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On some mixed integral inequalities
and its applications

S.D. Kendre ! and S.G. Latpate?®

Abstract

In this paper, we establish some mixed integral and integro-differential
inequalities which can be used as handy tools to study properties of so-

lutions of a certain mixed integral and differential equations.
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1 Introduction

In the theory of differential, integral and integro-differential equations one
often has to deal with certain differential and integro-differential inequalities.
In the last few years with the development of the theory of nonlinear differ-

ential and integral equations, many authors have established several integral
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2 On some mixed integral inequalities

and integro-differential inequalities, see [1, 2, 4, 6, 7, 8, 9, 10, 11, 12]. These
inequalities play an important role in the study of some properties of differ-
ential, integral and integro-differential equations. Existence of solutions of a
certain mixed integral and integro-differential equations were studied in [3, 13]
by M. B. Dhakne and H. L. Tidke.

In this paper, we establish mixed integral and integro-differential inequal-
ities which provide an explicit bound on unknown function. In particular we
extend the result established by B. G. Pachpatte in [12]. Some applications

are also given to convey the importance of our results.

2 Preliminary

Before proceeding to the statement of our main result, we state some im-

portant integral inequalities that will be used in further discussion.

Lemma 2.1 (Fangcui Jiang and Fanwei Meng [5]). Assume that a >
0,p>q>0, and p # 0, then

p_

ar < gk%aqL qk‘%, for any k > 0. (2.1)

p

Theorem 2.2 (Pachpatte [12]). Let u(t), a(t),b(t),c(t) € C(I = [a, 8], Ry), a(t)
be continuously differentiable on I, a'(t) > 0 and

t B

u(t) < alt) +/ b(s)u(s)ds +/ c(s)u(s)ds, tel. (2.2)

o «

Ifp= /6 c(s) exp (/S b(a)da) ds < 1, then

u(t) < M exp ( /a t b(s)ds> + /a " (s) exp < /a s b(a)da) ds, tel, (2.3)

where

M= ip [a(a) + /j (s) /a o () exp (/st(a)do) drds} Ctel (24)
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3 Main Results

In this section, we state and prove mixed nonlinear integral inequalities to

obtain explicit bound on solutions of a certain mixed integral equations.

Theorem 3.1. Let u(t), f(t),g(t),c(t),d(t) € C(I = [, B],Ry) and p >
q > 0,p # 0 be constants. If

o [ s+ [ e

Jé] s
and Q) = / g(s)exp (/ nlf(a)da) ds < 1, then

a) + ffg(s) ([21d(7) + naf (7)) exp ([ i f(o)do) dr) ds

W (t) < & e
X exp (/; mf(s)ds) + /c:t [c/(s) + naf(s)] exp (/t n1f<a)da> ds
(3.1)
where k> 0, ny = Lk and ny = 2 ks,
Proof. Define a function z(t) by
/ F(s)ut(s)ds + / g(s)uP (s)ds,
then u(t) < z7(t),
2(a) = ca) + / " (s)ur(s)ds (3.2)
and
Z(t) =) + f(ut) < (t) + f(t)zr (2) (3.3)

¢From Lemma 2.1 and (3.3), we have

Z(t) < )+ f(8)z() + naf(1),

or, equivalently,
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Setting ¢ = s; in (3.4) and integrating with respect to s from «a to t, we have

() < @) ewp ([ mas(eids) + [ 1¢66) +mas(eenp ( [ mustorin ) ds
(3.5)

As uP(t) < z(t) from equation (3.5), we have

(1) < 2(a) exp ( /a " f(s)ds) + /a 1(5) + naf (5)] exp < / n f(a)da> ds.
(3.6)

Now from (3.2) and (3.6), we have
+(a) < (@) + =(a) /a ? 4(s) exp ( /a e f(a)da) ds

i /fg@) (/a () + naf (7)) exp (/ nlf(a)da> dT> ds,

or, equivalently,

() (1 _ /jg(s) exp (/a nlf(a)da> ds)
<)+ [ "g(s) ( JACCREEE ( / mf(a)da) df) ds,

(o) + 1 0(5) (2 [7) + maf (] exp ([ ma (o)) dr) ds

< .
(o) < el (3.7
Using inequality (3.7) in (3.6), we obtain the desired inequality (3.1). This
completes the proof. O

Remark 1. It is interesting to note that when p = ¢ = 1 the Theorem 3.1
reduces to the inequality stated in Theorem 2.2 and when p =1 and g =0 it

reduces to well known Gronwall-Bellman inequality.

Theorem 3.2. Let u(t), f(t),g(t), h(t) € C(I,Ry) and ¢ > 0 be a constant.
If
t s B
uP(t) < c+/ h(s) [uq(s) +/ f(a)uq(a)da+/ g(a)up(a)da} ds, fortel,

«
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then

(1) < cexp ( /a t nlA(a)da) + /a " naB(s) exp ( / t nlA(a)d(I) 38)

where

) {1+/atf(a)da—|—nil/jg(a)da}, B(t) = h(t) [1+/atf(o)da],

and p,q,n1,ny are as same defined in Theorem 3.1.

Proof. Denoting a function z(t) by

=(1) / [ /f da—i—/ o) (o )da} ds,

_ ¢, 2(t) is a nondecreasing and
:ht[ +/f( o)t da+/ ()da]
o)t da+/ )2(o )da}
ol [Faoslr) o

An application of Lemma 2.1 to (3.9), we have

<ol Lol ] )
o o1+ [ s d0+_/ o] s 1+ [ s

=n1 A(t)z(t) + na B(t),

or, equivalently,

pr (Itjti(a)w)] | < g B(t) exp (— /at nlA(J)da> : (3.10)

By integrating (3.10), we get

+(t) < +(a) exp ( /a t nlA(a)da) + /a ' 1aB(s) exp ( / t nlA(a)da) ds.

(3.11)
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As uP(t) < z(t) from (3.11), we obtain

wP(t) < 2(a) exp ( /a t nlA(a)dcr) + / t nsB(s) exp ( / t nlA(a)da) ds.

(3.12)

Using z(a) = ¢ in (3.12), we get the desired inequality (3.8) and hence the
proof. ]

Remark 2. Note that when p = ¢ = 1 the Theorem 3.2 reduces to the
inequality established by B.G. Pachpatte in ([12] page no.40).

Corollary 3.3. Let u(t), f(t),g(t), h(t) be as same defined in Theorem 3.2
and 1 < ¢(t) be a nondecreasing. If

uP(t) < ct) + /ath(s) {uq(s) + /: flo)ul(o)do + /aﬂg(a)up(a)da] ds, fortel,

(3.13)
then
(1) < (1) exp < /a t nlA(a)d(;) + () /a 1aB(s) exp ( / t nlA(o)da> ,
(3.14)

where p > q > 1, A(t), B(t) and ny,ny are as same defined in Theorem 3.2 and
Theorem 3.1 respectively.

Proof. Since 1 < ¢(t) and nondecreasing, from (3.13), we have

Z(—z) s th(s) Z(—? q(s)+ ' f(o) % q(a)da—l— Bg(a) Z(Z) p(a)da ds,
(t) o (s) o (o) i @)

(3.15)

for t € I. Applying Theorem 3.2 to (3.15), we get (3.14). This completes the
proof. O]

Theorem 3.4. Let u(t),u'(t), f(t),g(t),c(t),d(t) € C(I,R;) and u(a) = 0.
If

[u/ ()] < c(t /f Jul(s ds+/ g(s)[u/(s)|Pds (3.16)
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Jé] s
and Q1 = / g(s)exp (/ (0 — a)qnlf(a)da) ds < 1, then

(@) + ffg(s) (L1 () + (1 — a)inaf(r)] exp (n1 [2 (0 — @) f(0)do) dT) ds
1 -

()P <

X exp (m / (s — ) f(s)ds)
+ /a CE(S) + (5 — ) maf(s)] exp (m / (s — o) f(s)ds) ds,  (3.17)

D, q,n1, Ny are as same defined in Theorem 3.1.

Proof. Define a function z(
/ f(s)ul(s ds+/ g(s)[u'(s)]Pds,

then wu(t) < fa 2 (s), z(t) is a nondecreasing,

B
() = c(a) + / g(s)[W'(s)]"(s)ds (3.18)
and
2(t) < () + (t— a)if(t)zr (1), (3.19)
Applying Lemma 2.1 to (3.19), we have
2(t) < () + (= ) f (D) [mz(t) + na
= (t) +m(t — ) f(t)z(t) + na(t — @) f(2)
= (t) + na(t — @) f(t)z(t) + na(t — ) f(B),
or, equivalently,
(1) . t
- < [(t) +na(t —)if(t)] exp [ —n1 [ (s — a)?f(s)ds ) .
exp (m1 J1(s - oz)Qf(S)dS)] ’ ( / )

(3.20)
By integrating (3.20), we get
2(t)
exp <n1 f:(s - a)qf(s)ds>
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(1) = sa)esp ([ s —a)7)as) + [ 166+ nats — (o)

X exp (/t (o — &)qf(a)da) ds.
(3.21)

As [u/(t)]P < z(t) from (3.21), we have

0 < e exp ([ als = a)17)ds) + [ I6) + s — a1 5(s)

exp ( / (o — a) f(a)da) ds.

(3.22)
Now from (3.18) and (3.22), we have
(

1 -G
(3.23)

The required inequality (3.17) follows, from inequalities (3.22) and (3.23). This
completes the proof. O

Theorem 3.5. Let u(t), f(t),g(t), h(t) € C(I,Ry) and ¢ > 0 be a constant.
If

[W' (D)) < c+ /a t h(s) {UQ(S) + /a s f(o)ul(o)do + /a ’ g(a)[u'(a)]f’da] ds, fortel,

then

W/ (1)]F < cexp ( /a t nlAl(a)dJ) + /a 1By (s) exp < / t nlAl(o)da> |

(3.24)
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where

) =100 =1+ [ lo = asoro + - [ gtorao].

t
By (t) = h(t) [[t —al?+ / [0 — oc]qf(a)da}
and p,q,n1,ny are as same defined in Theorem 3.1.

Proof. Denoting a function z(t) by

(1) / [ / F(o)u (o) dor + / o) (o)]pda] ds,

z%(t), z(a) = ¢, z(t) is a nondecreasing and

An application of Lemma 2.1 to (3.25), we have

2(t) < h(t) { [[t —a)?+ /a t[a —a)t f(a)da] [m12(t) + na) + [ / ’ g(a)do} z(t)}

:h@%&hPU—MQ+ZﬁU—QPﬂJMJ+gilfMOM%z@)
+ny ht (ﬂQ+¥£%a awfuﬂda]}

= mAi(1)2(t) + n2Bi(2),

or, equivalently,
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By integrating (3.26), we get

2(t) < 2() exp ( /a t nlAl(a)da) + /a t na By (s) exp ( / t nlAl(a)da) ds.
(3.27)

As [u/(t)]P < z(t) from (3.27), we obtain

WP < 2(a) exp ( /a t nlAl(a)da) + /a ' 1aBa(s) exp ( / t nlAl(a)da) ds.
(3.28)

Using z(a) = ¢ in (3.28), we get the desired inequality (3.24) and hence the
proof. Il

4 Applications

One of the main motivations for the study of different type inequalities
given in the previous sections is to apply them as tools in the study of vari-
ous classes of integral equations. In the following section we give application
of some theorems of previous sections. In fact we discuss the boundedness

behavior of solutions of a nonlinear mixed integral equations.

Example 1. Consider the following general mixed nonlinear integral equa-

tion
t B8
y(t) = o(t) + / F(s,y(s))ds + / G(s,y(5))ds, (4.1)

fort € I, wherep > q > 0,p # 0, y(¢) is unknown function, z € C(I,R"), F,G €
O(I x R™, R,
I = [, 5], R™ is n dimensional Euclidean space with norm |.|.

Suppose that the functions z,y, F, G in equation (4.1) satisfy the following

conditions :
2(t)] < c(t), (4.2)

|F(s,y)] < g(s)]ylY, (4.3)
|G (s,y")| < f(s)]y]?, (4.4)
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where p > ¢ > 0,p # 0, ¢, f, g are as same defined in Theorem 3.1. If y(¢),t € I
is a solution of equation (4.1) and @ < 1, then

@) < R ffg(S) )+ 71L2f<22>] exp ([ f(o)do) dr) ds

X exp (/at mf(s)ds> + /; /() + naf(s)] exp (/t nlf(a)da) ds

(4.5)

where (0, nq,no are as same defined in Theorem 3.1.

i From equation (4.1)-(4.4), we obtain

t B8
WO < |o(t)] + / F()y(s)|tds + / o$)lys)Pds.  (46)

An application of Theorem 3.1, we get (4.6). This show that solution y(t) is
bounded.

Example 2. Consider the following general mixed nonlinear integrodiffer-

ential equation

t B
VOP =)+ [ Fly@)dss [ Gl @D

fort € I, wherep > q > 0,p # 0,y(t) is unknown function, x € C(I,R"), F, G €
C(I x R",R"),
I = [, 5], R" is n dimensional Euclidean space with norm |.|.

Suppose that the functions z,y, F, G in equation (4.7) satisfy the following

conditions
[z(t)] < c(t), (4.8)
[F(t,s,97)] < g(t,s) [y']", (4.9)
|G(t, s,y < f(L. )]yl (4.10)

where p > ¢ > 0,p # 0, ¢, f, g are as same defined in Theorem 3.4. If y(¢),t € I
is a solution of equation (4.7) and -1, then

@)+ [Zg(s) ([21¢(7) + (= @) 'na f(r)] exp (n1 [*(0 — )i f(0)do) dr) ds

()" <

X exp (m /a (s~ a) f(s)ds)

; /a [0s) + (5 — ) maf(s)] exp (m / (s —ay f(s)ds) ds,  (4.11)

1=
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where Q1,n1,n, are as same defined in Theorem 3.4. From equation (4.7)-
(4.10), we obtain

W<+ [ iopers s [ ooers  0)
Applying Theorem 3.4 to (4.12), we get (4.11).

Example 3. We calculate the explicit bound on the solution of the following

nonlinear integral equation of the form:

ud(t) =6+ /0 1 i Su(s)ds +/0 su®(s)ds (4.13)

where u(t) are defined as in Theorem 3.1 and we assume that every solution
u(t) of (4.13) exists on R,.

By Theorem 3.1, we have p = 3,q = 2, n; = %k% = %k%,ng = Edk
2
sk3,a=0,0=1,k>0, f(s) = %Jrs,g(s) = s and

0~ [ sroe ([ msias) s

21 Sl
—/ sexp(g\/_ U+1da> ds
3(3\/_+2m )\/E

= <1, for any k > 0.

2 <9k2/3 + 9k + 2>

Thus all the conditions of the Theorem 3.1 are satisfied, hence we obtain

hS RIS

fs fda

T 3(c+1)

11 sexp( )
/—5 k2/3/ dr | ds+6
0 3 0 7—+1

IN

u(t)

ol

f: S+ ds)
y

T

t
exp %\% fo sﬁds) . /t k2/3 exp (%\%
1 - fol SEXp (% fo o+l ) ds 3( +

| k<3<23 —3>\f 2) ) ]
= 3T
4(9Kk2/34+9 Vk+2) +6 | (t+1)sv%

Wl

3 52
3| 3/k+23VE VE

2(9K2/3+9 Vk+2)
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