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Abstract 

This article attempts to identify the best features the short term interest rates stochastic 

process.  

We studied nine different linear models of short term interest rates. The choice of these 

models was the aim of analyzing the relevance of certain specifications of the short term 

interest rate stochastic process, the effect of mean reversion and the sensitivity of the 

volatility to the level of interest rate. 

We studied also the relevance of the Ait-Sahalia (1996b) nonlinear interest rate model. 

To further study the accurate parametric specification of the interest rate stochastic 

process we used a nonparametric estimation of the drift and the diffusion functions.  

The yield on three months treasury bills is used as a proxy for the short term interest rates. 

The parameters of the different linear stochastic process are estimated using the 

generalized method of moments. A semi parametric approach is used to estimate the non 

linear Ait Sahalia model (1996b). The kernel regression is used as a nonparametric 

approach to estimate the interest rate process.  

The results show that the effect of mean reversion is not statistically significant and that 

volatility is highly sensitive to the level of interest rates. The results prove also that both 

the drift and the diffusion functions should be nonlinear and that the nonlinear 

specification proposed by Ait Sahalia (1996b) model is not accurate. 
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1  Introduction  

Understanding the short term interest rate stochastic behaviour is very important for a 

wide range of applications. Such as the conduct of monetary policy, the financing of 

public debt, estimating the expectations of real economic growth and inflation and 

determining prices in financial market. Several models have been developed to explain 

the stochastic process of the short term interest rate in a continuous-time framework. A 

list of these models include linear models, those by Merton (1973), Vasicek (1979), 

Brennan and Schwartz (1980a), Dothan (1978), Cox, Ingersoll and Ross (1980, 1985b), 

Rendleman and Bartter (1980), Cox and Ross (1976) and Chan, Karoly, Longstaff and 

Schwartz (1992) and the nonlinear Ait-Sahalia (1996b) model. These models make the 

assumption that the short term interest rate follows a gauss-wiener process. The process of 

the short term interest rate, r, has the following formulation: 

 

dw (r) dt  (r)  dr   

 

The drift rate, , and the instantaneous standard deviation, , are functions of r, but 

independent of time, and w is a wiener process.  

The models mentioned above differ by their specifications of the drift and the diffusion 

function of the short term interest rate process.   

One of the key points in this area is if their specification of the interest rate dynamic is 

correct or not. Is the short-rate drift function linear or nonlinear? Is the short-rate diffusion 

function constant, linear or nonlinear? 

This article aim to present answers to this questions and determine the appropriate 

features of the short term interest rate process.  The study will investigate the shape of the 

drift and of the diffusion functions using nonparametric estimation. The nonparametric 

approach avoids making parametric assumptions about both the drift and the diffusion 

functions and estimates the both from the observed data.  

 

 

2  The Data  

We estimate the interest rate models considering as proxy of the short-term interest rate, 

the US 3 month Treasury bill rate. The data are weekly and cover the period from January 

1970 to December 2011, providing 2165 observations. The observations are taken from 

the Federal Reserve website of Saint Louis.  

The time series of short-term interest rates shown in Figure 1 is suggestive of a change in 

the process during the late 1970 and early 1980. Both the level and the volatility appear 

elevated.  

The table 1 shows the means, standards deviations and part of the 11 autocorrelation of 

the weekly rates and the weekly changes in the spot rate. The unconditional average level 

of the weekly rate is 5.46%, with a standard deviation of 3.13%. Although the 

autocorrelations in interest rate level decays very slowly, those of the week-to week 

changes are generally small and are not consistently positive or negative. This offers some 

evidence that the interest rates changes are stationary. The results of a formal augmented 

Dickey-fuller nonstationarity test are also reported in Table 1. The null hypothesis of 

nonstationarity is accepted for the interest rate levels but is rejected for the interest rate 

changes at the 1% significance level.   
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Table 1: Summary statistics of the data and stationarity test 

Summary statistics 

 N Mean Standard 

deviation 
1 3 5 7 9 11 

rt 2165 5,46 3,13 0,995 0,983 0,969 0,955 0,941 0,928 

rt+1-rt 2164 -0,003 0,22 0,262 0,056 0,052 -

0,087 

-

0,027 

-

0,039 

Augmented Dickey-Fuller stationarity test 

H0  Test statistic  Critical values 

Nonstationarity 
rt -1,8725 1% -3,4343 

rt+1-rt -35,5354 10% -2,5708 

 

 

 
Figure 1: (a) The 3-month T-Bill rate; (b) absolute changes in the 3-month T-Bill rate 
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3  Research Design and Methodology 

3.1 The Parametric Approach  

3.1.1 The linear models 

We follow the Chan, Karolyi and Sanders (1992) econometric approach to compare the 

ability of nine models to capture the stochastic behaviour of the short term interest rate.  

The authors present a common framework in which different models could be nested. 

The following stochastic differential equation defines a broad class of interest rate 

processes, 

 

  dwrdtbrard ttt
                                                                                               (1) 

 

The dynamics implies that the conditional mean and variance of changes in the short term 

interest rate depends on the levels of r. The model incorporates mean reversion on the 

interest rate; i.e, the interest rate is pulled back over time to some long-run average. When 

r is high, mean reversion tends to cause it to have a negative drift; when r is low mean 

reversion tends to cause it to have a positive drift. The mean reversion phenomenon is 

included in the stochastic process by the specification of the drift,  r , where the 

speed of adjustment is given by the parameter  and the long-run average is given by the 

parameter α. The short rate is pulled to level α at rate . So we have that a  and b = 

-. 

The parameters of the stochastic process given by (1) are estimated in discrete time using 

Generalized Method of Moments Technique of Hansen (1982). This technique has a 

number of advantages which makes it one of the best methods for estimating the short-

term interest rate process. Indeed, GMM provides a unified approach to the econometric 

estimation of all different types of short-term interest rates. Moreover, to achieve the 

asymptotic convergence of the estimator, GMM does not require that the distribution of 

the interest rate changes is normal but only stationary and ergodic is to say that the 

instantaneous conditional residuals variance is proportional to the length of the sample. 

This feature is of particular importance for the estimation of the short-term interest rate 

models when each model implies a different distribution of interest rate changes. In fact, 

for the Merton (1973) and Vasicek (1977) models, changes in interest rates are normal, 

while for the model Cox Ingersoll and Ross (1985), they are proportional to a noncentral 


2. 

We test the restrictions imposed by the alternative short term interest rate models nested 

within equation (1).  

Several models can be obtained from (1) placing the appropriate restrictions on the four 

parameters α, ,  and . The specifications that we focus on are presented in Table 2: 
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Table 2: Alternative models of short-term interest rate and parameter restrictions imposed 

 

Model 

Restrictions 

a b   

Chan, Karoly, Longstaff & Sanders (1992)     

Merton (1973)  0  0 

Vasicek (1977)    0 

Cox, Ingersoll & Ross (1985)    0.5 

Dothan (1978) 0 0  1 

Rendleman & Bartter (1980) 0   1 

Brennan & Schwartz (1980)    1 

Cox, Ingersoll & Ross (1980) 0 0  1.5 

Cox & Ross (1976) 0    
 We estimate the parameters of the continuous-time model using a discrete-time 

econometric specification 

 

11   tttt rb  arr                                                                                                     (2) 

  01 tE  ,   r
2
tt  E  22

1                                                                                             (3) 

 

This discrete-time model has the advantage of allowing the variance of interest rate 

changes to depend directly on the level of the interest rate in a way consistent with the 

continuous-time model. 

Define  to be the parameter vector with elements α, , 2 and  and given

tt1t1t br  arr    , estimators of these parameters are obtained from the first and 

second moments conditions. We define also two instrumental variables, a constant and rt. 

we obtain then, four orthogonality restrictions.     
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                                      (4) 

Under the null hypothesis that the restrictions implied by (2) and (3) are true,    0fE   

The GMM procedure consists of replacing   fE  with its sample counterpart, g[], 

using T observations where 

 



T

t

f
T

g
1

1
)(                                                                                                              (5) 

And then choosing parameters that minimize the quadratic form, 

 

        TTTT gWgJ                                                                                               (6) 

 

Where WT( is a positive-definite symmetric weighting matrix. 
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The minimized value of the quadratic form in (6) is distributed 2 under the null 

hypothesis that the model is true with degree of freedom equal to the number of 

orthogonality conditions net of the number of the parameters to be estimated. This 2 

measure provides a goodness-of-fit test for the model. A high value of this statistic means 

that the model is misspecified. 

In addition, in order to gauge further the relative performance of the alternative nested 

models, we test their forecast power of interest rate changes. In addition, we test their 

forecast power for squared interest rate changes, which provide simple ex-post measures 

of interest rate volatility. This is done by first computing the time series of conditional 

expected-yield changes and conditional variances for each model using the fitted values 

of (2) and (3). We then compute the proportion of the total variation in the ex post yield 

changes or squared yield changes that can be explained by the conditional expected-yield 

changes and conditional volatility measures, respectively. We refer to this as the 

coefficient of determination, or R2. These R2 values provide information about how well 

each model is able to forecast the future level and volatility of the short term rate. The 

results are presented in the last two columns of Table 3.  

 

3.1.2 The non linear model 

Ait Sahalia (1996b) presented a model of the short term interest rate which the drift and 

the diffusion functions are both nonlinear. 

 

𝑑𝑟 = ( ∝0+∝1 𝑟𝑡 +∝2 𝑟𝑡
2 +

∝3

𝑟𝑡
) 𝑑𝑡 + (𝛽0 + 𝛽1𝑟𝑡 + 𝛽2𝑟𝑡

𝛽3) 𝑑𝑤                                    (7) 

 

This nonlinear specification imposes some restrictions on the parameters values. 

 𝛽0 ≥ 0 (𝑎𝑛𝑑 𝛽2 > 0 𝑖𝑓𝛽0 = 0 𝑎𝑛𝑑 0 <  𝛽3 < 1 𝑜𝑟 𝑜𝑢 𝛽1 > 0 𝑖𝑓 𝛽0 0 𝑎𝑛𝑑 𝛽3 > 1) ,  
is necessary for the volatility to be positive in the neighborhood of the zero 

  𝛽2 ≥ 0  𝑖𝑓 𝑒𝑖𝑡ℎ𝑒𝑟 𝛽3 > 1 𝑜𝑟 𝛽1 = 1, 𝑎𝑛𝑑 𝛽1 > 1 𝑖𝑓 𝑒𝑖𝑡ℎ𝑒𝑟 0 <  𝛽3 < 1 𝑜𝑟 𝛽2 = 0,  
is necessary for the volatility to be positive in the neighborhood of the infinity  

  ∝2≤ 0 𝑎𝑛𝑑 ∝1< 0 𝑖𝑓 ∝2 = 0, ensure that the drift is mean reverting at high interest 

rate values. 

 ∝3> 0 𝑎𝑛𝑑  2 ∝3≥ 𝛽0 ≥ 0 𝑜𝑟 ∝3= 0, ∝0 > 0, 𝛽0 = 0, 𝛽3 > 1 𝑎𝑛𝑑  2 ∝0≥ 𝛽1 >
0,guarantees that zero is unreached 

To estimate this model we have followed the same semi parametric approach used by Ait 

Sahalia (1996b). The stationary density is nonparametrically estimated based on the 

kernel function, which is used to estimate the parameter vector 

(∝0, ∝1, ∝2, ∝3 , 𝛽0 , 𝛽1, 𝛽2 , 𝛽3) according to the method of maximum likelihood. 

Given a sample of T observations, the estimation method is built in three stages. 

The first step is to estimate the stationary density using a nonparametric method which is 

the Gaussian kernel regression as follow: 

𝑝̂(𝑢) =
1

𝑇ℎ
∑ 𝐾 (

𝑢−𝑟𝑡
∆

ℎ
)𝑇

𝑡=1  with K is a Gaussian kernel function of the form 𝐾(𝑢) =
1

√2𝜋
exp (−

1

2
𝑢2) where h is the smoothing parameter which determines how the 

neighboring point are taken into account to build the density estimator to u. 

The second step is to build an explicit relationship between the stationary density p (x), 

the mean and volatility using the Kolmogrov forward equation. In particular, if μ (x, ψ) 

and σ (x, ψ) are respectively the functional forms of the drift and the diffusion functions 
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with  is the vector of parameters (∝0, ∝1, ∝2, ∝3 , 𝛽0 , 𝛽1, 𝛽2 , 𝛽3), then the stationary 

density of the nonlinear model is then of the form: 

 

𝑝(𝑥, 𝜓) =
𝜉(𝜓)

𝜎2(𝑥,𝜓)
 𝑒𝑥𝑝 {∫

2𝜇(𝑢,𝜓)

𝜎2(𝑢,𝜓)

𝑥
}                                                                                    (8) 

 

Or the lower limit of the integral is arbitrary and ξ (ψ) is a constant that ensures that p (x, 

ψ) integrates to 1. The basis of the estimation method developed by Ait Sahalia (1996b) is 

that if the specification of the drift and the diffusion functions are appropriate, then, for 

the estimated values (*), the stationary density p (x, ψ) is very close to the 

nonparametric density estimated from the observed data. 

In the third step, we estimate the parameters of the drift and the diffusion functions 
(∝0, ∝1, ∝2, ∝3 , 𝛽0 , 𝛽1, 𝛽2 , 𝛽3), so that the stationary density involved by the drift and the 

diffusion functions is as close as possible to the nonparametric stationary density. The 

vector of the estimated parameters (ψ *) is chosen such that it minimizes the squared 

difference between the density of the stationary pattern and the nonparametric one. 

Then: 

 

𝜓∗ = arg min
1

𝑇
∑ (𝑝(𝑥𝑡 , 𝜓) − 𝑝(𝑥𝑡)2𝑇

𝑖=1                                                                            (9) 

 

This gives the vector of estimated parameters ( *) = (∝0, ∝1, ∝2, ∝3 , 𝛽0 , 𝛽1, 𝛽2 , 𝛽3)∗. 

 

3.1.3 The Monte Carlo Simulation study of the interest rate models performance 

To further compare the performance of each model to capture the stochastic evolution of 

the short term interest rate, we simulate the path of the interest rate produced by each 

model and we compare it to the real short term interest rate stochastic path.  

To generate data from the interest rate model specification, we consider a first order 

Euler’s approximation of the stochastic process of each model. 

The study of the predictive performance of the different models will be on both sides, a 

study of the predictive performance, “in the sample” and “out of the sample”.  

 The first period “in the sample” cover the period from 1979 to 1982 which is a high 

volatile period. The purpose of this choice is to study the predictive performance of 

the models in this exceptional period. 

 The second period “in the sample” cover the period from 2007 to 2008 which is the 

subprime crisis period and at the end of 2008, the Federal Reserve have decide to 

reduce interest rates at a range of  0% to 0.25%.   

 Contrary to the two first periods, the third “in the sample” period from 1997 to 1998 is 

relatively a stable period.  

 The “out of the sample” period cover the period from 2010 to 2011, characterized by 

low interest rates as decided by the Federal Reserve. 

The performance of each model to predict the real short term interest rate path is 

measured by the “Mean Squared Error”: 

 





N

i
isio rr

N
MSE

1

1
                                                                                                  (10) 

Where N, is the observation number, rio, is the ith observed interest rate and ris, is the ith 

simulated interest rate. 
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3.2 The Nonparametric Approach 

One potentially serious problem with any parametric model that prefers one functional 

form another is misspecification which can lead to serious pricing and hedging errors. 

For further study the short interest rate stochastic process specification we use the 

nonparametric approach to estimate the functional form of the drift and diffusion 

functions of the interest rate stochastic process. The nonparametric approach does not 

impose any restrictions on their functional forms but leave them unspecified. The 

resulting functional forms should result in a process that follows interest rate closely. 

The nonparametric approach presents the flexibility to fit the data allowing the 

identification of the appropriate specification of the interest rates stochastic process.  

Florens-Zmirou (1993) and Ait-Sahalia (1996a) pioneered the idea of modeling the 

diffusion function of the stochastic interest rate process by the data themselves through a 

nonparametric approach. The idea has been extended to both the drift and the 

diffusion functions by Stanton (1997), Jiang and Knight (1997) and, more recently, by 

Bandi & Phillips (2003).  

Renò, Roma and Schaefer (2006) prove that the Stanton and Bandi & Phillips 

estimators perform better than the Ait Sahalia (1996a) estimator. 

In this study we follow the Stanton approach (1997). In contrary to the Ait-Sahalia 

(1996a) that proposes a nonparametric diffusion function estimator based on the linear 

mean-reverting drift function for the stochastic process, the Stanton approach (1997) 

avoids making parametric assumptions about either the drift or the diffusion functions of 

the interest rate stochastic process; it estimates both functions nonparametrically from 

observed data.  

This approach consists of the construction of approximation of the true drift and the 

diffusion functions then these approximations are estimated nonparametrically from 

discretely sampled data. More specifically, Stanton (1997) uses the infinitesimal generator 

and a Taylor series expansion to give the first order approximations to the drift and the 

diffusion functions.  

Consider, the diffusion process of the interest rate, rt, which satisfies the stochastic 

differential equation: 

 

    ttt dwrdtr)t(dr                                                                                              (11) 

 

The first order approximations of the drift and diffusion functions, under the Taylor series 

is respectively as follows: 

)(O  )rr( E
1

)r( ttt 


                                                                                       (12) 

)(O)r ttr( E
1

  )r(
2

t
2 


                                                                                 (13) 

Where  denotes a discrete time step in a sequence of observations of the process rt and 

O(), the asymptotic order symbol where 0)(Olim
0







. 

The nonparametric estimation of the approximations of the drift and the diffusion 

functions are based on the stationary density.  
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Let  T 1ttr 
 be a sample of size T from the continuous time process rt, observed at discrete 

interval . Furthermore, let N

1iiu  be a set of size N points defining an equally spaced 

partition of a subset of the support of the stationary density. If the stationary density of rt 

is denoted f(u), the Rosenblatt-Parzen kernel estimator is of the form  

 

 






 




T

1t

t

h
ru

K
Th
1)u(f̂                                                                                                       (14) 

 

The kernel estimator is completely characterized by the choice of a particular kernel 

function and the appropriate bandwidth h. 

The kernel function provides a method of weigthing “nearby” observations in order to 

construct a smoothed histogram of the density estimator. In our case we use the Gaussian 

kernel, e2)u(K u2/1 2  .  

The parameter h is called the smoothing parameter; it determines the width of the kernel 

function around any partition point ut. it specifies how (and how many) “neighboring” 

points of 


tr , are to be considered in constructing the density estimator at rt. in our case 

we choice  T
/ˆh 514    

Now, the drift and diffusion function can estimated nonparametrically using the familiar 

Nadaraya-watson kernel regression estimator as follow: 
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4  Empirical Finding and Result Analysis 

In this section, we present our empirical results. We begin by the linear models, the 

unrestricted and the eight restricted interest rate processes. We present after the estimation 

results of the nonlinear model. We compare after their ability to reproduce the stochastic 

path of the short term interest rate through a simulation study. Finally, we present the 

results of the nonparametric estimation of the drift and diffusion function of the short term 

interest rate process.  

 

4.1 Estimation results of linear models  

Table 3 reports the parameters estimates, asymptotic t-statistics, and GMM minimized 

criterion (2) values for the unrestricted model and for the each of the eight nested 
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models. As shown, the models vary in their explanatory power on interest rate changes. 

The 2 tests for goodness-of-fit suggest that all the models that assume   1 are 

misspecified. In fact Merton (1973), Vasicek (1977), Cox Ingersoll & Ross (1985), 

Dothan (1978), Rendleman & Bartter (1980), Brennan & Schwartz (1980) models, have 

2 values, in excess of 5% and can be rejected at the 95% confidence level. Except for the 

Cox, Ingersoll & Ross (1980), and the Cox & Ross (1976) models, those assume   1. 

These models present values of the 2 relatively low and cannot be rejected at the 5% 

significance level. 

These results suggest that the relation between interest rate volatility and the level of r is 

the most important feature of the dynamic model of the short term interest rate. This is 

significant since the Vasicek (1977) and Merton (1973) models are often criticized for 

allowing negative interest rates. This result indicates that a far more serious drawback of 

these models is their implication that interest rate changes are homoskedastic.  

The estimates of the models provide also a number of interesting insights about the 

dynamics of the short term interest rate. First, the weak evidence of the mean reversion in 

the short term interest rate; the parameter  is insignificant in the unrestricted model and 

also in all the restricted models. Second, the conditional volatility of the process is highly 

sensitive to the level of the short term interest rate. The unconstrained estimate of  in the 

Cox & Ross (1976) and Chan, Karoly, Longstaff & Sanders (1992) models are 

respectively 1.5513 and 1.5424. 

This result is important since these values are higher than the values used in most of the 

models. In particular, six of the eight nested models imply 01. The t-statistic for  is 

9.20 and 8.05 respectively for the Cox & Ross (1976) and Chan, Karoly, Longstaff & 

Sanders (1992) models, which imply that the parameter  is highly significant. These 

results prove the importance of the relation between volatility of the interest rate and the 

level of the short term interest rate in the dynamic of the interest rate and that the degree 

of the sensitivity is higher than 1.5. 

These findings are similar to those of Ferreira (1998) that has followed the same approach 

for Portuguese interest rates. The results show a weak mean reverting effect and a high 

sensitivity of the volatility to the interest rate level equal to 1.13.  

The last two columns of the Table 3 present the results of the forecast power of all the 

models for interest rate changes and the squared interest rate changes. The first R2 

measure describes the fit of the various models for the actual yield changes. Expect for 

the Merton (1973), Dothan (1978), Cox, Ingersoll & Ross (1980), and the Cox & Ross 

(1976) models which have no explanatory power for interest rate changes, the other 

models are similar in their forecast ability. They explain only 0.01% to 0.13% of the total 

variation in yield changes.  

For the volatility of interest rate changes, the proportion of the total variation in volatility 

captured by the various models ranges from 0.44% from the Cox, Ingersoll & Ross (1985) 

model to 17.4% for the & Ross (1976)  model. Note that the R2 for the Merton (1973) and 

Vasicek (1977) models are zero since these models imply that the volatility of interest rate 

changes is constant. Remark that the higher predictive power for the volatility for interest 

rate changes is for the models that assume an estimated value of   1.5. It is equal to 

17.4% for the Cox & Ross (1976) model and 15.86% for the Chan, Karoly, Longstaff & 

Schwartz (1992) model.  

These results are similar to those produced by the 2 test, which prove again the 

importance of the sensibility of the volatility of the interest rate to the level of short term 
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interest rate in the dynamic of the spot interest rate. Figure 2 plot the absolute value of the 

interest rate changes and the estimated conditional volatility estimate from the Cox, 

Ingersoll & Ross (1985) and the Chan, Karoly, Longstaff & Schwartz (1992) models. 

We remark that contrary to the Cox Ingersoll & Ross (1985) model, the Chan, Karoly, 

Longstaff & Schwartz (1992) model reproduce nearly exactly the shape of observed 

volatility of interest rate changes without adjusting the actual levels of interest rates . 

 

Table 3: Estimates of alternative models for the short term interest rate 

Models a b  2  
2 test 

(p-

value) 

dl R
2
1  R

2
2  

Chan Karoly 

Longstaff 

Sanders (1992) 

0.004510 

(0.45) 

-

0.113786 

 (-0.54) 

0.915860 

(1.55) 
1.542416 

(8.05) 
0.0000 0 0.0008 0.1586 

Merton (1973) 

-

0.000776  

(-0.36) 

0.0000 
0.000121 

(6.05) 
0.0000 

15.5003 

(0.0004) 
2 0.0000 0.0000 

Vasicek (1977) 
0.002520 

(0.27) 

-

0.071269  

(-0.34) 

0.000122 

(5.98) 
0.0000 

15.5172 

(0.0001) 
1 0.0003 0.0000 

Cox Ingersoll 

and Ross(1985) 

0.003209 

(0.34) 

-

0.092045 

(-0.44) 

0.002739 

(6.91) 

     

0.5000 

14.5178 

(0.0001) 
1 0.0005 0.0044 

Dothan (1978) 0.0000 0.0000 
0.048578 

(8.52) 
1.0000 

10.3857 

(0.0156) 
3 0.0000 0.0298 

Rendleman and 

Bartter (1980) 
0.0000 

-

0.028005 

 (-0.62) 

0.049714 

(8.31) 
1.0000 

10.0911 

(0.0064) 
2 0.0001 0.0312 

Brennan and 

Schwartz 

(1980) 

0.005209 

(0.55) 

-

0.141874  

(-0.67) 

0.050287 

(8.25) 
1.0000 

9.8074 

(0.0017) 
1 0.0013 0.0319 

Cox Ingersoll 

and Ross(1980) 
0.0000 0.0000 

 

0.725366 

(9.69) 

1.5000 
0.5475 

(0.9083) 
3 0.0000 0.1379 

Cox and Ross 

(1976) 
0.0000 

-

0.015935  

(-0.35) 

0.949175 

(1.57) 
1.551295 

(8.20) 

0.2243 

(0.6358) 
1 0.0000 0.174 

 



52                                                                                                                Mouna Ben Salah 

 

 
Figure 2: Forecast of weekly ex post volatility of short term interest rate using the Cox, 

Ingersoll & Ross (1985) and the Chan, Karoly, Longstaff & Schwartz (1992) models. 

 

4. 2. Estimation Results of Nonlinear Model 

From the table 4, we note first that all the conditions imposed by Ait Sahalia (1996b) are 

respected. Second, all parameters except 𝛽3 are not significant. The mean reverting 

parameter α2, is not significant as proved for linear models. 

The figure 3 plots the nonlinear drift of the Ait Sahalia (1996b) model. We note that for 

the central area of the interest rate between 1% and 18%, the average is almost zero. In 

addition for interest rates below 1%, the nonlinearity of the drift strongly pushing interest 

rates to the mean area. Or since 2008, the short term interest rates show low values 

converge to almost zero and the short term interest rate has not recorded a mean reversion 

as stipulated by Ait Sahalia (1996b) model. In addition according to the model of Ait 

Sahalia (1996b), the mean reversion effect is manifested at very high interest rates above 

20%. But it is almost impossible to achieve these values for the short term interest rates. 

 

Table 4: The parameters estimates of the Ait Sahalia (1966b) model 

Parameters  Estimated values standard erreur t-stat 

α0 1,64e-4 0,2086 0,00078 

α1 0,019 2,1332 0,0089 

α2 -0.1258 7,2240 0,0174 

α3 1,154e-5 0,0068 0,0022 

0 8,8 e-6 0,0001 0,088 

1 0,0026 0,0017 0,1529 

2 0,0238 0,0165 1,4424 

3 2,0319 0,5775 3,5184 
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The figure 3 plots the nonlinear drift of the Ait Sahalia (1996b) model. We note that for 

the central area of the interest rate between 1% and 18%, the average is almost zero. In 

addition for interest rates below 1%, the nonlinearity of the drift strongly pushing interest 

rates to the mean area. Or since 2008, the short term interest rates show low values 

converge to almost zero and the short term interest rate has not recorded a mean reversion 

as stipulated by Ait Sahalia (1996b) model. In addition according to the model of Ait 

Sahalia (1996b), the mean reversion effect is manifested at very high interest rates above 

20%. But it is almost impossible to achieve these values for the short term interest rates. 

 

 
Figure 3: The nonlinear drift of the Ait Sahalia (1996b) model 

 

The figure 4 shows the nonlinear diffusion of the Ait Sahalia model (1996b).We note that 

volatility increases with the level of interest rates. This confirms the presence of the effect 

level in the diffusion function. 

 

 
Figure 4: The non linear volatility of the Ait Sahalia (1996b) interest rate model 
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4.3 Monte Carlo Simulation Results 

The stochastic path of the interest rate produced by the Ait Sahalia model (1996b) is 

compared to those produced by the linear models of Chan, Karoly, Longstaff & Schwartz 

(CKLS, 1992), of Cox & Ross (CEV, 1976), of Brennan & Schwartz (BS, 1980) and 

Rendleman and Bartter (GBM, 1980). 

These models are firstly the best linear short-term interest rates models among the studied 

models. On the other hand they present the main characteristics of the stochastic process 

of short-term interest rate, ie the mean reversion effect and the elasticity of volatility. The 

objective of this choice is to compare the contribution of nonlinear parameterization of 

Ait Sahalia (1996b) compared to those presented by these linear models in the estimation 

of the real short interest rates term stochastic path. 

The simulation periods considered are the three in the sample periods "1979-1982", 

"1997-1998", "2007-2008" and the out of the sample period "2010-2011". 

From figure 5, we see that as for the linear models, the path of short term interest rates 

generated by the nonlinear model of Ait Sahalia (1996b) does not adequately reproduce 

the real interest rate path and this for the four periods studied.  

The table 5 shows the mean square error for the different models. 

 

Table 5: Mean Squared Error of the Monte Carlo simulation 

Models 
MSE 

« In sample » 

1979-1982 

« In sample » 

1997-1998 

« In 

sample 2007-

2008 

« out of sample » 

2010-2011 
CKLS 4.5662e-09 4.6321e-007 2.3690e-005 2.1168e-007 

CEV 6.4781e-008 4.4038e-008 1.9411e-005 2.4801e-009 

GBM 6.8501e-007 1.5526e-009 1.7262e-005 2.1617e-009 

BS 1.2494e-006 3.0099e-009 1.7230e-005 2.2512e-007 

Ait 

Sahalia 
1.0797e-006 5.6118e-007 2.4278e-005 3.0300e-007 
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Figure 5: (a) Simulation « out of the sample » 2010-2011 period, simulation “in the 

sample”; (b) 1979-1982 period; (c) 2007-2008 period, (d) 1997-1998 period. 
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4.4 Estimation Results of the Nonparametric Model 

To estimate the drift and the diffusion functions, the stationary density of the short term 

interest rate is estimated first and plotted in Figure 6. The nonparametric stationary 

density is obviously not normal with a flatter right tail than the normal density.  

From Figure 7, we note that the drift is constant and it is close to being zero for low and 

medium values of interest rate. But when the short rate is beyond 14%; the short rate drift 

decrease dramatically. It presents a negative linear trend. This confirm the empirical 

finding of Ait Sahalia (1996a), Stanton (1997), Jiang and Knight (1997), Jiang (1998), 

Sam and Jiang (2009) and Gospodinov and Hirukawa (2011) that the drift term of the 

short term interest rate is zero for the most of interest rate ranges and overall nonlinearly 

mean reverting.  

These results prove also the finding of Arapis and Gao (2006) that the nonparametric drift 

is unlike the linear mean reverting specification.  

These findings suggest that interest rates follow a random walk at low and medium level, 

while being overall stationary. But because of the high level of interest rates (beyond 

14%) observed mainly during the period of early 80’s, the nonstationarity test based on 

the short term interest rate level is rejected.  

Compared to the linear mean reverting drift function, the nonparametric drift function 

shows a much weaker mean reverting property for low and medium interest rate but a 

much stronger mean reverting property for high interest rates. The mean reverting effect 

occurs only when the rate of interest is almost over 14%. This finding confirms that the 

mean reverting is not very significant especially for low and middle levels of the Interest 

rates. 

 

 
Figure 6: Nonparametric stationary density of short rate 
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Figure 7: Nonparametric and Chan, Karoly, Longstaff & Schwartz (CKLS) drift functions 

 

Compared to the nonlinear drift function (figure 8), we note that they are different. Indeed 

nonparametric drift presents a mean reverting effect for interest rate values greater than 

14% whereas for such values, the drift of the Ait Sahalia (1996b) model is almost zero 

and the mean reverting effect occurs only for interest rate values greater than 20%. 

We deduce that the nonlinear drift specification proposed by Ait Sahalia (1996b) does not 

reproduce the drift of the observed data, given by the nonparametric estimator. 

 

 
Figure 8: Nonparametric and the nonlinear drift functions 

 

The nonparametric diffusion function is plotted in Figure 9 and compared to those of the 

Chan, Karoly, Longstaff & Schwartz (CKLS, 1992), Cox, Ingersoll and Ross (CIR-SR, 

1985) and Ait Sahalia models (1996b). Noticeable features of the nonparametric diffusion 

function estimator include: first, the diffusion function is a nonlinear but overall 
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increasing function of the short rate, supporting the “level-effect” conjecture and rejecting 

the constant volatility model. That is, low interest rates are associated with low interest 

rates volatility and high interest rates are associated with high interest rates volatility. This 

result proves that the volatility is nonlinear contrary to the parametric models that suppose 

that the volatility is linear. These results are similar to those of Ait Sahalia (1996a), 

Stanton (1997), Jiang and Knight (1997), Jiang (1998), Sam and Jiang (2009) and 

Gospodinov and Hirukawa (2011). 

The nonlinear diffusion of Ait Sahalia (1996b) model is very different from the 

nonparametric one, it is very low and the level effect is also very low.  

We deduce that, as for the drift the diffusion specification of the Ait Sahalia (1996b) 

model does not reproduce the diffusion of the observed data.  

 

 
Figure 9: Non-parametric, nonlinear, CKLS and CIR-SR diffusion functions 

 

 

5  Conclusion  

In this paper, we investigate the appropriate features of the short term interest rate 

stochastic process. The results indicated that models that allowed the variability of interest 

rates to depend upon the level of interest rate captured the dynamic behaviour of short 

term interest rates more successfully. The level effect is such that the interest rate 

volatility is positively correlated with the level of interest rates. In addition the results 

prove also that the evidence on mean reversion in the short term to be not inconclusive.  

The nonparametric estimation of the drift and the diffusion functions of the short term 

interest rate process prove also the importance of the “level effect” in the interest rate 

volatility and that the “mean reversion “ effect is significant only for very high level of 

interest rates. The drift and diffusion functions appear also to be nonlinear.  

The results show also that the Ait Sahalia (1996b) nonlinear model is unable to predict the 

real stochastic path of the short-term interest rates process. 

The problem is in the specification of the drift and the diffusion functions proposed by Ait 

Sahalia (1996b) model.  

These results lead us to question on the appropriate nonlinear specification of the short 

term interest rate model. 
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[17] Renò, R. Roma, A. Stephen, S (2006) ,  A Comparison of Alternative Non-

parametric estimators of the Short Rate Diffusion Coefficient, Economic Notes, 

35, 227-252. 

[18] Sam, A G. Jiang, G (2009), Nonparametric estimation of the short rate diffusion 

process from a panel of yields, Journal of Financial and Quantitative Analysis, 44, 

1197-1230. 



60                                                                                                                Mouna Ben Salah 

 

[19] Stanton, R. (1997), A Nonparametric Model of Term Structure Dynamics and the 

Market Price of Interest Rate Risk, Journal of Finance, 52, 1973-2002. 

[20] Vasicek, O. A. (1977), An equilibrium characterization of the term structure, Journal 

of Financial Economics 5, 177-188. 

 


