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Abstract 

In this work, cross-correlation function of multivariate time series was the interest. 

The design of cross-correlation function at different lags was presented. 𝛾𝑋𝑖𝑡+𝑘𝑋𝑗𝑡+𝑙 

is the matrix of the cross-covariance functions, 𝛾𝑋𝑖𝑡 and  𝛾𝑋𝑗𝑡 are the variances of 

𝑋𝑖𝑡 and 𝑋𝑗𝑡vectors respectively. Vector cross-correlation function was derived as 

𝜌𝑋𝑖𝑡+𝑘,𝑋𝑗𝑡+𝑙 =
𝛾𝑋𝑖𝑡+𝑘𝑋𝑗𝑡+𝑙

�𝛾𝑋𝑖𝑡𝛾𝑋𝑗𝑡
 .  A statistical package was used to verify the vector cross 

correlation functions, with trivariate analysis as a special case. From the results, 

some properties of vector cross-correlation functions were established.  
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1  Introduction 

In statistics, the term cross-covariance is sometimes used to refer to the 

covariance corr(X,Y) between two random vectors 𝑋 and 𝑌, (where 𝑋 =

𝑋1,𝑋2, … ,𝑋𝑛 𝑎𝑛𝑑 𝑌 = 𝑌1,𝑌2, … ,𝑌𝑛). In signal processing, the cross-covariance is 

often called cross-correlation and is a measure of similarity of two signals, 

commonly used to find features in an unknown signal by comparing it to a known 

one. It is a function of the relative time between the signals, and it is sometimes 

called the sliding dot product. In univariate time series, the autocorrelation of a 

random process describes the correlation between values of the process at 

different points in time, as a function of the two times or of the time difference. 

Let 𝑋 be some repeatable process, and 𝑖 be some point in time after the start of 

that process. (𝑖 may be an integer for a discrete-time process or a real number for a 

continuous-time process.) Then 𝑋𝑖 is the value (or realization) produced by a given 

run of the process at time 𝑖. Suppose that the process is further known to have 

defined values for mean 𝜇𝑖 and variance 𝜎𝑖2 for all times 𝑖. Then the definition of 

the autocorrelation between times 𝑠 and 𝑡 is 

𝜌(𝑠,𝑡) = 𝐸{(𝑋𝑡−𝜇𝑡)(𝑋𝑠−𝜇𝑠)]
𝜎𝑡𝜎𝑠

, 

where “E” is the expected value operator. It is required to note that the above 

expression is not well-defined for all time series or processes, because the 

variance may be zero. If the function 𝜌 is well-defined, its value must lie in the 

range [-1,1], with 1 indicating perfect correlation and -1 indicating perfect anti-

correlation. If 𝑋 is a second-order stationary process then the mean 𝜇 and the 

variance 𝜎2 are time-independent, and further the autocorrelation depends only on 

the difference between 𝑡 and 𝑠: the correlation depends only on the time-distance 

between the pair of values but not on their position in time. This further implies 

that the autocorrelation can be expressed as a function of the time-lag, and that 
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this would be an even function of the lag 𝑘 = 𝑠 − 𝑡, which implies 𝑠 = 𝑡 + 𝑘. 

This gives the more familiar form, 

𝜌𝑘 = 𝐸[(𝑋𝑡−𝜇)(𝑋𝑡+𝑘−𝜇)]
√𝐸[(𝑋𝑡−𝜇)2]𝐸[(𝑋𝑡+𝑘−𝜇)2]

= 𝐸[(𝑋𝑡−𝜇)(𝑋𝑡+𝑘−𝜇)]
𝜎2

 

where 𝑋𝑡and 𝑋𝑡+𝑘 are time series process at lag k time difference. Hence, 

autocovariance coefficient 𝛾𝑘 at lag k, measures the covariance between two 

values 𝑍𝑡  and 𝑍𝑡+𝑘, a distance k apart. The autocorrelation coefficient 𝜌𝑘is defined 

as the autocovariance 𝛾𝑘 at lag k divided by variance 𝛾0(𝑘=0). The plot of 𝛾𝑘 

against lag k is called the autocovariance function (𝛾𝑘), while the plot of 𝜌𝑘 

against lag k is called the autocorrelation function (Box and Jenkins 1976). 

In multivariate time series, cross-correlation or covariance involves more 

than one process. For instance, 𝑋𝑡 and 𝑌𝑡 are two processes of which 𝑋𝑡  could be 

cross-correlated with 𝑌𝑡 at lag k. The lag k value return by 𝑐𝑐𝑓(𝑋,𝑌) estimates the 

correlation between 𝑋(𝑡 + 𝑘) 𝑎𝑛𝑑 𝑌(𝑡), Venables and Ripley (2002). Storch and 

Zwiers (2001) described cross-correlation in signal processing and time series. In 

signal processing, cross-correlation is a measure of similarity of two waveforms as 

a function of a time lag applied to one of them. This is also known as a sliding dot 

product or sliding inner-product. It is commonly used for searching a -duration 

signal for a shorter known feature. It also has application in pattern recognition, 

signal particle analysis, electron tomographic averaging, cryptanalysis and 

neurophysiology. In autocorrelation, which is the cross-correlation of a signal with 

itself, there is always a peak at a lag of zero unless the signal is a trivial zero 

signal. In probability theory and Statistics, correlation is always used to include a 

standardising factor in such a way that correlations have values between -1 and 1. 

Let (𝑋𝑡,𝑌𝑡) represent a pair of stochastic process that are jointly wide sense 

stationary. Then the cross covariance given by Box et al (1984) is 

𝛾𝑥𝑦(𝜏) =  𝐸[(𝑋𝑡 − 𝜇𝑥)�𝑌𝑡+𝜏 − 𝜇𝑦�], 
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where 𝜇𝑥 and 𝜇𝑦 are the means of 𝑋𝑡 and 𝑌𝑡 respectively. The cross-correlation 

function 𝜌𝑥𝑦 is the normalized cross-covariance function. Therefore, 

𝜌𝑥𝑦(𝜏) =
𝛾𝑥𝑦(𝜏)
𝜎𝑥𝜎𝑦

 

where 𝜎𝑥 and 𝜎𝑦 are the standard deviation of processes 𝑋𝑡 and 𝑌𝑡 respectively. If 

𝑋𝑡= 𝑌𝑡 for all t, then the cross-correlation function is simply the autocorrelation 

function for a discrete process of length n defined as {𝑋1, … ,𝑋𝑛} which known 

mean and variance, an estimate of the autocorrelation may be obtained as 

𝑅�(𝑘) =
1

(𝑛 − 𝑘)𝜎2
�(𝑋𝑡 − 𝜇)(𝑋𝑡+𝑘 − 𝜇)
𝑛−𝑘

𝑡=1

 

for any positive integer k<n, Patrick (2005). When the true mean 𝜇 and variance 

𝜎2 are known, the estimate is unbiased. If the true mean, this estimate is unbiased. 

If the true mean and variance of the process are not known, there are several 

probabilities: 

i. if 𝜇 and 𝜎2 are replaced by the standard formulas for sample mean and sample 

variance, then this is a biased estimate.   

ii. if n-k in the above formula is replaced with n, the estimate is biased. However, 

it usually has a smaller mean square error, Priestly (1982) and Donald and Walden 

(1993). 

iii. if 𝑋𝑡 is stationary process, then the following are true  

𝜇𝑡 = 𝜇𝑠 = 𝜇 , for all t,s   and   𝐶𝑥𝑥(𝑡,𝑠) = 𝐶𝑥𝑥(𝑠−𝑡) = 𝐶𝑥𝑥(𝑇), 

where T=s-t, is the lag time or the moment of time by which the signal has been 

shifted. As a result, the autocovariance becomes 

𝐶𝑥𝑥(𝑇) = 𝐸[�𝑋(𝑡) − 𝜇��𝑋(𝑡+𝑇) − 𝜇�] = 𝐸�𝑋(𝑡)𝑋(𝑡+𝑇)� − 𝜇2= 𝑅𝑥𝑥(𝑇) − 𝜇2, 

where 𝑅𝑥𝑥 represents the autocorrelation in the signal processing sense. 

𝑅𝑥𝑥(𝑇) = 𝐶𝑥𝑥(𝑇)

𝜎2
, Hoel (1984). 
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 For 𝑋𝑡 and 𝑌𝑡, the following properties hold: 

1. 𝜌𝑥𝑦(ℎ) ≤ 1 

2.  𝜌𝑥𝑦(ℎ) =  𝜌𝑥𝑦(−ℎ) 

3.  𝜌𝑥𝑦(0)  ≠ 1 

4.  𝜌𝑥𝑦(ℎ) =  𝛾𝑥𝑦(ℎ)

√𝛾𝑥(0)𝛾𝑦(0)
 

Mardia and Goodall (1993) defined separable cross-correlation function as 

𝐶𝑖𝑗(𝑋1,𝑋2) = 𝜌(𝑋1,𝑋2)𝑎𝑖𝑗, 

where 𝐴 = [𝑎𝑖𝑗] is a 𝑝 × 𝑝 positive definite matrix and 𝜌(. , . ) is a valid 

correlation function. Goulard & Voltz (1992); Wackernage (2003); Ver Hoef and 

Barry (1998) implied that the cross- covariance function is  

𝐶𝑖𝑗(𝑋1 − 𝑋2) = ∑ 𝜌𝑘𝑟
𝑘=1 (𝑋1 − 𝑋2)𝑎𝑖𝑘𝑎𝑗𝑘, 

for an integer 1≤ 𝑟 ≤ 𝑝, where 𝐴 = [𝑎𝑖𝑗] is a 𝑝 × 𝑟 full rank matrix and  𝜌𝑘(.) are 

valid stationary correlation functions. Apanasovich and Genton (2010) constructed 

valid parametric cross-covariance functions. Apanasovich and Genton proposed a 

simple methodology based on latent dimensions and existing covariance models 

for univariate covariance, to develop flexible, interpretable and computationally 

feasible classes of cross-covariance functions in closed forms. They discussed 

estimation of the models and performed a small simulation study to demonstrate 

the models. The interest in this work is to extend cross-correlation functions 

beyond a-two variable case, present the multivariate design of vector cross-

covariance and correlation functions and therefore establish some basic properties 

of vector cross-correlation functions from the analysis of vector cross-correlation 

functions. 
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2  The design of cross-covariance cross-correlation functions 

The matrix of cross-covariance functions is as shown below: 

𝛾𝑋(1𝑡+𝑘),𝑋(1𝑡+𝑙)        𝛾𝑋(1𝑡+𝑘),𝑋(2𝑡+𝑙)       𝛾𝑋(1𝑡+𝑘),𝑋(3𝑡+𝑙)     .   .   .    𝛾𝑋(1𝑡+𝑘),𝑋(𝑛𝑡+𝑙)  

𝛾𝑋(2𝑡+𝑘),𝑋(1𝑡+𝑙)        𝛾𝑋(2𝑡+𝑘),𝑋(2𝑡+𝑙)       𝛾𝑋(2𝑡+𝑘),𝑋(3𝑡+𝑙)     .   .   .    𝛾𝑋(2𝑡+𝑘),𝑋(𝑛𝑡+𝑙)  

𝛾𝑋(3𝑡+𝑘),𝑋(1𝑡+𝑙)        𝛾𝑋(3𝑡+𝑘),𝑋(2𝑡+𝑙)       𝛾𝑋(3𝑡+𝑘),𝑋(3𝑡+𝑙)     .   .   .    𝛾𝑋(3𝑡+𝑘),𝑋(𝑛𝑡+𝑙)  

                          .        . 
                          .        . 
                          .        . 

𝛾𝑋(𝑚𝑡+𝑘),𝑋(1𝑡+𝑙)        𝛾𝑋(𝑚𝑡+𝑘),𝑋(2𝑡+𝑙)       𝛾𝑋(𝑚𝑡+𝑘),𝑋(3𝑡+𝑙)     .   .   .    𝛾𝑋(𝑚𝑡+𝑘),𝑋(𝑛𝑡+𝑙) 

where  𝑘 = 0, … ,𝑎, 𝑙 = 0, … , 𝑏. 

The above matrix is a square matrix, and could be reduced to the form,  

𝛾𝑋(𝑖𝑡+𝑘),𝑋(𝑗𝑡+𝑙)         

where  𝑖 = 1, … ,𝑚, 𝑗 = 1, … ,𝑛,𝑘 = 0, … ,𝑎, 𝑙 = 0, … , 𝑏, (𝑛 = 𝑚).  

From the above cross-covariance matrix,  

𝜌𝑋𝑖𝑡+𝑘,𝑋𝑗𝑡+𝑙 =
𝛾𝑋𝑖𝑡+𝑘𝑋𝑗𝑡+𝑙

�𝛾𝑋𝑖𝑡𝛾𝑋𝑗𝑡
, 

where, 𝛾𝑋𝑖𝑡+𝑘𝑋𝑗𝑡+𝑙  is the matrix of the cross-covariance functions, 𝛾𝑋𝑖𝑡 and  𝛾𝑋𝑗𝑡 

are the variances of 𝑋𝑖𝑡 and 𝑋𝑗𝑡vectors respectively. Given the above matrix, it is 

required to note that two vector processes 𝑋𝑖𝑡+𝑘 and 𝑋𝑗𝑡+𝑙 can only be cross-

correlated at different lags, if either 𝑘 𝑙𝑎𝑔 of 𝑋𝑖𝑡 or 𝑙 𝑙𝑎𝑔 of 𝑋𝑗𝑡 has a fixed value 

zero. That is 𝑋𝑖𝑡 can be cross-correlated with 𝑋𝑗𝑡+𝑙(𝑙 ± 1,2, … , 𝑏), or 𝑋𝑗𝑡can be 

cross-correlated with 𝑋𝑖𝑡+𝑘(𝑘 ± 1,2, … ,𝑎). 
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3  Analysis of the cross-correlation functions 

Given two processes 𝑋1𝑡 𝑎𝑛𝑑 𝑋2𝑡, 𝜌(𝑋1𝑡,𝑥2𝑡+𝑘) is the cross-correlation 

between 𝑋1𝑡 𝑎𝑛𝑑 𝑋2𝑡 𝑎𝑡 𝑙𝑎𝑔 𝑘, while, 𝜌(𝑥2𝑡,𝑥1𝑡+𝑘) is the cross-correlation between 

𝑋2𝑡 𝑎𝑛𝑑 𝑋1𝑡 𝑎𝑡 𝑙𝑎𝑔 𝑘, Box et al (1984). In this work, three vector processes 

𝑋1𝑡, 𝑋2𝑡 𝑎𝑛𝑑 𝑋3𝑡 are used to carry out the cross-correlation analysis. For 𝑘 =

0, ± 1, 2, … ,4, the following results were obtained with a software: 

 

Lag 

k 

𝜌(𝑥1𝑡,𝑥2𝑡+𝑘) 𝜌(𝑥2𝑡,𝑥1𝑡+𝑘) 𝜌(𝑥1𝑡,𝑥3𝑡+𝑘) 𝜌(𝑥3𝑡,𝑥1𝑡+𝑘) 𝜌(𝑥2𝑡,𝑥3𝑡+𝑘) 𝜌(𝑥3𝑡,𝑥2𝑡+𝑘) 

-4 -0.172 0.572 -0.102 0.643 -0.427 -0.350 

-3 -0.517 0.405 -0.501 0.410 -0.076 0.042 

-2 -0.611 0.098 -0.662 0.067 0.327 0.399 

-1 -0.605 -0.290 -0.674 -0.303 0.659 0.697 

0 -0.506 -0.506 -0.578 -0.578 0.900 0.900 

1 -0.290 -0.605 -0.303 -0.674 0.697 0.659 

2 0.098 -0.611 0.067 -0.662 0.399 0.327 

3 0.405 -0.517 0.410 -0.501 0.042 -0.076 

4 0.572 -0.172 0.643 -0.102 -0.350 -0.427 

 
From the above analysis, the following properties were established: 

1. a. 𝜌𝑋𝑖𝑡+𝑘,𝑋𝑗𝑡+𝑙 ≠ 1, 𝑓𝑜𝑟 k = 0, 𝑙 = ±1, … , ±b, 𝑖 ≠ 𝑗, 

            b. 𝜌𝑋𝑖𝑡+𝑘,𝑋𝑗𝑡+𝑙 ≠ 1,𝑓𝑜𝑟 𝑙 = 0,𝑘 = ±1, … , ±a, 𝑖 ≠ 𝑗. 

2. a. 𝜌𝑋𝑖𝑡+𝑘,𝑋𝑗𝑡+𝑙 ≠ 𝜌𝑋𝑖𝑡+𝑘,𝑋𝑗𝑡−𝑙 , for k = 0, 𝑙 = 1, … , b, 𝑖 ≠ 𝑗, 

b. 𝜌𝑋𝑖𝑡+𝑘,𝑋𝑗𝑡+𝑙 ≠ 𝜌𝑋𝑖𝑡−𝑘,𝑋𝑗𝑡+𝑙 , for 𝑙 = 0, k = 1, … , a, 𝑖 ≠ 𝑗. 

3. a. 𝜌𝑋𝑖𝑡+𝑘,𝑋𝑗𝑡+𝑙 = 𝜌𝑋𝑗𝑡+𝑘,𝑋𝑖𝑡−𝑙 , for k = 0, 𝑙 = 1, … , b, 𝑖 ≠ 𝑗, 

b. 𝜌𝑋𝑖𝑡+𝑘,𝑋𝑗𝑡+𝑙 = 𝜌𝑋𝑗𝑡−𝑘,𝑋𝑖𝑡+𝑙 , for 𝑙 = 0,𝑘 = 1, … , a, 𝑖 ≠ 𝑗. 
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4  Conclusion 

The motivation behind this research work was to carry out cross-

correlation functions of multivariate time series. Ordinarily, cross-correlation 

compares two series by shifting one of them relative to the other. In the case of 𝑋 

and 𝑌 variables, the variable 𝑋 may be cross-correlated at different lags of  𝑌, and 

vice versa. In this work, 𝑋𝑖𝑡 and 𝑋𝑗𝑡 were used as vector time series, using 

trivariate as a special case of multivariate cross-correlation functions. The design 

of the cross-covariance functions has been displayed in a matrix form. Estimates 

obtained revealed some basic properties of vector cross-correlation functions.  
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