘 − 2𝑐2𝑢(0) ≥ 0, then the 

solutions may be unbounded.    

      We could study boundedness in another way by looking at the phase  

space(𝑟, 𝑟′).  We start by finding the equilibrium points of equation (1.3), i.e.,  

the points (0, 𝑟𝑖) where 𝑟𝑖 ≥ 0.  When 𝑟′(𝜃) = 0, then from (1.3) after rearranging 

terms we have 
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2𝑢(0)𝑐2𝑟4 − 𝑘𝑟4 − 2𝑐2𝑟3 + 𝑟2 − 2𝑐1𝑟/3 = 0. (1.4) 

 

Equation (1.4) now can be rewritten as 

𝑓(𝑟) = 𝑟[(2𝑢(0)𝑐2 − 𝑘)𝑟3 − 2𝑐2𝑟2 + 𝑟 − 2𝑐1/3] = 0 (1.5) 

 

In other words, equation (1.3) may be transformed into 

𝑟′(𝜃)2 + 𝑓(𝑟(𝜃)) = 0 (1.6) 

 

Next, we need to discuss the zeros of quartic polynomial (1.6) in the phase  

space(𝑟, 𝑟′).  They are r0 = 0 and the zeros of the cubic polynomial  

𝑔(𝑟) = (2𝑢(0)𝑐2 − 𝑘)𝑟3 − 2𝑐2𝑟2 + 𝑟 − 2𝑐1/3. 

As long as 2𝑐2𝑢(0) − 𝑘 > 0, we can invoke Descartes rule of signs (see  [4, p. 

211]) to conclude that 𝑔(𝑟) has at least one positive real root 𝑟1 and possibly two 

more positive real roots 𝑟2 and 𝑟3 (with the possibility that 𝑟2=𝑟3 or 𝑟1=𝑟2)  since 

there are three sign changes occurring in the cubic polynomial 𝑔(𝑟).  Moreover, 

since the signs alternate in (1.5), 𝑓(𝑟) has no negative roots.  Should there only be 

one positive real root, then the other two roots must be imaginary. Furthermore, 

equation (1.6) implies that the bounded solutions occur only when 𝑓(𝑟) ≤ 0 which 

occurs when the cubic polynomial 𝑔(𝑟) ≤ 0.  Should there be only one positive root 

𝑟1, then bounded non-zero solutions must exist over the interval (0,𝑟1). When 𝑟2 and 

𝑟3 are two additional distinct zeroes of 𝑔(𝑟) then bounded solutions also exist over 

the interval [𝑟2,𝑟3].  Since 𝑔(𝑟) is positive over the interval(𝑟1,𝑟2), no bounded 

solutions can exist there.  When 𝑟2=𝑟3we have a local minimum at the equilibrium 

point (𝑟2,0) so non-constant bounded solutions exist only on (0,𝑟1) since 𝑓(𝑟) > 0 for 

r >𝑟1.  On the other hand, should 𝑟1=𝑟2, then the non-constant bounded solutions 

exist on the entire interval (0,𝑟3). In this case, we have a local maximum for r = 𝑟1 so 

𝑓(𝑟)≤0 on the entire interval [0,𝑟3] and 𝑓(𝑟)> 0 for r > r3 which again contains no 

bounded solution by our previous remarks. 
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3 Remark  

       In the case of a double root, one can easily calculate its value since it is a root of 

both 𝑔(𝑟)  and 𝑓(𝑟)  and a critical point as well.  Consequently, we have 𝑔′(𝑟) = 0 

there. Therefore, we have 

𝑔′(𝑟) = 3(2𝑢(0)𝑐2 − 𝑘)𝑟2 − 4𝑐2𝑟 + 1 . (1.7) 

 

Solving for r yields  

𝑟 =
4𝑐2 ± ((4𝑐2)2 − 12(2𝑢(0)𝑐2 − 𝑘))

1
2⁄

12𝑢(0)𝑐2 − 6𝑘
 (1.8) 

 

The correct root can be chosen by inspection. The sign of the second  

derivative of  (1.7), i.e. 

𝑔′′(𝑟) = (12𝑢(0))𝑐2 − 6𝑘)𝑟 − 4𝑐2 (1.9) 

determines whether r is a local maximum or minimum of g(r). 

 

4 Conclusion 

 By using standard methods from differential equations the above analysis 

clearly gives a straightforward and qualitative analysis of planetary motion under 

general relativity which plays an essential role in celestial mechanics. 
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