
Journal of Finance and Investment Analysis, vol. 4, no.1, 2015, 67-77 
ISSN: 2241-0998 (print version), 2241-0996(online) 
Scienpress Ltd, 2015 

 
Is Skewness Simply Sufficient?: Evidence from Monte 

Carlo Simulation on Asymmetric Asset Returns 
 

Huijian Dong1 and Wyatt J. Swayngim2 

 

 

Abstract 
The purpose of this study is to explore the impact of skewness in asset return simulations 
and the effects of kurtosis on forecast precision. We use 9 years of daily returns of 30 
stocks and run a Monte Carlo simulation to identify the forecasted returns based on 
Gaussian and skew normal distributions. We find that the term and precision do not have 
a relationship and that the use of the skew normal distribution does not improve the 
precision of the forecast; it in fact leads the kurtosis to drift to the undesirable direction. 
Further, persistent negative portfolio forecast errors show that both distribution types lead 
to significant underestimation of asset returns. The results suggest that simply apply 
designated skewness to normal distribution do not improve the quality of Monte Carlo 
simulation, and the fourth moment of realized distribution needs to be incorporated in 
asset performance forecast.  
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1  Introduction  
This paper first tests the degree of inappropriateness of assuming normality for financial 
asset returns. We apply the skew normal distribution to the Monte Carlo simulation and 
examine the improvement of forecast precision relative to the Gaussian distribution. We 
then explore the relationship of the third and fourth moments of asset distribution in the 
skew normal distribution to conclude that it is necessary to explicitly designate 
leptokurtosis in Monte Carlo simulations of asset performance.  
The distributions of returns of financial assets are commonly observed to carry non-zero 
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skewness and excess kurtosis. Harvey and Siddique (2000) discuss symmetrical skewness 
of asset returns and recognize the skewness premium. Conrad, Dittmar, and Ghysels 
(2013) confirm the role of skewness and kurtosis as markers for risk compensation in 
securities with return dependence controlled. Dong (2014) and Chen, Chen, and Lee 
(2013) suggest that extreme negative investor sentiment leads to high dependence at the 
lower tail of the return and this implies the necessity of incorporating skewness in the 
Monte Carlo simulation.  
However, currently there is no quantitative evidence to support the importance of 
incorporating skewness in simulations. In other words, the degree of forecast precision 
improvement after skewness is considered needs to be addressed to allow researchers and 
practitioners to judge the type of distribution that Monte Carlo simulation should be based 
on. Furthermore, involving skewness in the skew normal distribution will affect the 
kurtosis of the distribution; therefore it is meaningful to explore whether the drift of 
kurtosis due to non-zero skewness warrants a more accurate fit to asset returns. In essence, 
this study attempts to clarify the impact of skewness in asset return simulation and the 
impact of kurtosis to forecast precision due to the non-zero skewness setting. 

 
 
2  Data 
Using a random selection3 process, this paper draws 30 stocks from the pool of Russell 
3000 index. The index list is according to the latest June 27, 2014 version as of December 
22, 2014. Similar to Guo et al. (2015), this study first assigns random values in the range 
of [0, 1] to all the assets that carry full historical data between December 5, 2005 and 
December 8, 2014, and then select assets with assigned random values between 0.49 and 
0.51. The random values assigned using this procedure are uniformly distributed (Rotz, 
Falk, Wood, and Mulrow, 2001) and are free of sampling bias and concerns of data 
mining.  
We assume 252 trading days in a year and we use historical returns of 3 years to fit the 
distribution on which the Monte Carlo simulation is based. In addition we use the future 6 
years of stock return data to examine the forecast precision and Monte Carlo term effect. 
Such in-sample forecast spans a long history of asset prices for a variety of types of 
equities to ensure that the conclusion is broadly applicable. Specifically, we obtain 2269 
daily adjusted closing price levels of the 30 assets from which 2268 daily returns are 
calculated. These are 252 returns per year for consecutive 9 years. Table 1 summarizes 
the groups of samples. To covert the prices into continuously compounded returns, this 
paper applies the following Equation 1. 
 
 
𝑟𝑟𝑡𝑡
𝛾𝛾 = log𝑒𝑒 𝑝𝑝𝑡𝑡

𝛾𝛾 − log𝑒𝑒 𝑝𝑝𝑡𝑡−1
𝛾𝛾                                                 (1) 

 

                                                

3According to Wichman and Hill (1982, 1987), because the fractional part of the sum of three 
random numbers on [0,1] is still a random number on [0,1]. For integer a, b, and c between 1 and 
30000, assign the values to a, b, and c: a←MOD(170*a, 30323); b←MOD(171*a, 30269); 
c←MOD(172*a, 30307), then the random number is the fractional part of the sum of a, b, and c. 
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Table 1: Sampling and In-sample Forecast Periods 
Group Year Start Date End Date Number of Observations 

In-sample realized return 

9 12/10/2013 12/8/2014 252 
8 12/7/2012 12/9/2013 252 
7 12/6/2011 12/6/2012 252 
6 12/7/2010 12/5/2011 252 
5 12/7/2009 12/6/2010 252 
4 12/5/2008 12/4/2009 252 

Sample return to fit 
distribution 

3 12/6/2007 12/4/2008 252 
2 12/5/2006 12/5/2007 252 
1 12/5/2005 12/4/2006 252 

 
Table 2 includes the tickers of all the equities with maximum or minimum of the key 
features of all the assets. The market capitalizations and enterprise values (EV) are based 
on the market quotes on December 10, 2014. The trailing Price-to-earnings (P/E), 
Price-to-Sales (P/S), Enterprise Value-to-Revenue, and Enterprise Value-to-EBITDA 
(EV/EBITDA) are trailing twelve month data, and the Price-to-Book (P/B) uses the most 
recent quarter data as for December 18, 2014. The forward Price-to-earnings (P/E) in 
general uses pro forma earnings estimate for the 2015-2016 fiscal year, and the 
P/E-to-growth (PEG) indicates the 5-year expected growth level. The sample includes 
small and large stocks, value and growth stocks, and relatively overvalued and 
undervalued stocks. 
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Table 2: The Extreme Key Features of the 30 Assets in the Sample 

  
Market Cap  EV Trailing 

P/E  
Forward 

P/E PEG P/S P/B EV/Revenue EV/EBITDA 

AHL 2.77B 477.73M 8.72[MIN] 10.73 8.71 1.07 0.83 0.18 0.9 
BEL 1.22B 1.70B N/A 62[MAX] 23.66[MAX] 2.06 1.51 2.85 16.66 
HILL 268.74M[MIN] 223.35M[MIN] 222[MAX] 15.88 1.54 1.28 5.05 1.08 43.88[MAX] 
EZPW 593.16M 882.93M N/A 7.09[MIN] 0.63 0.58 0.65[MIN] 0.89 6.26 
IM 4.27B 4.83B 16.65 9.01 0.85 0.1[MIN] 1.04 0.11[MIN] 6.65 
NUS 2.66B 2.74B 10.25 10.82 -2.26[MIN] 0.92 2.94 0.91 5.49 
PX 37.21B[MAX] 46.27B[MAX] 20.3 18.78 2.02 3.04 5.7[MAX] 3.76 11.96 
SGMO 948.07M 626.96M N/A N/A N/A 20.89[MAX] 3.75 16.59[MAX] -21.13[MIN] 
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For each of the 30 equities in the sample, we fit the returns from year 1 to year 3 for both 
skew normal distribution and Gaussian distribution. With the fitted parameters for both of 
the distributions, we then perform Monte Carlo simulations at both the portfolio level and 
individual asset level.  
For the simulated net returns, we set the minimum threshold of -1, consistent with the 
nature of investment and ruling out the threat of negative account balance. Each 
observation, 𝑟𝑟𝑖𝑖,𝑡𝑡

𝛾𝛾 , is the daily return at the tth day for the ith asset in year 𝛾𝛾. The variable 𝛾𝛾 
is a string that can be assigned to any year between year 4 and year 9. Starting from the 
unit currency initial endowment, the forecasted one-year return from Monte Carlo 
simulation is: 

 

𝑅𝑅𝑖𝑖
𝛾𝛾 = � (1 +

𝑛𝑛

𝑡𝑡=1
𝑟𝑟𝑖𝑖,𝑡𝑡
𝛾𝛾 ) 

 
where n=252 and 𝑅𝑅𝑖𝑖

𝛾𝛾  is the simulated one-year return for a specific asset.  
Then we perform the simulation for 150 iterations and the forecasted one-year return for a 
certain distribution method M, which the Monte Carlo is based on. The one-year return is 
path dependent to the daily realized returns. 

 

𝑅𝑅𝑖𝑖 ,𝑀𝑀
𝛾𝛾 =

∑ (∏ (1 +𝑛𝑛
𝑡𝑡=1 𝑟𝑟𝑖𝑖,𝑡𝑡

𝛾𝛾 )𝑛𝑛
𝑗𝑗=1 )

𝑁𝑁  
 

where N=150, and M can be assigned to skew normal (SN) or Gaussian (GAU). The 
forecast error of the portfolio with 30 assets is the norm of the difference of asset 
simulation returns and asset realized returns: 
 

𝜀𝜀𝑀𝑀
𝛾𝛾 =

∑ �𝑅𝑅𝑀𝑀
𝛾𝛾 − 𝑅𝑅𝑖𝑖

𝛾𝛾�𝜆𝜆
𝑖𝑖=1

𝜆𝜆  
 
where 𝑅𝑅𝑖𝑖

𝛾𝛾  is the realized portfolio return. Similarly, the forecast error of a specific asset 
in the portfolio is the norm of the difference of asset simulation return and asset realized 
return: 
 
𝜀𝜀𝑖𝑖 ,𝑀𝑀
𝛾𝛾 = �𝑅𝑅𝑖𝑖 ,𝑀𝑀

𝛾𝛾 − 𝑅𝑅𝑖𝑖
𝛾𝛾� 

 
The portfolio in this paper, which is an equally-weighted portfolio, is different from the 
Russell 3000 index, which is a market capitalization-weighted portfolio. The reason for 
this difference is that this paper attempts to avoid forecasting error associated with 
price-weighted discrimination; the rationale is that the forecasting precision is equally 
important for every single asset regardless of their price level.  
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3  Methodology 
The skew normal distribution is from the differential equation  
 
𝜔𝜔4𝑓𝑓′′ (𝑥𝑥) + (𝛼𝛼2 + 2)𝜔𝜔2(𝑥𝑥 − 𝜍𝜍)𝑓𝑓′(𝑥𝑥) + 𝑓𝑓(𝑥𝑥)�(𝛼𝛼2 + 1)(𝑥𝑥 − 𝜍𝜍)2 + 𝜔𝜔2� = 0 
 

where 𝑓𝑓(0)= 
exp (− 𝜍𝜍2

2𝜔𝜔2) 2
√𝜋𝜋

∫ 𝑒𝑒−𝑡𝑡
2
𝑑𝑑𝑡𝑡∞

( 𝛼𝛼𝜍𝜍
√2𝜔𝜔

)

√2𝜋𝜋𝜔𝜔
, 

 

and 𝑓𝑓′(0)= 
exp (−�𝛼𝛼

2+1�𝜍𝜍2

2𝜔𝜔2 )(2𝛼𝛼𝜔𝜔+√2𝜋𝜋𝜍𝜍exp (𝛼𝛼
2𝜍𝜍2

2𝜔𝜔2 ) 2
√𝜋𝜋

∫ 𝑒𝑒−𝑡𝑡
2
𝑑𝑑𝑡𝑡∞

( 𝛼𝛼𝜍𝜍
√2𝜔𝜔

)

√2𝜋𝜋𝜔𝜔3 , 
 
and ∫ 𝑒𝑒−𝑡𝑡2𝑑𝑑𝑡𝑡∞

( 𝛼𝛼𝜍𝜍
√2𝜔𝜔

)  is from the complementary error function 𝑒𝑒𝑟𝑟𝑓𝑓𝑒𝑒(𝑥𝑥)= 2
𝜋𝜋 ∫ 𝑒𝑒−𝑡𝑡2𝑑𝑑𝑡𝑡∞

𝑥𝑥  

Consistent with Azzalini (2014), if the probability density function of a continuous random 
variable x is  
 
𝑓𝑓(𝑥𝑥) = 2𝜙𝜙(𝑥𝑥)Φ(𝛼𝛼𝑥𝑥) 
 

where  𝜙𝜙(𝑥𝑥) =
exp (−𝑥𝑥

2

2 )

√2𝜋𝜋
 and Φ(𝛼𝛼𝑥𝑥) = ∫ 𝜙𝜙(𝑡𝑡)𝑑𝑑𝑡𝑡𝛼𝛼𝑥𝑥

−∞ , 
 
then x follows the standard Gaussian distribution when 𝛼𝛼 = 0. The parameter 𝛼𝛼 is a 
shape argument that increases with skewness. To generalize the standard Gaussian 
distribution, any random variable Y that is normally distributed can be defined as: 
 
𝑌𝑌~(𝜉𝜉,𝜔𝜔2) 
 
where 𝜉𝜉 is the location argument and 𝜔𝜔 is the scale argument.  
To further generalize the normal distribution, any random variable Z that follows skew 
normal distribution can be defined as:  
 
𝑍𝑍~(𝜉𝜉,𝜔𝜔2,𝛼𝛼) 
 
Some characteristic values of the variable Z which follows skew normal distribution are as 
follows according to Azzalini (2014): 
With 𝛿𝛿 = 𝛼𝛼

√1+𝛼𝛼2,  

Mean of skew normal distribution: 𝐸𝐸(𝑧𝑧) = 𝜉𝜉 + 𝜔𝜔�2
𝜋𝜋
𝛿𝛿 

Variance of skew normal distribution: 𝑉𝑉𝑉𝑉𝑅𝑅(𝑧𝑧) = 𝜔𝜔2(1− 2𝛿𝛿2

𝜋𝜋
) 

Skewness of skew normal distribution: 𝑠𝑠 = 4−𝜋𝜋
2

𝐸𝐸3 (𝑧𝑧)
𝑉𝑉𝑉𝑉𝑅𝑅1.5(𝑧𝑧)

 

Kurtosis of skew normal distribution: 𝑘𝑘 = 2(𝜋𝜋 − 3) 𝐸𝐸4 (𝑧𝑧)
𝑉𝑉𝑉𝑉𝑅𝑅2(𝑧𝑧)
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The paper computes the forecast errors (FE) in Table 3 and Table 4 for the two 
distributions on which the Monte Carlo simulations are based. The forecast errors are not 
taken as absolute values, so they carry the direction of the error. This allows us to explore 
and conclude any systematic bias of the forecast. 

 
 
4  Discussions and Results  
Table 3 and Table 4 present the forecast errors of skew normal distribution-based and 
Gaussian-based Monte Carlo simulation at the individual asset level, and Table 5 presents 
the forecast errors of the two distribution simulation at the portfolio level. The results 
indicate the forecast precision in reference to different terms, different distributions, and the 
forecast systematic bias.  
The term effect of the Monte Carlo simulation is not supported by our results. Intuitively, 
two arguments are plausible in terms of the validity of Monte Carlo simulation from the 
forecast term perspective. One argument is that the precision of simulation is better in the 
short run and gradually declines with the passage of time. In other words, because the future 
introduces more uncertainty, Monte Carlo analysis should be utilized in the short run. The 
other argument is that in the short run, the market is very volatile and the price trend is 
stochastic. Equivalently this argument suggests that Monte Carlo simulation fails to predict 
the short run chaos but can capture the long run average performance of the asset returns 
without being significantly affected by the market noise.  
The above-mentioned intuitions are inconsistent with our results; we find that at the 
individual asset level, there is no deterministic relationship between precision and time. 
The forecast errors in the short run, which is in terms of year 4, and the forecast errors in the 
long run, which is in terms of year 9, do not unanimously improve or deteriorate. In 
addition, the average forecast errors in a three-year window do not improve compared with 
the one-year windows from year 4 to year 9. In a nutshell, skew normal and Gaussian 
Monte Carlo simulations are not more accurate in the short run compared with the long run, 
nor vice versa; the simulation is not more appropriate for wide-window averaged data 
compared to the narrow-window short-run data, nor vice versa.  
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Table 3: Forecast Error of Skew Normal Distribution-based Monte Carlo Simulation 

  AHL BEAV BEL COKE DBD LABL HILL EZPW FFIN FLIC 
FE Year 7 to 9 -3.87% -9.82% -29.11% -1.31% 31.01% 8.66% -38.50% 18.49% 6.39% 2.18% 
FE Year 6 to 8 -4.13% -10.08% -29.14% -1.26% 30.31% 8.58% -38.45% 17.12% 5.94% 1.38% 
FE Year 5 to 7 -4.05% -9.25% -29.03% -1.94% 30.22% 9.05% -37.58% 17.45% 5.92% 1.33% 
FE Year 4 to 6 -6.03% -10.08% -31.66% -2.67% 29.94% 7.51% -35.27% 15.68% 5.16% 1.20% 
FE Year 9 -3.36% -9.79% -29.28% -1.59% 31.95% 8.92% -38.07% 20.45% 7.01% 2.38% 
FE Year 8 -3.74% -10.30% -28.99% -0.30% 30.89% 7.98% -38.40% 16.96% 6.06% 2.01% 
FE Year 7 -4.52% -9.38% -29.07% -2.04% 30.20% 9.07% -39.04% 18.05% 6.10% 2.15% 
FE Year 6 -4.12% -10.56% -29.35% -1.46% 29.84% 8.69% -37.92% 16.35% 5.67% -0.02% 
FE Year 5 -3.52% -7.80% -28.68% -2.32% 30.63% 9.38% -35.78% 17.94% 5.99% 1.87% 
FE Year 4 -10.45% -11.89% -36.96% -4.23% 29.36% 4.45% -32.11% 12.76% 3.83% 1.75% 
  GNCMA HTLF HOV JJSF IPAR IM MKL MCRI MOS NUS 
FE Year 7 to 9 -5.51% -0.34% -35.58% -0.82% -11.45% -7.81% -3.22% -12.24% -19.48% -5.36% 
FE Year 6 to 8 -6.47% -1.23% -35.49% -0.76% -11.57% -8.00% -3.11% -12.08% -19.78% -5.13% 
FE Year 5 to 7 -5.86% -1.58% -33.43% -0.65% -10.91% -7.58% -2.94% -10.73% -19.84% -4.78% 
FE Year 4 to 6 -7.15% -3.50% -34.41% -0.53% -13.82% -8.31% -4.06% -11.97% -21.30% -5.69% 
FE Year 9 -3.98% -0.01% -34.78% -0.19% -10.60% -7.90% -2.93% -12.35% -17.90% -5.52% 
FE Year 8 -6.30% 1.47% -36.97% -0.38% -12.06% -8.14% -3.14% -11.82% -19.78% -5.29% 
FE Year 7 -6.26% -2.47% -34.99% -1.90% -11.69% -7.41% -3.58% -12.55% -20.75% -5.27% 
FE Year 6 -6.85% -2.69% -34.49% 0.01% -10.96% -8.44% -2.62% -11.86% -18.81% -4.83% 
FE Year 5 -4.46% 0.42% -30.80% -0.06% -10.10% -6.89% -2.63% -7.77% -19.97% -4.24% 
FE Year 4 -10.15% -8.22% -37.93% -1.54% -20.40% -9.60% -6.95% -16.28% -25.13% -8.01% 
  POWL POM PX RPT ROC SCHL SGMO SWKS TAP UFI 
FE Year 7 to 9 -1.63% -2.61% 1.03% -36.69% -35.06% -12.98% -49.82% -6.55% 4.33% 7.25% 
FE Year 6 to 8 -0.52% -2.70% 1.12% -36.90% -35.57% -14.00% -50.37% -6.03% 4.06% 6.87% 
FE Year 5 to 7 -0.30% -2.71% 1.57% -36.31% -35.86% -14.46% -46.35% -6.80% 4.57% 6.44% 
FE Year 4 to 6 0.50% -3.22% -0.01% -39.42% -39.51% -17.23% -51.06% -8.28% 4.26% 5.72% 
FE Year 9 1.27% -1.96% 1.42% -36.32% -35.20% -12.72% -48.51% -8.46% 4.99% 6.46% 
FE Year 8 0.40% -3.26% 0.96% -36.43% -36.12% -13.45% -53.86% -5.34% 3.86% 6.96% 
FE Year 7 -6.55% -2.62% 0.70% -37.31% -33.87% -12.77% -47.07% -5.87% 4.15% 8.35% 
FE Year 6 4.60% -2.22% 1.71% -36.96% -36.71% -15.79% -50.17% -6.88% 4.18% 5.32% 
FE Year 5 1.05% -3.30% 2.30% -34.67% -37.01% -14.83% -41.81% -7.65% 5.37% 5.65% 
FE Year 4 -4.16% -4.12% -4.03% -46.63% -44.83% -21.07% -61.20% -10.30% 3.25% 6.19% 
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Table 4: Forecast Error of Gaussian Distribution-based Monte Carlo Simulation 
  AHL BEAV BEL COKE DBD LABL HILL EZPW FFIN FLIC 
FE Year 7 to 9 -3.42% -9.73% -19.21% -0.73% -3.94% -2.15% -25.16% 14.16% 6.36% 1.11% 
FE Year 6 to 8 -3.68% -9.98% -19.24% -0.68% -4.64% -2.23% -25.11% 12.79% 5.91% 0.31% 
FE Year 5 to 7 -3.60% -9.15% -19.13% -1.36% -4.73% -1.76% -24.24% 13.12% 5.89% 0.26% 
FE Year 4 to 6 -5.58% -9.99% -21.76% -2.09% -5.01% -3.30% -21.93% 11.35% 5.13% 0.13% 
FE Year 9 -2.91% -9.70% -19.38% -1.01% -3.00% -1.89% -24.73% 16.12% 6.98% 1.31% 
FE Year 8 -3.29% -10.20% -19.09% 0.28% -4.06% -2.83% -25.06% 12.63% 6.03% 0.94% 
FE Year 7 -4.07% -9.28% -19.17% -1.46% -4.76% -1.74% -25.70% 13.72% 6.07% 1.08% 
FE Year 6 -3.67% -10.47% -19.45% -0.88% -5.11% -2.12% -24.58% 12.02% 5.64% -1.09% 
FE Year 5 -3.07% -7.70% -18.78% -1.75% -4.33% -1.43% -22.44% 13.61% 5.96% 0.80% 
FE Year 4 -10.00% -11.79% -27.06% -3.65% -5.59% -6.36% -18.77% 8.43% 3.80% 0.68% 
  GNCMA HTLF HOV JJSF IPAR IM MKL MCRI MOS NUS 
FE Year 7 to 9 -8.20% -0.65% -39.38% -2.39% -10.76% -8.88% -3.35% -13.23% 14.31% -6.03% 
FE Year 6 to 8 -9.16% -1.55% -39.28% -2.32% -10.87% -9.06% -3.25% -13.06% 14.01% -5.80% 
FE Year 5 to 7 -8.54% -1.90% -37.22% -2.21% -10.22% -8.64% -3.07% -11.72% 13.95% -5.45% 
FE Year 4 to 6 -9.84% -3.81% -38.20% -2.09% -13.13% -9.37% -4.20% -12.96% 12.49% -6.37% 
FE Year 9 -6.67% -0.32% -38.57% -1.75% -9.91% -8.96% -3.07% -13.34% 15.89% -6.20% 
FE Year 8 -8.99% 1.16% -40.77% -1.95% -11.37% -9.20% -3.28% -12.80% 14.01% -5.96% 
FE Year 7 -8.95% -2.79% -38.79% -3.46% -10.99% -8.47% -3.71% -13.54% 13.04% -5.94% 
FE Year 6 -9.53% -3.01% -38.29% -1.55% -10.26% -9.51% -2.75% -12.85% 14.98% -5.51% 
FE Year 5 -7.15% 0.10% -34.60% -1.62% -9.41% -7.95% -2.76% -8.76% 13.82% -4.91% 
FE Year 4 -12.84% -8.53% -41.72% -3.10% -19.71% -10.66% -7.08% -17.27% 8.66% -8.68% 
  POWL POM PX RPT ROC SCHL SGMO SWKS TAP UFI 
FE Year 7 to 9 -2.80% 0.18% -0.64% -20.48% -13.53% -11.58% -6.65% -3.94% 3.62% 9.77% 
FE Year 6 to 8 -1.69% 0.09% -0.54% -20.69% -14.03% -12.61% -7.20% -3.41% 3.35% 9.39% 
FE Year 5 to 7 -1.47% 0.07% -0.10% -20.11% -14.33% -13.07% -3.18% -4.18% 3.85% 8.95% 
FE Year 4 to 6 -0.67% -0.43% -1.67% -23.21% -17.98% -15.84% -7.90% -5.66% 3.55% 8.23% 
FE Year 9 0.10% 0.83% -0.24% -20.11% -13.66% -11.32% -5.35% -5.84% 4.27% 8.97% 
FE Year 8 -0.77% -0.47% -0.70% -20.22% -14.59% -12.05% -10.70% -2.72% 3.15% 9.47% 
FE Year 7 -7.72% 0.17% -0.96% -21.10% -12.34% -11.37% -3.90% -3.25% 3.43% 10.86% 
FE Year 6 3.43% 0.56% 0.04% -20.76% -15.17% -14.39% -7.01% -4.27% 3.46% 7.83% 
FE Year 5 -0.12% -0.51% 0.63% -18.46% -15.47% -13.44% 1.36% -5.03% 4.65% 8.16% 
FE Year 4 -5.33% -1.34% -5.70% -30.42% -23.29% -19.68% -18.04% -7.68% 2.53% 8.70% 
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In addition, the prediction precision of using the skew normal distribution is not improved 
but is actually decreased. This suggests that simply adjusting the skewness of distribution 
by using the skew normal distribution makes the kurtosis of the distribution drift in an 
undesirable direction. Such a drift is against the nature of the asset return distribution. The 
attempt of using the skew normal distribution to remedy the non-normal features of asset 
return is inappropriate.    
Furthermore, according to Table 5, the averaged forecast errors are not improved compared 
to the single-year forecast errors. This proves that the systematic bias of the Monte Carlo 
simulation exists. If the systematic bias is absent and the directions of the forecast errors for 
the single year simulations are random, then the average error is expected to be less in terms 
of its magnitude. The unanimously negative forecast errors in Table 5 imply that the Monte 
Carlo analysis based on both of the distributions underestimate asset returns.  
 
Table 5: Portfolio Forecast Error of Skew Normal- and Gaussian-based Simulation 
  SN GAU   SN GAU 
FE Year 7 to 9 -8.35% -5.58% FE Year 8 -8.55% -5.78% 
FE Year 6 to 8 -8.58% -5.81% FE Year 7 -8.61% -5.84% 
FE Year 5 to 7 -8.21% -5.44% FE Year 6 -8.58% -5.81% 
FE Year 4 to 6 -9.51% -6.74% FE Year 5 -7.46% -4.69% 
FE Year 9 -7.88% -5.11% FE Year 4 -12.49% -9.72% 
 

 
5  Conclusion 
The first purpose of this study is to test the degree of inappropriateness to assume normal 
distributions for financial assets. We clarify the role of skewness in asset return simulations 
and the impact of kurtosis on forecast precision. To test this, we chose 30 stocks from the 
Russell 6000 index by randomly assigning each stock with relevant historical data a 
number in the range [0,1] and selecting the assets assigned values between 0.49 and 0.51 to 
use in the sample. By selecting stocks in this manner, we eliminated risk of bias and the 
possibility of data mining.  
We then fit the year 1 to year 3 data for each asset to a skew normal distribution and a 
Gaussian distribution. After running both distributions for all 30 assets through a Monte 
Carlo simulation for 150 iterations, we found the forecast error. Despite intuitive notions 
regarding the relationship between time and precision, our results show that there is no 
significant correlation between term and the level of forecast precision. In other words, 
there is no robust conclusion in terms of the validity of Monte Carlo simulation for either 
short run or long run forecast. 
Further, we found that the use of the skew normal distribution to adjust for skewness leads 
the kurtosis to move in an undesirable direction. Finally, our results yielded uniformly 
negative portfolio forecast errors, implying that Monte Carlo simulations underestimate 
asset returns for both Gaussian and skew normal distributions. The results suggest that 
simply apply designated skewness to normal distribution do not improve the quality of 
Monte Carlo simulation, and the fourth moment of realized distribution needs to be 
incorporated in asset performance forecast in future studies 
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