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Abstract

In this paper, we study a partially linear varying-coefficient errors-in-
variables (EV) model under additional restricted condition. Both of the
parametric and nonparametric components are measured with additive
errors. The restricted estimators of parametric and nonparametric com-
ponents are established based on modified profile least-squares method
and local correction method, and their asymptotic properties are also
studied under some regularity conditions.Some simulation studies are
conducted to illustrate our approaches.
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1 Introduction

The varying-coefficient partially linear model takes the following form:

Y = Xτβ + Zτα(T ) + ε, (1)

where α(·) = (α1(·), · · · , αq(·))τ is a q-dimensional vector of unknown coeffi-

cient functions, β = (β1, · · · , βp)
τ is a p-dimensional vector of unknown regres-

sion coefficients and ε is an independent random error with E(ε) = 0, V ar(ε) =

σ2 almost certain. Model(1.1) has been studied in a great deal of literature.

Examples can be found in the studies of Zhang et al.[9], Zhou and You[10],

Xia and Zhang[11], Fan and Huang[12], among others. However, the covariates

X,Z are often measured with errors in many practical applications. Some au-

thors consider the case where the covariate X is measured with additive errors,

and Z and T are errors free. For example, You and Chen[1] have proposed

a modified profile least squares approach to estimate the parametric compo-

nent. Hu et al.[2]and Wang et al. [3] have obtained confidence region of the

parametric component by the empirical likelihood method. Some authors such

as Feng[4] consider the case where the covariate Z is measured with additive

errors, and X and T are errors free.

In this paper, we discuss the following model in which both of the para-

metric and nonparametric components are measured with additive errors.
Y = Xτβ + Zτα(T ) + ε,

V = X + η,

W = Z + u,

Aβ = b,

(2)

where η,u are the measurement errors, η is independent of (Xτ , Zτ , T, ε, u),u is

independent of (Xτ , Zτ , T, ε, η). We also assume that Cov(η) = Ση, Cov(u) =

Σu, where Ση,Σu is known.If Ση,Σu is unknown,we also can estimate them by

repeatedly measuring V, W . A is a k × p matrix of known constants and b is

a k-vector of known constants. We shall also assume that rank(A) = k.

2 Estimation

Suppose that {Vi, Wi, Ti, Yi), i = 1, · · · , n} is an independent identically
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distributed(iid) random sample which comes from model (2). That is, they

satisfy 
Yi = Xi

τβ + Zi
τα(Ti) + εi,

Vi = Xi + ηi,

Wi = Zi + ui,

(3)

where the explanatory variable Xi is measured with additive errors, Vi =

(Vi1, · · · , Vip)
τ is the surrogate variable of Xi, the explanatory variable Zi is

also measured with additive errors, Wi = (Wi1, · · · , Wiq)
τ is the surrogate

variable of Zi, α(Ti) = (α1T (i), · · · , αq(Ti))
τ , and {εi}n

i=1 are independent and

identically distributed(iid) random errors with E(εi) = 0,V ar(εi) = σ2 < ∞.

We first assume that β is known,then the first equation of model (2.1) can be

rewritten as

Yi −Xi
τβ = Zi

τα(Ti) + εi, i = 1, · · · , n (4)

Clearly, model (4) can be treated as a varying coefficient model. Then, we

apply a local linear regression technique to estimate the varying coefficient

functions α(T ). For Ti in a small neighborhood of T , one can approximate

αj(Ti) locally by a linear function

αj(Ti) ≈ αj(T ) + α′j(T )(Ti − T ) ≡ aj + bj(Ti − T ), j = 1, · · · , q, (5)

This leads to the following weighted local least-squares problem: find {(aj, bj), j =

1, · · · , q} to minimize

n∑
i=1

{(Yi −Xτ
i β)−

q∑
i=1

[aj + bj(Ti − T )]Zij}2Kh(Ti − T ), (6)

where K is a kernel function, h is a bandwidth and Kh(·) = K(·/h)/h.

The solution to problem (6) is given by

(â1, · · · , âq, · · · , hb̂1, · · · , hb̂q) = {(DZ
T )τωT DZ

T }−1(DZ
T )τωT (Y −Xβ), (7)

where

DZ
T =

 Zτ
1

T1−T
h

Zτ
1

...
...

Zτ
n

Tn−T
h

Zτ
n

 ; M =

 Zτ
1 α(T1)

...

Zτ
nα(Tn)

 ; Z = (Z1, Z2, · · · , Zn)τ ;

Y = (Y1, Y2, · · · , Yn)τ ;X = (X1, X2, · · · , Xn)τ ;ωT = diag(Kh(T1−T ), · · · , Kh(Tn−
T )). If one ignores the measurement error and replaces Zi by Wi in (7), one can
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show that the resulting estimator is inconsistent. To eliminate the estimation

error caused by the measurement error, Using the method in literature [5], we

modify (7) by local correction as follow:

(â1, · · · , âq, · · · , hb̂1, · · · , hb̂q) = {(DW
T )τωT DW

T −Ω}−1(DW
T )τωT (Y−Xβ), (8)

then we obtain the following corrected local linear estimator for {α(·), j =

1, · · · , q} as

α̂(T ) = (α̂1(T ), · · · , α̂q(T ))τ = (Iq 0q){(DW
T )τωT DW

T −Ω}−1(DW
T )τωT (Y −Xβ),

(9)

where,Ω =
n∑

i=1

Σu ⊗

(
1 (Ti − T )/h

(Ti − T )/h ((Ti − T )/h)2

)
Kh(Ti − T ).

For the sake of descriptive convenience, we denote Ri = {(DW
Ti

)τωTi
DW

Ti
−

Ω}−1(DW
Ti

)τωTi
, Si = (W τ

i 0τ
q )Ri, Qi = (Iq 0q)Ri, S = (Sτ

1 , · · · , Sτ
n)τ , Ỹi =

Yi − SiY, Ṽi = Vi − V τSτ
i , then, minimize

n∑
i=1

{Yi − V τ
i β −W τ

i α̂(Ti)}2 −
n∑

i=1

α̂τ (Ti)Σuα̂(Ti)−
n∑

i=1

βτΣηβ, (10)

we obtain the modified profile least squares estimator of β

β̂ =
{ n∑

i=1

(ṼiṼ
τ
i − V τQτ

i ΣuQiV − Ση)
}−1{ n∑

i=1

(ṼiỸi − V τQτ
i ΣuQiY )

}
, (11)

Moreover, the estimator of α(·) is obtained as

α̃(T ) = (α̃1(T ), · · · , α̃q(T ))τ = (Iq 0q){(DW
T )τωT DW

T −Ω}−1(DW
T )τωT (Y −V β̂).

(12)

As for the estimator β̂ is consistent and asymptotically normal. However,

restriction conditions Aβ = b were not satisfied. In order to solve this problem,

we will construct a restricted estimator, which is not only consistent but also

satisfies the linear restrictions. To apply the Lagrange multiplier technique,

we define the following Lagrange function corresponding to the restrictions

Aβ = b as

F (β, λ) =
n∑

i=1

{Yi−V τ
i β−W τ

i α̂(Ti)}2−
n∑

i=1

α̂τ (Ti)Σuα̂(Ti)−
n∑

i=1

βτΣηβ+2λτ (Aβ−b),

(13)
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where λ is a k × 1 vector that contains the Lagrange multipliers. By differen-

tiating F (β, λ) with respect to β and λ, we obtain the following equations:

∂F (β, λ)

∂β
=

=
[ n∑

i=1

(ṼiỸi − V τQτ
i ΣuQiY )− Aτλ

]
−

n∑
i=1

(ṼiṼ
τ
i − V τQτ

i ΣuQiV − Ση)β

= 0, (14)

∂F (β, λ)

∂λ
= 2(Aβ − b) = 0, (15)

Solving the equation. (14) with respect to β , we get

β = β̂ −
{ n∑

i=1

(ṼiṼ
τ
i − V τQτ

i ΣuQiV − Ση)
}−1

Aτλ.

We substitute β into the equation(13) and we have

b = Aβ̂ − A
{ n∑

i=1

(ṼiṼ
τ
i − V τQτ

i ΣuQiV − Ση)
}−1

Aτλ.

As the inverse matrix of A
{ n∑

i=1

(ṼiṼ
τ
i − V τQτ

i ΣuQiV −Ση)
}−1

Aτ exists, then

we can write the estimator of λ as

λ̂ =
{
A
[ n∑

i=1

(ṼiṼ
τ
i − V τQτ

i ΣuQiV − Ση)
]−1

Aτ
}−1

(Aβ̂ − b). (16)

Then, the restricted estimator of β is obtained as

β̂r = β̂ −
{ n∑

i=1

(ṼiṼ
τ
i − V τQτ

i ΣuQiV − Ση)
}−1

Aτ
{
A
[ n∑

i=1

(ṼiṼ
τ
i − V τQτ

i ΣuQiV − Ση)
]−1

Aτ
}−1

(Aβ̂ − b),

Moreover, the restricted estimator of α(·) is obtained as

α̃r(T ) = (Iq 0q){(DW
T )τωT DW

T − Ω}−1(DW
T )τωT (Y − V β̂r). (17)



62 Estimation of Partially Linear Varying-Coefficient...

3 Asymptotic normality

The following assumption will be used.

A1. The random variable T has a bounded support =. Its density function

f(·) is Lipschitz continuous and f(·) > 0.

A2. There is an s > 2, such that E‖ε1‖2s < ∞, E‖u1‖2s < ∞, E‖η1‖2s <

∞, E‖X1‖2s < ∞, E‖Z1‖2s < ∞, and for some δ < 2− s−1, there is n2δ−1h →
∞ as n →∞.

A3. {αj(·), j = 1, · · · , q} have continuous second derivatives in T ∈ =.

A4. The function K(·) is a symmetric density function with compact support.

and the bandwidth h satisfies nh2/(log n)2 →∞, nh8 →∞ as n →∞.

A5. The matrix Γ(T ) = E(Z1Z
τ
1 |T ) is nonsingular,E(X1X

τ
1 |T ) and Φ(T ) =

E(Z1X
τ
1 |T ) are all Lipschitz continuous.

The following notations will be used.

Let cn = {(nh)−1 log n}1/2, X̃i = Xi−XτSτ
i , η̃i = ηi−ητSτ

i , ε̃i = εi−ετSτ
i , µk =∫ +∞

−∞ tkK(t)dt, νk =
∫ +∞
−∞ tkK2(t)dt, k = 0, 1, 2, 3.

Theorem 3.1. Assume that the conditions A1-A5 hold, Then the estimator

β̂r of β is asymptotically normal, namely,

√
n(β̂r − β) →L N(0, Σ),

where →L denotes the convergence in distribution, and

Σ = Σ−1
1 ΛΣ−1

1 −Σ−1
1 Σ2Σ

−1
1 ΛΣ−1

1 −Σ−1
1 ΛΣ−1

1 Σ2Σ
−1
1 +Σ−1

1 Σ2Σ
−1
1 ΛΣ−1

1 Σ2Σ
−1
1 ,

Σ1 = E(X1X
τ
1 )− E(Φτ (T1)Γ

−1(T1)Φ(T1)),

Σ2 = Aτ (AΣ−1
1 Aτ )−1A,

Λ = E(ε1−uτ
1α(T1)−ητ

1β)2Σ1+E(ε1−ητ
1β)2E{Φτ (T1)Γ

−1(T1)ΣuΓ
−1(T1)Φ(T1)}

+E{Φτ (T1)Γ
−1(T1)(u1u

τ
1 − Σu)α(T1)}⊗2 + E(ε1 − uτ

1α(T1))
2Ση

+E{(η1η
τ
1 − Ση)ββτ (η1η

τ
1 − Ση)},

A⊗2 means AAτ .

Theorem 3.2. Assume that the conditions A1-A5 hold. Then

√
nh(α̃r(T )− α(T )− 1

2
h2µ2

2 − µ1µ3

µ2 − µ2
1

α′′(T )) →L N(0, ∆),
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where ∆ =
µ2

2v0−2µ1µ2v1+µ2
1v2

(µ2−µ2
1)2

f(T )−1Σ∗;

Σ∗ = Γ−1(T )
[
E(ε1−ητ

1β)2Γ(T )+E(ε1−ητ
1β)2Σu+E{ξ1α(T )ατ (T )ξτ

1}
]
Γ−1(T );

ξ1 = Σu − u1u
τ
1 − Z1u

τ
1.

4 Simulation

We illustrate the proposed method through a simulated example. The data

are generated from the following model

Y = sin(32t)X1+2Z1+3Z2+ε, V1 = X1+η1, W1 = Z1+u1, W2 = Z2+u2, (18)

where X1 ∼ N(5, 1), Z1 ∼ N(1, 1), Z2 ∼ N(1, 1), η1 ∼ N(0, 0.16), u1 ∼
N(0, 0.25), u2 ∼ N(0, 0.25). To gain an idea of the effect of the distribu-

tion of the error on our results, we take the following two different types of

the error distribution,(1)ε ∼ N(0, 0.16),(2)ε ∼ U(−1, 1). The kernel function

K(x) = 3
4
(1 − x2)I|x|≤1 and bandwidth h = 1

40
are used in our simulation

studies, respectively.

For model (19) with restriction condition β1 +β2 = 5, We compare the per-

formance of the unrestricted estimator with that of the restricted estimator

in terms of sample mean (Mean), sample standard deviation (SD) and sample

mean squared error (MSE). Simulations with sample size n = 100, 200. The

simulation results are presented in Table 1. We can find that all the estimators

of parameters are close to the true value. As the sample size increases, the

biases, standard deviation and sample mean squared error of all the estima-

tors decrease. It is noted that in all the scenarios we studied, the restricted

corrected profile least-squares estimator of the parametric component outper-

forms the corresponding unrestricted estimator. The results are robust to the

choice of error distributions. In addition, when the sample size is 200, we plot

the estimated curve of the nonparametric component in Figure 1,2. ∗ indicate

estimated value, and use solid-line curve indicate actual value. then, we found

estimated results is fine.
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Table 1: Finite sample performance of the restricted and unrestricted estima-

tors

β Error n Unrestricted Restricted

Mean SD MSE Mean SD MSE

β1 = 2 N(0, 0.42) 100 2.0441 0.0805 0.9984 2.0284 0.0547 0.0725

200 1.9666 0.0637 0.0307 2.0095 0.0376 0.0246

U(−1, 1) 100 2.0514 0.0742 0.0528 2.0468 0.0541 0.0237

200 1.9876 0.0652 0.0161 2.0109 0.0388 0.0129

β2 = 3 N(0, 0.42) 100 2.9262 0.0793 0.0865 2.9716 0.0547 0.0725

200 2.9459 0.0669 0.0377 2.9905 0.0376 0.0246

U(−1, 1) 100 2.9497 0.0824 0.0318 2.9532 0.0541 0.0237

200 2.9626 0.0679 0.0211 2.9891 0.0388 0.0129

5 Proof of Main Results

Lemma 5.1. Suppose that the conditions (A1)-(A5) hold, as n →∞, then

sup
T∈=

∣∣∣∣ 1

nh

n∑
i=1

K(
Ti − T

h
)(

Ti − T

h
)kZij1Zij2 − f(T )Γj1j2(T )µk

∣∣∣∣ = O(h2 + cn) a.s. ,

sup
T∈=

∣∣∣∣ 1

nh

n∑
i=1

K(
Ti − T

h
)(

Ti − T

h
)kZijεi

∣∣∣∣ = O(cn) a.s. ,

sup
T∈=

∣∣∣∣ 1

nh

n∑
i=1

K(
Ti − T

h
)(

Ti − T

h
)kZijuij

∣∣∣∣ = O(cn) a.s. ,

where j, j1, j2 = 1, · · · , q; k = 0, 1, 2, 3.

The proof of Lemma 5.1 can be found in Xia [6].

Lemma 5.2. Suppose that the conditions (A1)-(A5) hold, then

(DW
T )τωT DW

T − Ω = nf(T )Γ(T )⊗

(
1 µ1

µ1 µ2

)
{1 + Op(cn)},

(DW
T )ωT V = nf(T )Φ(T )⊗ (1, µ1)

τ{1 + Op(cn)},
(DW

T )ωT W = nf(T )Γ(T )⊗ (1, µ1)
τ{1 + Op(cn)}.
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Figure 1: sin(32t)(ε ∼ N(0, 0.42) Figure 2: sin(32t)(ε ∼ U(−1, 1))

The proof of Lemma 5.2 is similar to that of Lemma A.2 in Wang [3]. We

here omit the detail.

Lemma 5.3. Let G1, · · · , Gn be independent and identically distributed ran-

dom variables. If E|Gi|s is bounded for s > 1, then max
1≤i≤n

|Gi|s = o(n1/s) a.s.

The proof of Lemma 5.3 can be found in Shi [13]. We here omit the detail.

Lemma 5.4. Suppose that the conditions (A1)-(A5) hold, then

1

n

n∑
i=1

{ṼiṼ
τ
i −V τQτ

i ΣuQiV −Ση} → E(X1X
τ
1 )−E(Φτ (T1)Γ

−1(T1)Φ(T1)) a.s. .

The proof of Lemma 5.4 is similar to that of Lemma 7.2 in Fan [12]. We

here omit the detail.

Lemma 5.5. Assume that the conditions A1-A5 hold, Then the estimator β̂

of β is asymptotically normal, namely,
√

n(β̂ − β) →L N(0, Σ−1
1 ΛΣ−1

1 ).

where Σ1 and Λ are defined in Theorem 3.1.

Proof By (11), we have

√
n(β̂ − β) =

√
n
{ n∑

i=1

(ṼiṼ
τ
i − V τQτ

i ΣuQiV − Ση)
}−1

{ n∑
i=1

[Ṽi(Ỹi − Ṽ τ
i β)− V τQτ

i ΣuQi(Y − V β) + Σηβ]
}
,
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By Lemma 5.1 , Lemma 5.2 and Lemma 5.3 we have

1√
n

{ n∑
i=1

[Ṽi(Ỹi − Ṽ τ
i β)− V τQτ

i ΣuQi(Y − V β) + Σηβ]
}

=
1√
n

{ n∑
i=1

[Xi − Φτ (Ti)Γ
−1(Ti)Zi][εi − uτ

i α(Ti)− ητ
i β]

− Φτ (Ti)Γ
−1(Ti)ui(εi − ητ

i β) + Φτ (Ti)Γ
−1(Ti)(uiu

τ
i − Σu)α(Ti)

+ ηi(εi − uτ
i α(Ti))− (ηiη

τ
i − Ση)β + op(1)

=
1√
n

n∑
i=1

Jin + op(1).

then

Cov(Jin) = E{[εi − uτ
i α(Ti)− ητ

i β][Xi − Φτ (Ti)Γ
−1(Ti)Zi]}⊗2 + E{Φτ (Ti)Γ

−1(Ti)ui

(εi − ητ
i β)}⊗2 + E{Φτ (Ti)Γ

−1(Ti)(uiu
τ
i − Σu)α(Ti)}⊗2

+E{ηi(εi − uτ
i α(Ti))}⊗2 + E{(ηiη

τ
i − Ση)β}⊗2

lim
n→∞

1

n

n∑
i=1

Cov(Jin) = E(ε1 − uτ
1α(T1)− ητ

1β)2Σ1 + E(ε1 − ητ
1β)2E{Φτ (T1)Γ

−1(T1)

ΣuΓ
−1(T1)Φ(T1)}+ E{Φτ (T1)Γ

−1(T1)(u1u
τ
1 − Σu)α(T1)}⊗2

+ E(ε1 − uτ
1α(T1))

2Ση + E{(η1η
τ
1 − Ση)ββτ (η1η

τ
1 − Ση)}.

Therefore, by Lemma 5.4, and central limit theorem, Slutsky theorem, we have

√
n(β̂ − β) →L N(0, Σ−1

1 ΛΣ−1
1 ).

Proof of Theorem 3.1. We first denote that

J0 =: I −
{ n∑

i=1

(ṼiṼ
τ
i − V τQτ

i ΣuQiV − Ση)
}−1

Aτ

{
A
[ n∑

i=1

(ṼiṼ
τ
i − V τQτ

i ΣuQiV − Ση)
]−1

Aτ
}−1

A

= I −
{ 1

n

n∑
i=1

(ṼiṼ
τ
i − V τQτ

i ΣuQiV − Ση)
}−1

Aτ

{
A
[ 1
n

n∑
i=1

(ṼiṼ
τ
i − V τQτ

i ΣuQiV − Ση)
]−1

Aτ
}−1

A,
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By Lemma 5.4, we obtain

J0
P−→ I − Σ−1

1 Aτ [AΣ−1
1 Aτ ]−1A =: J,

By (18), we have

β̂r − β =
{

I −
{ n∑

i=1

(ṼiṼ
τ
i − V τQτ

i ΣuQiV − Ση)
}−1

Aτ

{
A
[ n∑

i=1

(ṼiṼ
τ
i − V τQτ

i ΣuQiV − Ση)
]−1

Aτ
}−1

A
}

(β̂ − β)

= J(β̂ − β) + (J0 − J)(β̂ − β),

Note that J0 − J = op(1) and β̂ − β = O(n−1/2). It is easy to check that

(J0 − J)(β̂ − β) = op(n
−1/2).

Invoking the Slutsky theorem and Lemma 5.5, we obtain the desired result.

Proof of Theorem 3.2. For Ti in a small neighborhood of T , and let

|Ti − T | < h, we can approximate α(Ti) by the following Taylor expansion

α(Ti) ≈ α(T ) + α′(T )(Ti − T ) +
1

2
α′′(Ti − T )2 + op(h

2),

Then, we have

M =

 Zτ
1 α(T1)

...

Zτ
nα(Tn)

 = DZ
T

(
α(T )

hα′(T )

)
+


1
2
Zτ

1 α′′(T1)(T1 − T )2

...
1
2
Zτ

nα′′(Tn)(Tn − T )2

 ,

By the expression of M , it is easy to see that

(DW
T )τωT M = (DW

T )τωT DZ
T

(
α(T )

hα′(T )

)
+

h2

2
(DW

T )τωT ΨT Zα′′(T ) + op(h
2),

where ΨT = diag{((T1 − T )/h)2, · · · , ((Tn − T )/h)2}.

(DW
T )τωT DZ

T

(
α(T )

hα′(T )

)
= {(DW

T )τωT DW
T − Ω}

(
α(T )

hα′(T )

)

+ {−(DW
T )τωT Du

T + Ω}

(
α(T )

hα′(T )

)
.
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{(DW
T )τωT DW

T − Ω}−1(DW
T )τωT ΨT Zα′′(T )

=
1

µ2 − µ2
1

(
(µ2

2 − µ1µ3)α
′′(T )

(µ3 − µ1µ2)α
′′(T )

)
{1 + o(1)} a.s.,

Recall the definition of α̃r(T ) in (18), we have

α̃r(T ) = (Iq 0q){(DW
T )τωT DW

T − Ω}−1(DW
T )τωT (Y − V β̂r)

= (Iq 0q){(DW
T )τωT DW

T − Ω}−1(DW
T )τωT M

+(Iq 0q){(DW
T )τωT DW

T − Ω}−1(DW
T )τωT V (β − β̂r)

+(Iq 0q){(DW
T )τωT DW

T − Ω}−1(DW
T )τωT (ε− ηβ)

=: I1 + I2 + I3.

As mentioned above

I1 = α(T ) +
1

2
h2µ2

2 − µ1µ3

µ2 − µ2
1

α′′(T )

+ (Iq 0q){(DW
T )τωT DW

T − Ω}−1{−(DW
T )τωT Du

T + Ω}

(
α(T )

hα′(T )

)

+ op(h
2),

By Lemma 5.1 and Lemma 5.2, we can obtain

(Iq 0q){(DW
T )τωT DW

T − Ω}−1(DW
T )τωT (DW

T )τωT V = Γ−1(T )Φ(T ){1 + Op(cn)},

Invoking Theorem 3.1, we yield that

√
nhI2 =

√
nhΓ−1(T )Φ(T ){1 + Op(cn)}O(n−1/2) = op(1),

Similar to that of A4 ∼ A6 in [5], we have

√
nh{(DW

T )τωT DW
T − Ω}−1{

(DW
T )τωT (ε− ηβ) + {−(DW

T )τωT Du
T + Ω}

(
α(T )

hα′(T )

)}
→L N(0, Ξ)

where, Σ∗ is defined in Theorem 3.2, and

Ξ = f(T )−1Σ∗⊗ 1
(µ2−µ1)2

(
µ2

2ν0 − 2µ1µ2ν1 + µ2
1ν2 (µ2

1 + µ2)ν1 − µ1µ2ν0 − µ1ν2

(µ2
1 + µ2)ν1 − µ1µ2ν0 − µ1ν2 ν2 − µ1(2ν1 + µ1ν0)

)
.
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As mentioned above

√
nh(α̃r(T )− α(T )− 1

2
h2µ2

2 − µ1µ3

µ2 − µ2
1

α′′(T )) →L N(0, ∆).
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