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Abstract 

Burr Type VII, a one-parameter non-normal distribution, is among the less studied 

distributions, especially, in the contexts of statistical modeling and simulation 

studies. The main purpose of this study is to introduce a methodology for simulating 

univariate and multivariate Burr Type VII distributions through the method of 

𝐿-moments and 𝐿-correlations. The methodology can be applied in statistical 

modeling of events in a variety of applied mathematical contexts and Monte Carlo 

simulation studies. Numerical examples are provided to demonstrate that 

𝐿-moment-based Burr Type VII distributions are superior to their conventional 

moment-based analogs in terms of distribution fitting and estimation. Simulation 

results presented in this study also demonstrate that the estimates of 𝐿-skew, 

𝐿 -kurtosis, and 𝐿 -correlation are substantially superior to their conventional 

product-moment based counterparts of skew, kurtosis, and Pearson correlation in 
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terms of relative bias and relative efficiency when distributions with greater 

departure from normality are used. 
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1  Introduction  

Of the twelve distributions introduced by Burr [1], Type VII is among the 

less-studied distributions. The cumulative distribution function (cdf) associated 

with Burr Type VII distributions is given as [1]: 

𝐹(𝑥) = 2−𝑘(1 + tanh (𝑥))𝑘 (1) 

where 𝑥 ∈ (−∞,∞) and 𝑘 > 0 is the shape parameter, which can also be used to 

determine the mean and standard deviation of a distribution. The values of mean, 

standard deviation, skew, and kurtosis used to characterize Burr Type VII 

distribution—through the method of conventional moments—can be determined 

using the system of equations (A.4)—(A.7) as derived in the Appendix. 

The Burr Type VII distributions have not received as much attention as 

some other Burr family of distributions (e.g., Burr Type III and Type XII 

distributions), especially in the context of statistical modeling and Monte Carlo 

simulation studies, even though they include non-normal distributions (e.g., the 

logistic distribution when 𝑘 = 1) with varying degrees of skew and kurtosis. In 

the context of Bayesian analysis, however, Burr Type VII distributions have 

received some attention (e.g., see [2]). The other more widely used Burr Type III 

and Type XII distributions have been applied in the context of statistical modeling 

of events in a variety of applied mathematical contexts such as operational risk [3], 

forestry [4, 5], life testing [6, 7], fracture roughness [8, 9], meteorology [10], 
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option market price distributions [11], software reliability growth [12], reliability 

growth [13], and also in the context of Monte Carlo simulation studies [14, 15]. 

The quantile function associated with Burr Type VII distributions in (1) 

can be expressed as 

 

𝑞(𝑢) = 𝐹−1(𝑥) = −tanh−1�1 − 2𝑢1 𝑘⁄ �, 

 

(2) 

 

where 𝑢~𝑖𝑖𝑑 U(0, 1) with pdf and cdf as 1 and 𝑢, respectively. The shape of 

a Burr Type VII distribution associated with (2) depends on the value of the shape 

parameter (𝑘), which can be determined by solving (A.7) from the Appendix for a 

specified value of kurtosis (𝛾4) . The solved value of 𝑘  can be used in 

(A.4)—(A.6) from the Appendix to determine the values of mean (𝜇), standard 

deviation (𝜎), and skew (𝛾3).  

In order for (2) to produce a valid Burr Type VII distribution, the quantile 

function 𝑞(𝑢) is required to be strictly increasing monotone function of 𝑢 [14]. 

This requirement implies that an inverse function (𝑞−1) exists. As such, the cdf 

associated with (2) can be expressed as 𝐹�𝑞(𝑢)� = 𝐹(𝑢) = 𝑢 and subsequently 

differentiating this cdf with respect to 𝑢 will yield the parametric form of the 

probability density function (pdf) for 𝑞(𝑢) as 𝑓�𝑞(𝑢)� = 1 𝑞′(𝑢)⁄ . However, 

the simple closed-form expression for the pdf associated with (1) can be given as  

𝑓(𝑥) = 2−𝑘𝑘 sech2(𝑥) (1 + tanh (𝑥))𝑘−1 (3) 

Some of the problems associated with conventional moment-based 

estimates are that they can be substantially (a) biased, (b) dispersed, or (c) 

influenced by outliers [16, 17], and thus may not be true representatives of the 

parameters. To demonstrate, Figure 1 gives the graphs of the pdf  and cdf 

associated with Burr Type VII distribution with skew (𝛾3) = −1.101  and 

kurtosis (𝛾4) = 3. These values of 𝛾3 and 𝛾4 have been obtained from Figure 2 

(a), a graph of the region for feasible combinations of 𝛾3 and 𝛾4 in (A.6) and 
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(A.7) of the Appendix. Feasible combinations of 𝛾3 and 𝛾4 for the Burr Type 

VII distributions will lie on the curve graphed in Figure 2 (a). Table 1 gives the 

parameters and sample estimates of skew and kurtosis for the distribution in 

Figure 1. Inspection of Table 1 indicates that the bootstrap estimates (𝑔3 and 𝑔4) 

of skew and kurtosis (𝛾3  and 𝛾4 ) are substantially attenuated below their 

corresponding parameter values with greater bias and variance as the order of the 

estimate increases. Specifically, for sample size of 𝑛 = 50, the values of the 

estimates are only 79.82%, and 53.63% of their corresponding parameters, 

respectively. The estimates (𝑔3 and 𝑔4) of skew and kurtosis (𝛾3 and 𝛾4) in 

Table 1 were calculated based on Fisher’s 𝑘-statistics formulae (see, e.g., [18, pp. 

299-300]), currently used by most commercial software packages such as SAS, 

SPSS, Minitab, etc., for computing the values of skew and kurtosis (for the 

standard normal distribution, 𝛾3,4 = 0). 

 

 

 
pdf 

 

 
cdf 

Figure 1: The pdf  and cdf  of the Burr Type VII distribution with skew 

(𝛾3) = −1.101 and kurtosis (𝛾4) = 3. The solved value of 𝑘 used in (2) and (3) 

is: 𝑘 =  0.406746, which is also associated with the parameters in Tables 1 and 

2. 
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(a) 

 

 
(b) 

Figure 2: Graphs of the regions for possible combinations of (a) conventional 

moment-based skew (𝛾3) and kurtosis (𝛾4) and (b) 𝐿-moment-based 𝐿-skew 

(𝜏3) and 𝐿-kurtosis (𝜏4). A valid Burr Type VII distribution will lie on the 

curves graphed in the two panels. 

 

 

Table 1: Parameter values of skew (𝛾3)  and kurtosis (𝛾4)  and their 

respective estimates (𝑔3 and 𝑔4) for the pdf in Figure 1. Each bootstrapped 

estimate (Estimate), associated 95% bootstrap confidence interval (95% 

Bootstrap C.I.), and the standard error (St. Error) were based on resampling 

25,000 statistics. Each statistic was based on a sample size of 𝑛 =  50.  

 

Parameter Estimate 95% Bootstrap C.I. St. Error 
𝛾3 = −1.101 𝑔3 = −0.8788 (−0.8865,−0.8717) 0.0038 

𝛾4 = 3 𝑔4 = 1.609 (1.5808, 1.6378) 0.0147 
 

 The method of 𝐿-moments introduced by Hosking [17] is an attractive 

alternative to conventional moments and can be used for describing theoretical 

probability distributions, fitting distributions to real-world data, estimating 

parameters, and testing of hypotheses [16-17, 19-20]. In these contexts, we note 

that the 𝐿-moment based estimators of 𝐿-skew, 𝐿-kurtosis, and 𝐿-correlation 
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have been introduced to address the limitations associated with conventional 

moment-based estimators [16-17, 19-24, 25-26]. Some qualities of 𝐿-moments 

that make them superior to conventional moments are that they (a) exist for any 

distribution with finite mean, and their estimates are (b) nearly unbiased for any 

sample size and less affected from sampling variability, and (c) more robust in the 

presence of outliers in the sample data [16-17, 19-20]. For example, the bootstrap 

estimates (𝓉3 and 𝓉4) of 𝐿-skew and 𝐿-kurtosis (𝜏3 and 𝜏4) in Table 2 are 

relatively closer to their respective parameter values with much smaller variance 

compared to their conventional moment-based counterparts in Table 1. Inspection 

of Table 2 shows that for the sample size of 𝑛 = 50, the values of the estimates 

are on average 97.67% and 99.40% of their corresponding parameters. 

In view of the above, the main purpose of this study is to characterize the 

Burr Type VII distributions through the method of 𝐿-moments in order to obviate 

the problems associated with conventional moment-based estimators. Another 

purpose of this study is to develop an 𝐿-correlation based methodology to 

simulate correlated Burr Type VII distributions. Specifically, in Section 2, a brief 

introduction to univariate 𝐿-moments is provided. The 𝐿-moment-based system 

of equations associated with the Burr Type VII distributions is subsequently 

derived. In Section 3, a comparison between conventional moment- and 

𝐿-moment-based Burr Type VII distributions is presented in the contexts of 

distribution fitting and estimation. Numerical examples based on Monte Carlo 

simulation are also provided to confirm the methodology and demonstrate the 

advantages that 𝐿-moments have over conventional moments. In Section 4, an 

introduction to the coefficient of 𝐿-correlation is provided and the methodology 

for solving for intermediate correlations for specified 𝐿-correlation structure is 

subsequently presented. In Section 5, the steps for implementing the proposed 

𝐿-correlation based methodology are described for simulating non-normal Burr 

Type VII distributions with controlled skew (𝐿-skew), kurtosis (𝐿-kurtosis), and 

Pearson correlations (𝐿-correlations). Numerical examples and the results of 
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simulation are also provided to confirm the derivations and compare the new 

procedure with the conventional moment-based procedure. In Section 6, the 

results of the simulation are discussed. 

 

Table 2: Parameter values of 𝐿 -skew (𝜏3)  and 𝐿 -kurtosis (𝜏4)  and their 

estimates (𝓉3 and 𝓉4)  for the pdf  in Figure 1. Each bootstrapped estimate 

(Estimate), associated 95% bootstrap confidence interval (95% Bootstrap C.I.), 

and the standard error (St. Error) were based on resampling 25,000 statistics. Each 

statistic was based on a sample size of 𝑛 =  50. 

 

Parameter Estimate 95% Bootstrap C.I. St. Error 
𝜏3 = −0.1503 𝓉3 = −0.1468 (−0.1478,−0.1458) 0.0005 
𝜏4 = 0.1827 𝓉4 = 0.1816 (0.1809, 0.1823) 0.0004 

 

 

 

2  Methodology 

2.1  Theoretical and Empirical Definitions of 𝑳-Moments 

 𝐿-moments can be expressed as certain linear combinations of probability 

weighted moments ( PWM s). Let  𝑋1, … ,𝑋𝑖, … ,𝑋𝑛  be identically and 

independently distributed random variables each with pdf 𝑓(𝑥), cdf 𝐹(𝑥), and 

the quantile function 𝑞(𝑢) = 𝐹−1(𝑥), then the PWMs are defined as in Hosking 

[17]   

𝛽𝑟 = �𝐹−1(𝑥){𝐹(𝑥)}𝑟𝑓(𝑥)𝑑𝑥 

 

(4) 

 

where  𝑟 =  0, 1, 2, 3. The first four 𝐿-moments �𝜆𝑖=1,…,4� associated with 𝑋 

can be expressed in simplified forms as in Hosking and Wallis [20, pp. 20-22] 
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𝜆1 = 𝛽0, 

 

(5) 

 

𝜆2 = 2𝛽1 − 𝛽0, 

 

(6) 

 

𝜆3 = 6𝛽2 − 6𝛽1 + 𝛽0, (7) 

 

𝜆4 = 20𝛽3 − 30𝛽2 + 12𝛽1 − 𝛽0, 

 

 

(8) 

 

where the coefficients associated with 𝛽𝑟=0,…,3 in (5)—(8) are obtained from 

shifted orthogonal Legendre polynomials and are computed as in [20, pp. 20-22]. 

The notations 𝜆1  and 𝜆2  denote the location and scale parameters. 

Specifically, in the literature of 𝐿-moments, 𝜆1 is referred to as the 𝐿-location 

parameter, which is equal to the arithmetic mean, and 𝜆2 (> 0) is referred to as 

the 𝐿-scale parameter and is one-half of Gini’s coefficient of mean difference [18, 

pp. 47-48]. Dimensionless 𝐿 -moment ratios are defined as the ratios of 

higher-order 𝐿 -moments (i.e., 𝜆3  and 𝜆4 ) to 𝜆2 . Thus, 𝜏3 = 𝜆3 𝜆2⁄  and 

𝜏4 = 𝜆4 𝜆2⁄  are, respectively, the indices of 𝐿-skew and 𝐿-kurtosis. In general, 

the indices of 𝐿-skew and 𝐿-kurtosis are bounded in the interval −1 < 𝜏3,4 < 1, 

and as in conventional moment theory, a symmetric distribution has 𝐿-skew equal 

to zero [16]. The boundary region for 𝐿-skew (𝜏3) and 𝐿-kurtosis (𝜏4) for a 

continuous distribution is given by the inequality [27] 

5𝜏32 − 1
4

< 𝜏4 < 1 

 

(9) 

 

Empirical 𝐿-moments for a sample (of size 𝑛) of real-world data are 

expressed as linear combinations of the unbiased estimators of the PWMs based 

on sample order statistics 𝑋1:𝑛 ≤ 𝑋2:𝑛 ≤ ⋯ ≤ 𝑋𝑛:𝑛 . Specifically, the unbiased 
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estimators of the PWMs are given as [17, pp. 113-114] 

𝑏𝑟 =
1
𝑛
�

(𝑖 − 1)(𝑖 − 2) … (𝑖 − 𝑟)
(𝑛 − 1)(𝑛 − 2) … (𝑛 − 𝑟)

𝑛

𝑖=𝑟+1

𝑋𝑖:𝑛 

 

(10) 

where 𝑟 =  0, 1, 2, 3  and 𝑏0  is the sample mean. The first four sample 

𝐿-moments (ℓ1, ℓ2, ℓ3, ℓ4) are obtained by substituting 𝑏𝑟 from (10) instead of 

𝛽𝑟  from (4) into (5)—(8). The sample 𝐿 -moment ratios (i.e., 𝐿 -skew and 

𝐿-kurtosis) are denoted by 𝓉3 and 𝓉4, where 𝓉3 = ℓ3 ℓ2⁄  and 𝓉4 = ℓ4 ℓ2⁄ . 

 

 

2.2  𝑳-Moments for the Burr Type VII Distributions 

Substituting 𝐹−1(𝑥) = −tanh−1�1 − 2𝑢1 𝑘⁄ �  from (2), 𝐹(𝑥) = 𝑢 , and 

𝑓(𝑥) = 1 into (4), the 𝑟-th PWM for the Burr Type VII distributions is given by 

𝛽𝑟 = � −tanh−1�1 − 2𝑢1 𝑘⁄ � 𝑢𝑟
1

0
𝑑𝑢. 

 

(11) 

Integrating (11) for 𝛽𝑟=0,1,2,3 and substituting these PWMs into (5)—(8) 

and simplifying gives the following system of equations for the Burr Type VII 

distributions: 

 

𝜆1 = (EulerGamma + PolyGamma[0,𝑘]) 2⁄  

 

 

(12) 

 

𝜆2 = (PolyGamma[0, 2𝑘] − PolyGamma[0,𝑘]) 2⁄  

 

 

(13) 
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𝜏3 =
(2PolyGamma[0, 3𝑘] − 3PolyGamma[0, 2𝑘] + PolyGamma[0, 𝑘])

(PolyGamma[0, 2𝑘] − PolyGamma[0,𝑘])  

 

(14) 

𝜏4 = (5PolyGamma[0, 4𝑘] − 10PolyGamma[0, 3𝑘]

+ 6PolyGamma[0, 2𝑘] − PolyGamma[0,𝑘])

/(PolyGamma[0, 2𝑘] − PolyGamma[0, 𝑘]) 

(15) 

 

where EulerGamma ≈ .577216 is Euler’s constant and PolyGamma[0, 𝑖𝑘] for 

𝑖 = 1, … ,4 and 𝑘 > 0, is a digamma function 𝜓(𝑖𝑘) [28-29].   

For a specified value of 𝐿-kurtosis (𝜏4), (15) can be solved for positive 

value of 𝑘 . The solved value of 𝑘  can be substituted into (2) and (3) for 

generating the Burr Type VII distribution and its pdf, respectively. Further, the 

solved value of 𝑘 can be substituted into (12)—(14) for computing the values of 

𝐿-mean (𝜆1), 𝐿-scale (𝜆2), and 𝐿-skew (𝜏3) associated with the Burr Type VII 

distribution. Provided in Figure 2 (b) is a graph of the region for feasible 

combinations of 𝜏3 and 𝜏4 in (14) and (15). Feasible combinations of 𝜏3 and 

𝜏4 for the Burr Type VII distributions lie on the curve graphed in Figure 2 (b). In 

the next section, two examples are provided to demonstrate the aforementioned 

methodology and the advantages that 𝐿 -moments have over conventional 

moments in the contexts of distribution fitting and estimation.  

 

 

3  Advantages of 𝑳-Moments over Conventional Moments 

3.1  Distribution Fitting 

An example to demonstrate the advantages of 𝐿-moment-based estimation 

over conventional moment-based estimation is provided in Figure 3 and Table 3. 

Given in Figure 3 are the pdfs of the 𝑡-distribution with 8 degrees of freedom 

�𝑡𝑑𝑓=8� superimposed, respectively, by the Burr Type VII pdfs (dashed curves) in 
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both (a) conventional moment- and (b) 𝐿-moment-based systems. The value of 

conventional moment-based shape parameter ( 𝑘 ), given in Table 3, was 

determined by solving equation (A.7) from the Appendix, where the computed 

value of kurtosis �𝛾4� associated with 𝑡𝑑𝑓=8 was used on the left-hand-side of 

(A.7). The parameter values of mean (𝜇), standard deviation (𝜎), and skew �𝛾3� 

associated with the conventional moment-based Burr Type VII distribution, given 

in Table 3, were determined by substituting solved value of 𝑘 into (A.4)—(A.6) 

from the Appendix. The solved value of 𝑘 was also used in (3) to superimpose 

the conventional moment-based Burr Type VII pdf as shown in Figure 3 (a).  

 

  

(a) (b) 

Figure 3: A pdf  of 𝑡 -distribution with 8 degrees of freedom �𝑡𝑑𝑓=8� 

superimposed by the (a) conventional moment- and (b) 𝐿-moment-based Burr 

Type VII pdfs (dashed curves). 

 

The value of 𝐿-moment-based shape parameter (𝑘), given in Table 3, was 

determined by solving (15), where the computed value of 𝐿 -kurtosis (𝜏4) 

associated with 𝑡𝑑𝑓=8 was used on the left-hand-side of (15). The parameter 

values of 𝐿-location (𝜆1), 𝐿-scale (𝜆2), and 𝐿-skew (𝜏3) associated with the 

𝐿-moment-based Burr Type VII distribution, given in Table 3, were determined by 
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substituting solved value of 𝑘 into (12)—(14). The solved value of 𝑘 was also 

substituted into (3) to superimpose the 𝐿-moment-based Burr Type VII pdf as 

shown in Figure 3 (b). 

 

Table 3: Conventional moment-based parameters (𝜇,𝜎, 𝛾3,𝛾4), 𝐿-moment-based 

parameters (𝜆1,𝜆2, 𝜏3, 𝜏4), and percentiles for the 𝑡-distribution with 8 degrees of 

freedom �𝑡𝑑𝑓=8� and the Burr Type VII approximations in Figure 3.  

 

Conventional 

moment-based 

parameters 

𝐿-moment-based 

Parameters % 

Percentiles 

𝑡𝑑𝑓=8 

(Exact) 

Conventional 

moment-based 

Burr Type VII 

𝐿-moment-based 

Burr Type VII 

𝜇 = −0.2556 𝜆1 = 0.1596 5 −1.8595 −1.9569 −1.8174 
𝜎 = 1.0237 𝜆2 = 0.4681 25 −0.7064 −0.6591 −0.7215 
𝛾3 = −0.34 𝜏3 = 0.0277 50 0.0 0.0511 −0.0314 
𝛾4 = 1.5 𝜏4 = 0.1632 75 0.7064 0.7162 0.6862 
𝑘 = 0.749 𝑘 = 1.2248 95 1.8595 1.781 1.925 

 

To superimpose the Burr Type VII distribution the quantile function 𝑞(𝑢) 

in (2) was transformed as (a) �𝑋�𝜎 − 𝜇𝑆+ 𝑆𝑞(𝑢)� 𝜎⁄ ,  and (b) 

�ℓ1𝜆2 − 𝜆1ℓ2 + ℓ2𝑞(𝑢)� 𝜆2⁄ ,  respectively, where (𝑋� , 𝑆)  and (𝜇 , 𝜎)  are the 

values of (mean, standard deviation), whereas (ℓ1, ℓ2) and (𝜆1, 𝜆2) are the 

values of (𝐿-mean, 𝐿-scale) obtained from the original 𝑡𝑑𝑓=8 distribution and 

the respective Burr Type VII approximation, respectively. 

Inspection of the two panels in Figure 3 and the values of percentiles given 

in Table 3 illustrate that the 𝐿-moment-based Burr Type VII pdf provides a 

better fit to the theoretical 𝑡𝑑𝑓=8 distribution. The values of percentiles, given in 

Table 3, computed from 𝐿-moment-based Burr Type VII approximation are much 

closer to the exact percentiles—computed from 𝑡𝑑𝑓=8 distribution—than those 
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computed from conventional moment-based Burr Type VII approximation.   

 

 

3.2  Estimation 

To demonstrate the advantages of 𝐿 -moment-based estimation over 

conventional moment-based estimation, an example is provided in Tables 6 and 7, 

where Monte Carlo results associated with the four Burr Type VII distributions in 

Figure 4 are provided. Specifically, Figure 4 provides the pdfs of the four Burr 

Type VII distributions, which are also used in simulating correlated Burr Type VII 

distributions in Section 6. Provided in Table 4 (5) are the values of conventional 

moment-based (𝐿-moment-based) parameters and shape parameters of the four 

distributions in Figure 4. 

The advantages of 𝐿 -moment-based estimators over conventional 

moment-based estimators can also be demonstrated in the context of Burr Type 

VII distributions by considering the Monte Carlo simulation results associated 

with the indices for the percentage of relative bias (RB%) and standard error (St. 

Error) reported in Tables 6 and 7. 

Specifically, a Fortran [30] algorithm was written to simulate 25,000 

independent samples of sizes 𝑛 = 20  and 𝑛 = 500 , and the conventional 

moment-based estimates (𝑔3 and 𝑔4) of skew and kurtosis (𝛾3 and 𝛾4) and the 

𝐿-moment-based estimates (𝓉3 and 𝓉4) of 𝐿-skew and 𝐿-kurtosis (𝜏3 and 𝜏4) 

were computed for each of the (2 × 25,000) samples based on the parameters 

and the solved values of 𝑘 listed in Tables 4 and 5. The estimates (𝑔3 and 𝑔4) of 

𝛾3 and 𝛾4 were computed based on Fisher’s 𝑘-statistics formulae [18, pp. 47-48], 

whereas the estimates (𝓉3 and 𝓉4) of 𝜏3 and 𝜏4 were computed using (5)—(8) 

and (10). Bias-corrected accelerated bootstrapped average estimates (Estimate), 

associated 95% confidence intervals (95% Bootstrap C.I.), and standard errors (St. 

Error) were obtained for each type of estimates using 10,000 resamples via the 
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commercial software package Spotfire S+ [31]. Further, if a parameter was outside 

its associated 95% bootstrap C.I., then the percentage of relative bias (RB%) was 

computed for the estimate as 

RB% = 100 × (Estimate − Parameter)/Parameter (16) 

 

 

 

  
Distribution 1 Distribution 2 

  

 

 

 

 

 

Distribution 3 Distribution 4 

 Figure 4: The pdfs of the four Burr Type VII distributions used in Monte Carlo 

results shown in Table 6 (7) for estimation of skew (𝐿-skew) and kurtosis 

( 𝐿 -kurtosis) and in Table 13 (14) for estimation of Pearson correlation 

(𝐿-correlation). 
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Table 4: Conventional moment-based parameters of the mean (𝜇), standard 

deviation (𝜎), skew (𝛾3), and kurtosis (𝛾4) along with their corresponding 

values of shape parameter (𝑘) for the four distributions in Figure 4. 

 

Dist. 𝜇 𝜎 𝛾3 𝛾4 𝑘 
1 −0.5127 1.1677 −0.659 1.999 0.583363 

2 −1.0335 1.5242 −1.151 3.134 0.388905 

3 1.2767 0.6677 1.001 2.044 7.709897 

4 −0.0059 0.9093 −0.0078 1.204 0.992841 

 

 

 

Table 5: 𝐿-moment-based parameters of 𝐿-mean (𝜆1), 𝐿-scale (𝜆2), 𝐿-skew 

(𝜏3) , and 𝐿 -kurtosis (𝜏4)  along with their corresponding values of shape 

parameter (𝑘) for the four distributions in Figure 4. 

 

Dist. 𝜆1 𝜆2 𝜏3 𝜏4 𝑘 
1 −0.5127 0.6352 −0.0876 0.1771 0.583363 

2 −1.0335 0.8135 −0.1578 0.1832 0.388905 

3 1.2767 0.3633 0.1463 0.1515 7.709897 

4 −0.0059 0.5013 −0.0010 0.1668 0.992841 
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Table 6. Skew (𝛾3) and Kurtosis (𝛾4) results for the conventional moment-based 

procedure for the four distributions in Figure 4. 
 

Dist. Parameter Estimate 95% Bootstrap C.I. St. Error RB% 

𝑛 =  20 

1 𝛾3 = −0.6590 𝑔3 = −0.3984 −0.4068,−0.3900 0.00430 −39.54 

 𝛾4 = 1.999 𝑔4 = 0.435 0.4177, 0.4536 0.00917 −78.24 

      2 𝛾3 = −1.151 𝑔3 = −0.7015 −0.7101,−0.6935 0.00421 −39.05 

 𝛾4 = 3.134 𝑔4 = 0.6763 0.6563, 0.6982 0.01059 −78.42 

      3 𝛾3 = 1.0014 𝑔3 = 0.6472 0.6398, 0.6542 0.00368 −35.37 

 𝛾4 = 2.044 𝑔4 = 0.3323 0.3147, 0.3521 0.00951 −83.74 

      4 𝛾3 = −0.0078 𝑔3 = −0.0070 −0.0145, 0.0017 0.00413 ----- 

 𝛾4 = 1.204 𝑔4 = 0.2000 0.1848, 0.2142 0.00756 −83.39 

𝑛 = 500 

1 𝛾3 = −0.6590 𝑔3 = −0.6415 −0.6444,−0.6382 0.00156 −2.66 

 𝛾4 = 1.999 𝑔4 = 1.863 1.8484, 1.8780 0.00756 −6.80 

      2 𝛾3 = −1.151 𝑔3 = −1.118 −1.1210,−1.1141 0.00174 −2.87 

 𝛾4 = 3.134 𝑔4 = 2.886 2.8646, 2.9102 0.01143 −7.91 

      3 𝛾3 = 1.0014 𝑔3 = 0.979 0.9762, 0.9817 0.00140 −2.24 

 𝛾4 = 2.044 𝑔4 = 1.898 1.8803, 1.9144 0.00869 −7.14 

      4 𝛾3 = −0.0078 𝑔3 = −0.0065 −0.0092,−0.0040 0.00134 ----- 

 𝛾4 = 1.204 𝑔4 = 1.140 1.1318, 1.1492 0.00443 −5.32 
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Table 7. 𝐿-skew (𝜏3) and 𝐿-kurtosis (𝜏4) results for the 𝐿-moment-based 

procedure for the four distributions in Figure 4. 

 

Dist. Parameter Estimate 95% Bootstrap C.I. St. Error RB% 

𝑛 = 20 

1 𝜏3 = −0.0876 𝓉3 = −0.0815 −0.0830,−0.0798 0.00080 −6.96 

 𝜏4 = 0.1771 𝓉4 = 0.1742 0.1731, 0.1754 0.00059 −1.64 

      2 𝜏3 = −0.1578  𝓉3 = −0.1576 −0.1579,−0.1573 0.00015 ----- 

 𝜏4 = 0.1832 𝓉4 = 0.1831 0.1829, 0.1833 0.00011 ----- 

      3 𝜏3 = 0.1463 𝓉3 = 0.1370 0.1356, 0.1385 0.00073 −6.36 

 𝜏4 = 0.1515 𝓉4 = 0.1492 0.1479, 0.1502 0.00059 −1.52 

      4 𝜏3 = −0.001 𝓉3 = 0.0006 −0.0012, 0.0020 0.00079 ----- 

 𝜏4 = 0.1668 𝓉4 = 0.1647 0.1636, 0.1659 0.00058 −1.26 

𝑛 = 500 

1 𝜏3 = −0.0876 𝓉3 = −0.0874 −0.0877,−0.0871 0.00016 ----- 

 𝜏4 = 0.1771 𝓉4 = 0.1771 0.1769, 0.1773 0.00011 ----- 

      2 𝜏3 = −0.1578  𝓉3 = −0.1575 −0.1578,−0.1572 0.00016 ----- 

 𝜏4 = 0.1832 𝓉4 = 0.1831 0.1829, 0.1833 0.00011 ----- 

      3 𝜏3 = 0.1463 𝓉3 = 0.1460 0.1458, 0.1463 0.00014 ----- 

 𝜏4 = 0.1515 𝓉4 = 0.1513 0.1511, 0.1515 0.00010 ----- 

      4 𝜏3 = −0.001 𝓉3 = −0.0011 −0.0014,−0.0008 0.00015 ----- 

 𝜏4 = 0.1668 𝓉4 = 0.1668 0.1666, 0.1670 0.00010 ----- 
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The results in Tables 6 and 7 illustrate that the 𝐿-moment-based estimators 

are superior to their conventional moment-based counterparts in terms of both 

smaller relative bias and error. These advantages are most pronounced in the 

context of smaller sample sizes and higher-order moments. For example for the 

Distribution 2, given a sample of size 𝑛 = 20, the conventional moment-based 

estimates (𝑔3 and 𝑔4) generated in the simulation were, on average, 60.95% and 

21.58% of their corresponding parameters (𝛾3 and 𝛾4). On the other hand, for the 

same Distribution 2, the 𝐿-moment-based estimates (𝓉3 and 𝓉4) generated in the 

simulation study were, on average, 99.87% and 99.95% of their corresponding 

parameters (𝜏3 and 𝜏4). It was also noted, for Distribution 2, that the 95% 

bootstrap C.I.s associated with 𝐿 -moment-based estimates contained their 

corresponding parameters, whereas this was not the case with conventional 

moment-based estimates.   Thus, the relative biases of estimators based on 

𝐿-moments are essentially negligible compared to those associated with the 

estimators based on conventional moments. Also, it can be verified that the 

standard errors associated with the estimates 𝓉3  and 𝓉4  are relatively much 

smaller and more stable than the standard errors associated with the estimates 𝑔3 

and 𝑔4.  

 

 

4  𝑳-Correlations for the Burr Type VII Distributions 
 Let 𝑌𝑗  and 𝑌𝑘  be two random variables with cdf s 𝐹(𝑌𝑗)  and 𝐹(𝑌𝑘) 

respectively. The second 𝐿-moments of 𝑌𝑗 and 𝑌𝑘 can be defined as in [26] 

𝜆2�𝑌𝑗� = 2𝐶𝑜𝑣 �𝑌𝑗 ,𝐹�𝑌𝑗�� (17) 

𝜆2(𝑌𝑘) = 2𝐶𝑜𝑣�𝑌𝑘,𝐹(𝑌𝑘)� (18) 

 

The second 𝐿-comoment of 𝑌𝑗 toward 𝑌𝑘 and 𝑌𝑘 toward 𝑌𝑗 are given as  
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𝜆2�𝑌𝑗 ,𝑌𝑘� = 2𝐶𝑜𝑣 �𝑌𝑗 ,𝐹(𝑌𝑘)� (19) 

𝜆2�𝑌𝑘,𝑌𝑗� = 2𝐶𝑜𝑣 �𝑌𝑘,𝐹�𝑌𝑗�� (20) 

The 𝐿-correlations of 𝑌𝑗 toward 𝑌𝑘 and 𝑌𝑘 toward 𝑌𝑗 are subsequently defined 

as: 

𝜂𝑗𝑘 =
𝜆2�𝑌𝑗 ,𝑌𝑘�
𝜆2�𝑌𝑗�

 
(21) 

 

𝜂𝑘𝑗 =
𝜆2�𝑌𝑘,𝑌𝑗�
𝜆2(𝑌𝑘)  

(22) 

The 𝐿-correlation given in (21) (or, 22) is bounded in the interval: −1 ≤ 𝜂𝑗𝑘 ≤ 1. 

A value of 𝜂𝑗𝑘 = 1 �or, 𝜂𝑗𝑘 = −1 � implies that 𝑌𝑗 and 𝑌𝑘 have a strictly and 

monotonically increasing (or, decreasing) relationship. See Serfling and Xiao [26] 

for further details on the topics related to the 𝐿-correlation.  

  The extension of the Burr Type VII distributions to multivariate level 

can be obtained by specifying 𝑇 quantile functions as given in (2) with a specified 

𝐿 -correlation structure. Specifically, let 𝑍1, … ,𝑍𝑇  denote standard normal 

variables with cdfs and the joint pdf associated with 𝑍𝑗 and 𝑍𝑘 given by the 

following expressions: 

Φ�𝑍𝑗� = � (2𝜋)−1 2⁄ exp �−𝑣𝑗2 2⁄ �
𝑧𝑗

−∞
𝑑𝑣𝑗 

(23) 

 

Φ(𝑍𝑘) = � (2𝜋)−1 2⁄
𝑧𝑘

−∞
exp{−𝑣𝑘2 2⁄ } 𝑑𝑣𝑘 

(24) 

 

𝑓𝑗𝑘 = �2𝜋�1 − 𝑟𝑗𝑘2 �
1 2⁄

�
−1

exp �− �2�1 − 𝑟𝑗𝑘2 ��
−1
�𝑧𝑗2 + 𝑧𝑘2 − 2𝑟𝑗𝑘𝑧𝑗𝑧𝑘��. 

(25) 

where 𝑟𝑗𝑘  in (25) is the intermediate correlation (IC)  between 𝑍𝑗  and 𝑍𝑘 . 

Using the cdf s in (23) and (24) as zero-one uniform deviates, i.e., 

Φ�𝑍𝑗�,Φ(𝑍𝑘)~𝑈(0, 1), the quantile function defined in (2) can be expressed as a 

function of Φ�𝑍𝑗�, or Φ(𝑍𝑘)  �e. g., 𝑞𝑗 �Φ�𝑍𝑗�� or 𝑞𝑘�Φ(𝑍𝑘)�� . Thus, the 
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𝐿-correlation of 𝑌𝑗 = 𝑞𝑗 �Φ�𝑍𝑗�� toward 𝑌𝑘 = 𝑞𝑘�Φ(𝑍𝑘)� can be determined 

using (21) with the denominator standardized to 𝜆2�𝑌𝑗� = 1 √𝜋⁄  for the standard 

normal distribution as 

 

𝜂𝑗𝑘 = 2√𝜋� � 𝑥𝑗 �𝑞𝑗 �Φ�𝑍𝑗���
∞

−∞

∞

−∞
Φ(𝑧𝑘) 𝑓𝑗𝑘 𝑑𝑧𝑗𝑑𝑧𝑘. 

 

(26) 

 

The variable 𝑥𝑗 �𝑞𝑗 �Φ�𝑍𝑗��� in (26) is the standardized quantile function of (2) 

such that it has an 𝐿-mean (or, arithmetic mean) of zero and 𝐿-scale equal to that 

of the standard normal distribution. That is, the quantile function 𝑌𝑗 = 𝑞𝑗 �Φ�𝑍𝑗�� 

is standardized by a linear transformation as 

 

𝑥𝑗 �𝑞𝑗 �Φ�𝑍𝑗��� = 𝛿 �𝑞𝑗 �Φ�𝑍𝑗�� − 𝜆1� 

 

 

(27) 

 

where 𝜆1 is the mean from (12) and 𝛿 is a constant that scales 𝜆2 in (13) and in 

the denominator of (21) to 1 √𝜋⁄ . In particular, 𝛿 for the Burr Type VII 

distributions can be expressed as 

 

𝛿 = −
2

√𝜋(PolyGamma[0,𝑘] − PolyGamma[0, 2𝑘])
 

 

 

(28) 

The next step is to use (26) to solve for the values of the 𝑇(𝑇 − 1)/2  ICs �𝑟𝑗𝑘� 

such that the 𝑇  specified Burr Type VII distributions have their specified 

𝐿-correlation structure. 

 Analogously, the 𝐿 -correlation of 𝑌𝑘 = 𝑞𝑘�Φ(𝑍𝑘)�  toward 𝑌𝑗 =

𝑞𝑗 �Φ�𝑍𝑗�� is given as 
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𝜂𝑘𝑗 = 2√𝜋� � 𝑥𝑘 �𝑞𝑘�Φ(𝑍𝑘)��
∞

−∞

∞

−∞
Φ�𝑧𝑗� 𝑓𝑗𝑘 𝑑𝑧𝑘𝑑𝑧𝑗 . 

 

(29) 

 

Note that in general, the 𝐿 -correlation of 𝑌𝑗 = 𝑞𝑗 �Φ�𝑍𝑗��  toward 𝑌𝑘 =

𝑞𝑘�Φ(𝑍𝑘)� in (26) is not equal to the 𝐿-correlation of 𝑌𝑘 = 𝑞𝑘�Φ(𝑍𝑘)� toward 

𝑌𝑗 = 𝑞𝑗 �Φ�𝑍𝑗�� in (29). These 𝐿-correlations are equal only when the values of 

shape parameters 𝑘 associated with 𝑞𝑗 �Φ�𝑍𝑗�� and 𝑞𝑘�Φ(𝑍𝑘)� are equal (i.e., 

when the two distributions are the same). Provided in Algorithm 1 is a source code 

written in Mathematica [28-29], which shows an example for computing ICs 

�𝑟𝑗𝑘� for the 𝐿-correlation procedure. The steps for simulating correlated Burr 

Type VII distributions with specified values of 𝐿-skew (𝜏3), 𝐿-kurtosis (𝜏4), 

and with specified 𝐿-correlation structure are given in Section 5. 

 

 

5  Steps for Monte Carlo Simulation with an Example 
 The procedure for simulating Burr Type VII distributions with specified 

𝐿-moments and 𝐿-correlations can be summarized in the following six steps: 

1. Specify the 𝐿-moments for 𝑇 transformations of the form in (2), i.e., 

𝑞1(Φ(𝑧1)), … , 𝑞𝑇(Φ(𝑧𝑇)) and obtain the solutions for the shape parameter 

𝑘 by solving (15) for the specified value of 𝐿-kurtosis (𝜏4) for each 

distribution. Specify a 𝑇 × 𝑇  matrix of 𝐿 -correlations ( 𝜂𝑗𝑘 ) for 

𝑞𝑗�Φ(𝑧𝑗)� toward 𝑞𝑘�Φ(𝑍𝑘)�, where 𝑗 < 𝑘 ∈ {1, 2, … ,𝑇}. 

2. Compute the values of intermediate (Pearson) correlations (ICs), 𝑟𝑗𝑘, by 

substituting the value of specified 𝐿-correlation (𝜂𝑗𝑘) and the solved value 

of 𝑘  from Step 1 into the left- and the right-hand sides of (26), 

respectively, and then numerically integrating (26) to solve for 𝑟𝑗𝑘. See 
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Algorithm 1 for an example. Repeat this step separately for all 

𝑇(𝑇 − 1) 2⁄  pairwise combinations of ICs. 

3. Assemble the ICs computed in Step 2 into a 𝑇 × 𝑇 matrix and then 

decompose this matrix using Cholesky factorization. Note that this step 

requires the IC matrix to be positive definite.   

4. Use elements of the matrix resulting from Cholesky factorization of Step 3 

to generate 𝑇 standard normal variables (𝑍1, … ,𝑍𝑇) correlated at the IC 

levels as follows: 

 

𝑍1 = 𝑎11𝑉1 

 

 

𝑍2 = 𝑎12𝑉1 + 𝑎22𝑉2  

⋮  

𝑍𝑗 = 𝑎1𝑗𝑉1 + 𝑎2𝑗𝑉2 + ⋯+ 𝑎𝑖𝑗𝑉𝑖 + ⋯+ 𝑎𝑗𝑗𝑉𝑗 (30) 

⋮  

𝑍𝑇 = 𝑎1𝑇𝑉1 + 𝑎2𝑇𝑉2 + ⋯+ 𝑎𝑖𝑇𝑉𝑖 + ⋯+ 𝑎𝑗𝑇𝑉𝑇 + ⋯+ 𝑎𝑇𝑇𝑉𝑇 

 

 

where 𝑉1, … ,𝑉𝑇 are independent standard normal random variables and 

where 𝑎𝑖𝑗 is the element in the 𝑖-th row and 𝑗-th column of the matrix 

resulting from Cholesky factorization of Step 3. 

5. Substitute 𝑍1, … ,𝑍𝑇  from Step 4 into the following Taylor series-based 

expansion for computing the cdf, Φ�𝑍𝑗�, of standard normal distribution 

[32] 

Φ�𝑍𝑗� = �
1
2
� + 𝜙�𝑍𝑗� �𝑍𝑗 +

𝑍𝑗3

3
+

𝑍𝑗5

(3 ∙ 5) +
𝑍𝑗7

(3 ∙ 5 ∙ 7) + ⋯� 
(31) 

 

where 𝜙�𝑍𝑗� is the pdf of standard normal distribution and the absolute 

error associated with (31) is less than 8 × 10−16.  
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6. Substitute the uniform (0, 1) variables, Φ�𝑍𝑗�, generated in Step 5 into the 

𝑇 equations of the form 𝑞𝑗�Φ(𝑧𝑗)� in (2) to generate the Burr Type VII 

distributions with specified values of 𝐿-skew (𝜏3), 𝐿-kurtosis (𝜏4), and 

with specified 𝐿-correlation structure. 

 

For the purpose of evaluating the proposed methodology and 

demonstrating the steps above, an example is subsequently provided to compare 

the 𝐿-correlation-based procedure with the conventional product moment-based 

Pearson correlation procedure. Specifically, the distributions in Figure 4 are used 

as a basis for a comparison using the specified correlation matrix in Table 8 where 

strong correlations are considered. Let the four distributions in Figure 4 be 

denoted as 𝑌1 = 𝑞1�Φ(𝑍1)� , 𝑌2 = 𝑞2�Φ(𝑍2)� , 𝑌3 = 𝑞3�Φ(𝑍3)�,  and 𝑌4 =

 𝑞4Φ𝑍4, where 𝑌1, 𝑌2, 𝑌3, and 𝑌4 are the quantile functions from (2). The 

specified values of conventional moments and 𝐿-moments together with shape 

parameters (𝑘) associated with these four distributions are given in Tables 4 and 

5, respectively. Presented in Tables 9 and 10 are the intermediate correlations (ICs) 

obtained for the conventional product moment-based Pearson correlation and 

𝐿-moment-based 𝐿-correlation procedures, respectively, for the distributions in 

Figure 4. Provided in Algorithm 2 is a source code written in Mathematica 

[28-29], which shows an example for computing ICs �𝑟𝑗𝑘� for the conventional 

product moment-based Pearson correlation procedure. See, also Headrick, Pant, 

and Sheng [14, pp. 2217-2221] for a detailed methodology for simulating 

correlated Burr Type III and Type XII distributions through the method of Pearson 

correlation.  

Provided in Tables 11 and 12 are the results of Cholesky factorization on 

the IC matrices in Tables 9 and 10, respectively. The elements of matrices in 

Tables 11 and 12 are used to generate 𝑍1, … ,𝑍4 correlated at the IC levels by 

making use of the formulae (30) in Step 4, above, with 𝑇 =  4. The values of  

𝑍1, … ,𝑍4 are then used in (31) to obtain the Taylor series-based approximations 
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of the cdfs Φ(𝑍1), Φ(𝑍2), Φ(𝑍3), and Φ(𝑍4), which are treated as uniform 

(0, 1) variables. These uniform variables are used in (2) to obtain the quantile 

functions 𝑞1�Φ(𝑍1)�,  𝑞2�Φ(𝑍2)�,  𝑞3�Φ(𝑍3)�, and  𝑞4�Φ(𝑍4)� to generate the 

four distributions in Figure 4 that are correlated at the specified correlation level 

of Table 8.   

For the Monte Carlo simulation, a Fortran [30] algorithm was written for 

both procedures to generate 25,000 independent sample estimates for the specified 

parameters of (a) conventional product moment-based Pearson correlation (𝜌𝑗𝑘), 

and (b) 𝐿-moment-based 𝐿-correlation (𝜂𝑗𝑘) based on samples of sizes 𝑛 =  20 

and 𝑛 =  500. The estimate for 𝜌𝑗𝑘 was based on the usual formula for the 

Pearson correlation statistic. The estimate of 𝜂𝑗𝑘 was computed by substituting 

(17) and (19) into (21), where the empirical forms of the cdfs were used in (17) 

and (19). The sample estimates 𝜌𝑗𝑘  and 𝜂𝑗𝑘  were both transformed using 

Fisher’s  𝑧′  transformations. Bias-corrected accelerated bootstrapped average 

estimates (Estimate), 95% bootstrap confidence intervals (95% Bootstrap C. I.), 

and standard errors (St. Error) were obtained for the estimates associated with the 

parameters �𝑧�𝜌𝑗𝑘�
′  and 𝑧�𝜂𝑗𝑘�

′ �  using 10,000 resamples via the commercial 

software package Spotfire S+ [31]. The bootstrap results associated with the 

estimates of  𝑧�𝜌𝑗𝑘�
′  and 𝑧�𝜂𝑗𝑘�

′  were transformed back to their original metrics. 

Further, if a parameter was outside its associated 95% bootstrap C.I., then the 

percentage of relative bias (RB%) was computed for the estimate as in (16). The 

results of this simulation are presented in Tables 13 and 14, and are discussed in 

Section 6. 
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Table 8: Specified correlation matrix for the conventional moment- and 

𝐿-moment-based procedures for the four distributions in Figure 4. 

Dist. 1 2 3 4 

1 1.00    

2 0.70 1.00   

3 0.80 0.70 1.00  

4 0.85 0.75 0.75 1.00 

 

 

Table 9: Intermediate correlation matrix for the conventional moment-based 

Pearson correlation procedure. 

Dist. 1 2 3 4 

1 1.0    

2 0.712802 1.0   

3 0.845154 0.763062 1.0  

4 0.858634 0.771204 0.768917 1.00 

 

 

Table 10: Intermediate correlation matrix for the 𝐿-moment-based 𝐿-correlation 

procedure. 

Dist. 1 2 3 4 

1 1.0    

2 0.691496 1.0   

3 0.793033 0.690632 1.0  

4 0.844246 0.741316 0.745811 1.00 
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Table 11: Matrix obtained from Cholesky decomposition on the intermediate 

correlation matrix in Table 9. 

𝑎11 = 1.00 𝑎12 = 0.712802 𝑎13 = 0.845154 𝑎14 = 0.858634 

𝑎21 = 0.00 𝑎22 = 0.701365 𝑎23 = 0.229031 𝑎24 = 0.226940 

𝑎31 = 0.00 𝑎32 = 0.0 𝑎33 = 0.482970 𝑎34 = −0.018091 

𝑎41 = 0.00 𝑎42 = 0.0 𝑎43 = 0.0 𝑎44 = 0.459258 

 

 

 

Table 12: Matrix obtained from Cholesky decomposition on the intermediate 

correlation matrix in Table 10. 

𝑎11 = 1.00 𝑎12 = 0.691496 𝑎13 = 0.793033 𝑎14 = 0.844246 

𝑎21 = 0.00 𝑎22 = 0.722380 𝑎23 = 0.196922 𝑎24 = 0.218061 

𝑎31 = 0.00 𝑎32 = 0.0 𝑎33 = 0.576473 𝑎34 = 0.057861 

𝑎41 = 0.00 𝑎42 = 0.0 𝑎43 = 0.0 𝑎44 = 0.486159 

 

 

  

6  Discussion and Conclusion 

One of the advantages of 𝐿-moment-based procedure over conventional 

moment-based procedure can be highlighted in the context of estimation. The 

𝐿-moment-based estimators of 𝐿-skew and 𝐿-kurtosis can be far less biased than 

the conventional moment-based estimators of skew and kurtosis when samples are 

drawn from the distributions with greater departure from normality [15-16, 19-24, 

26]. Inspection of the simulation results in Tables 6 and 7 clearly indicates that 

this is the case for the Burr Type VII distributions. That is, the superiority that 

estimates of 𝐿 -moment ratios ( 𝜏3  and 𝜏4 ) have over their corresponding 

conventional moment-based estimates of skew and kurtosis (𝛾3  and 𝛾4 ) is 
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obvious. For example, for samples of size 𝑛 =  20, the estimates of 𝛾3 and 𝛾4 

for Distribution 2 were, on average, 60.95% and 21.58% of their corresponding 

parameters, whereas the estimates of 𝜏3 and 𝜏4 were 99.87% and 99.95% of 

their corresponding parameters. Also, for Distribution 2, the 95% bootstrap C.I.s 

associated with estimates of 𝜏3 and 𝜏4 contained their corresponding parameters, 

whereas the corresponding C.I.s associated with estimates of 𝛾3  and 𝛾4 

contained none of the population parameters.  Further, for large sample sizes 

(𝑛 = 500), the 95% bootstrap C.I.s associated with estimates of 𝜏3 and 𝜏4 for 

all four distributions in Figure 4 contained the population parameters, whereas the 

corresponding C.I.s associated with estimates of 𝛾3 and 𝛾4 contained none of 

the population parameters. This advantage of 𝐿-moment-based estimates can also 

be expressed by comparing their relative standard errors (RSEs), where RSE =

{(St. Error/Estimate) × 100}. Comparing Tables 6 and 7, it is evident that the 

estimates of 𝜏3 and 𝜏4 are more efficient as their RSEs are considerably smaller 

than the RSEs associated with the conventional moment-based estimates of 𝛾3 

and 𝛾4. For example, in terms of Distribution 2 in Figure 4, inspection of Tables 6 

and 7 (for 𝑛 =  500), indicates that RSE measures of: RSE (𝓉3) = 0.10% and 

RSE (𝓉4) = 0.06%  are considerably smaller than the RSE measures of: 

RSE (𝑔3) = 0.16% and RSE (𝑔4) = 0.40%. This demonstrates that the estimates 

of 𝐿-skew and 𝐿-kurtosis have more precision because they have less variance 

around their bootstrapped estimates. 

Another advantage of 𝐿 -moment-based procedure over conventional 

moment-based procedure can be highlighted in the context of distribution fitting. 

In the context of distribution fitting, the 𝐿-moment-based Burr Type VII pdf in 

Figure 3 (b) provides a better fit to the theoretical 𝑡-distribution with 8 degrees of 

freedom �𝑡𝑑𝑓=8� than the conventional moment-based Burr Type VII pdf in 

Figure 3 (a).  

Presented in Tables 13 and 14 are the simulation results of conventional 

product moment-based Pearson correlations and 𝐿-moment-based 𝐿-correlations, 
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respectively. Overall inspection of these tables indicates that the 𝐿-correlation is 

superior to Pearson correlation in terms of relative bias. For example, for 𝑛 =  20, 

the percentage of relative bias for the two distributions, Distribution 2 and 

Distribution 3, in Figure 4 was  3.74% for the Pearson correlation compared with 

only 1.59% for the 𝐿-correlation. Further, for large sample sizes (𝑛 = 500), the 

95% bootstrap C.I.s associated with 𝐿-correlation estimate contained almost all of 

the population parameters, whereas the corresponding C.I.s associated with 

Pearson correlation estimate contained none of the population parameters. It is 

also noted that the variability associated with bootstrapped estimates of 

𝐿-correlation appears to be more stable than that of the bootstrapped estimates of 

Pearson correlation both within and across different conditions.  

In summary, the new 𝐿 -moment-based procedure is an attractive 

alternative to the more traditional conventional moment-based procedure in the 

context of Burr Type VII distributions. In particular, the 𝐿 -moment-based 

procedure has distinct advantages when distributions with greater departures from 

normality are used. Finally, we note that Mathematica [28-29] source codes are 

available from the authors for implementing both the conventional moment- and 

𝐿-moment-based procedures. 
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Table 13: Correlation results for the conventional product moment-based Pearson 

correlations. 

𝑛 = 20 

Parameter Estimate 95% Bootstrap C.I. St. Error RB% 

𝜌12 = 0.70 0.7151 (0.7135, 0.7166) 0.00160 2.16 

𝜌13 = 0.80 0.8204 (0.8195, 0.8212) 0.00133 2.55 

𝜌14 = 0.85 0.8596 (0.8588, 0.8603) 0.00153 1.13 

𝜌23 = 0.70 0.7262 (0.7250, 0.7275) 0.00131 3.74 

𝜌24 = 0.75 0.7662 (0.7648, 0.7672) 0.00150 2.16 

𝜌34 = 0.75 0.7649 (0.7635, 0.7660) 0.00150 1.99 

 

𝑛 = 500 

Parameter Estimate 95% Bootstrap C.I. St. Error RB% 

𝜌12 = 0.70 0.7008 (0.7005, 0.7011) 0.00032 0.11 

𝜌13 = 0.80 0.8009 (0.8007, 0.8011) 0.00025 0.11 

𝜌14 = 0.85 0.8502 (0.8502, 0.8505) 0.00029 0.02 

𝜌23 = 0.70 0.7013 (0.7011, 0.7016) 0.00023 0.19 

𝜌24 = 0.75 0.7507 (0.7504, 0.7509) 0.00029 0.09 

𝜌34 = 0.75 0.7505 (0.7502, 0.7507) 0.00028 0.07 
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Table 14: Correlation results for the 𝐿-moment-based 𝐿-correlation procedure. 

𝑛 = 20 

Parameter Estimate 95% Bootstrap C.I. St. Error RB% 

𝜂12 = 0.70 0.7113 (0.7096, 0.7129) 0.00168 1.60 

𝜂13 = 0.80 0.8093 (0.8082, 0.8105) 0.00171 1.16 

𝜂14 = 0.85 0.8581 (0.8571, 0.8589) 0.00170 0.95 

𝜂23 = 0.70 0.7111 (0.7093, 0.7127) 0.00171 1.59 

𝜂24 = 0.75 0.7608 (0.7595, 0.7623) 0.00168 1.44 

𝜂34 = 0.75 0.7616 (0.7602, 0.7630) 0.00173 1.55 

 

𝑛 = 500 

Parameter Estimate 95% Bootstrap C.I. St. Error RB% 

𝜂12 = 0.70 0.7003 (0.6999, 0.7006) 0.00030 ----- 

𝜂13 = 0.80 0.8001 (0.7999, 0.8004) 0.00030 ----- 

𝜂14 = 0.85 0.8500 (0.8499, 0.8503) 0.00030 ----- 

𝜂23 = 0.70 0.7003 (0.6999, 0.7006) 0.00031 ----- 

𝜂24 = 0.75 0.7502 (0.7499, 0.7504) 0.00031 ----- 

𝜂34 = 0.75 0.7503 (0.7501, 0.7506) 0.00030 0.04 
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(* Intermediate Correlation *) 

𝑟12 = 0.691496; 

 

Needs[“MultivariateStatistics`”] 

𝑓12 = PDF[MultinormalDistribution[{0, 0}, {{1, 𝑟12}, {𝑟12, 1}}], {𝑍1, 𝑍2}]; 

Φ1 = CDF[NormalDistribution[0, 1], 𝑍1]; 

Φ2 = CDF[NormalDistribution[0, 1], 𝑍2]; 

 

(* Parameters for Distribution 1 and Distribution 2 in Figure 4 *) 

𝑘1= 0.583363; 

𝜆1 = −0.512657; 

𝛿1 = 0.888151; 

 

 (* Quantile function from (2) can alternatively be written as *) 

𝑦1 = −1
2

Log�Φ1
(−1 𝑘1⁄ ) − 1�; 

 

(* Standardizing constants 𝜆1 and 𝛿1 were obtained, respectively, from (12) and 

(28) *) 

𝑥1 = 𝛿1 ∗ (𝑦1 − 𝜆1); 

 

(* Compute the value of specified 𝐿-correlation *) 

𝜂12 = 2√𝜋 ∗NIntegrate[𝑥1 ∗ Φ2 ∗ 𝑓12 , {𝑍1 , −8, 8},  {𝑍2 , −8, 8}, Method → 

“MultiDimensionalRule”]  

 

0.70 
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Algorithm 1: Mathematica source code for computing intermediate correlations 

for specified 𝐿 -correlations. The example is for Distribution 𝑗 = 1  toward 

Distribution 𝑘 = 2 (𝜂12). See pdfs of Distribution 1 and Distribution 2 in Figure 4, 

specified correlation in Table 8, and intermediate correlation in Table 10. 
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(* Intermediate Correlation *) 

𝑟12 = 0.712802; 

Needs[“MultivariateStatistics`”] 

𝑓12 = PDF[MultinormalDistribution[{0, 0}, {{1, 𝑟12}, {𝑟12, 1}}], {𝑍1, 𝑍2}]; 

Φ1 = CDF[NormalDistribution[0, 1], 𝑍1]; 

Φ2 = CDF[NormalDistribution[0, 1], 𝑍2]; 

(* Parameters for Distribution 1 and Distribution 2 in Figure 4 *) 

𝑘1 = 0.583363; 

𝜇1 = −0.512657; 

𝜎1 = 1.167658; 

𝑘2 = 0.388905; 

𝜇2 = −1.033464; 

𝜎2 = 1.524227; 

(* Quantile functions from (2) can alternatively be written as *) 

𝑦1 = −
1
2

Log�Φ1
(−1 𝑘1⁄ ) − 1� 

𝑦2 = −
1
2

Log�Φ2
(−1 𝑘2⁄ ) − 1� 

(* Standardizing constants 𝜇1, 𝜇2 and 𝜎1, 𝜎2 are obtained, respectively, 

from (A.4) and (A.5) from the Appendix *) 

𝑥1 = (𝑦1 − 𝜇1)/𝜎1; 

𝑥2 = (𝑦2 − 𝜇2)/𝜎2; 

(* Specified conventional product moment-based Pearson correlation *) 

𝜌12 =  NIntegrate[𝑥1 ∗ 𝑥2 ∗ 𝑓12 , {𝑍1 , −8, 8}, {𝑍2 , −8, 8}, Method → 

“MultiDimensionalRule”] 

 

0.70 
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Algorithm 2: Mathematica source code for computing intermediate correlations 

for specified conventional product moment-based Pearson correlations. The 

example is for Distribution 𝑗 = 1  and Distribution 𝑘 = 2  (𝜌12 ). See pdfs of 

Distribution 1 and Distribution 2 in Figure 4, specified correlation in Table 8, and 

intermediate correlation in Table 9. 
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Appendix: Conventional Moments for the Burr Type VII Distributions 

The conventional moments associated with Burr Type VII distributions can be 

obtained by first evaluating the following integral: 

𝜇𝑟 = � 𝑥𝑟𝑓(𝑥)𝑑𝑥
∞

−∞
 (A.1) 

where 𝑋 is a Burr Type VII random variable with pdf 𝑓(𝑥) as given in (3) and 

where 𝑟 =  1, … , 4. In terms of conventional moments, the 𝑟-th moment exists 

only if 𝑘 > 0. Suppose that the first four moments exist, then the conventional 

moment-based skew and kurtosis can be obtained from Headrick, Pant, and Sheng 

[14, Equations 12-13]  

 𝛾3 = (𝜇3 − 3𝜇2𝜇1 + 2𝜇13) (𝜇2 − 𝜇12)3 2⁄⁄  (A.2) 

  𝛾4 = (𝜇4 − 4𝜇3𝜇1 − 3𝜇22 + 12𝜇2𝜇12 − 6𝜇14) (𝜇2 − 𝜇12)2⁄  (A.3) 

Computing 𝜇𝑟=1,…4 from (A.1) and substituting in (A.2)—(A.3) and simplifying 

yields the following system of equations for characterizing the Burr Type VII 

distribution through the method of conventional moments: 

𝜇 =
1
2

(𝑘Η1[{1, 1, 1 + 𝑘}, {2, 2},−1]� − �Γ[𝑘]Η2[𝑘,𝑘, 1 + 𝑘,−1]) (A.4) 

𝜎 = (2𝑘)−1�2(Η1[{𝑘,𝑘, 𝑘}, {1 + 𝑘, 1 + 𝑘},−1]

+ 𝑘3Η1[{1,1,1,1

+ 𝑘}, {2,2,2},−1])�−(�𝑘2Η1[{1,1,1 + 𝑘}, {2,2},−1]

− Η2[𝑘,𝑘, 1 + 𝑘,−1])�2}1 2⁄ � 

(A.5) 
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𝛾3 = {2(8−𝑘(−1− 𝑘2�Γ[𝑘]Η2[1,1,2 + 𝑘,−1]  

+ �2𝑘𝑘2Η1[{1,1,1 + 𝑘}, {2,2},−1]�3 + 

         3 × 2−𝑘�1 + 𝑘2Γ[𝑘]Η2[1,1,2 + 𝑘,−1] − �2𝑘𝑘2Η1[{1,1,1 + 𝑘}, {2,2},−1]��

× 

         (Η1[{𝑘,𝑘,𝑘}, {1 + 𝑘, 1 + 𝑘},−1]� + �𝑘3Η1[{1,1,1,1 + 𝑘}, {2,2,2},−1]) − 3 × 

         Η1[{𝑘,𝑘,𝑘,𝑘}, {1 + 𝑘, 1 + 𝑘, 1 + 𝑘},−1]

+ �3�𝑘4Η1[{1,1,1,1,1 + 𝑘}, {2,2,2,2},−1])}/ 

         �−4−𝑘��1 + 𝑘2Γ[𝑘]Η2[1,1,2 + 𝑘,−1] − 2𝑘𝑘2Η1[{1,1,1 + 𝑘}, {2,2},−1]��2

+ � 

         2(Η1[{𝑘,𝑘,𝑘}, {1 + 𝑘, 1 + 𝑘},−1]� + �𝑘3Η1[{1,1,1,1 + 𝑘}, {2,2,2},−1]}3 2⁄  

(A.6) 

𝛾4 = {2𝑘4�−3 × 2−4𝑘𝑘4(1 𝑘2⁄ + Γ[𝑘]��Η2[1,1,2 + 𝑘,−1]

− �2𝑘Η1[{1,1,1 + 𝑘}, {2,2},−1]�4 

         + �3 × 41−𝑘�1 𝑘2⁄

+ Γ[𝑘]Η2[1,1,2 + 𝑘,−1]−2𝑘Η1[{1,1,1 + 𝑘}, {2,2},−1]��2 × 

          (Η1[{𝑘, 𝑘,𝑘}, {1 + 𝑘, 1 + 𝑘},−1]� + �𝑘3Η1[{1,1,1,1 + 𝑘}, {2,2,2},−1])

− 6 𝑘4 ×⁄  

          (Η1[{𝑘, 𝑘,𝑘}, {1 + 𝑘, 1 + 𝑘},−1]� + �𝑘3Η1[{1,1,1,1 + 𝑘}, {2,2,2},−1])2

− 3 𝑘4 ×⁄  

          22−𝑘(−1− 𝑘2Γ[𝑘]�Η2[1,1,2 + 𝑘,−1] + �2𝑘𝑘2Η1[{1,1,1 + 𝑘}, {2,2},−1]� × 

         (−Η1[�{𝑘,𝑘,𝑘,𝑘}, {1 + 𝑘, 1 + 𝑘, 1 + 𝑘},−1]

+ �𝑘4Η1[{1,1,1,1,1 + 𝑘}, {2,2,2,2},−1]) 

          + 12 𝑘4⁄ (Η1[{𝑘,𝑘,𝑘,𝑘,𝑘} �, {1 + 𝑘, 1 + 𝑘, 1 + 𝑘, 1 + 𝑘},−1] + 𝑘5 × 
��          � Η1[{1,1,1,1,1,1 + 𝑘}, {2,2,2,2,2},−1])��/{4−𝑘�(1 + 𝑘2Γ[𝑘]�Η2[1,1,2

+ 𝑘,−1] − 

�           2𝑘𝑘2Η1[{1,1,1 + 𝑘}, {2,2},−1]�2 − 2(Η1[{𝑘,𝑘,𝑘�}, {1 + 𝑘, 1 + 𝑘},−1] + 
��           𝑘3Η1[{1,1,1,1 + 𝑘}, {2,2,2},−1])}2 

(A.7) 

where the usual definitions of mean (𝜇) and standard deviation (𝜎) were used to 

obtain (A.4) and (A.5) and Γ[. ] = Gamma[. ], Η1[. ] = HypergeometricPFQ[. ], 

and Η2[. ] = Hypergeometric2F1[. ]  are inbuilt Mathematica [28] functions, 
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respectively. 

Thus, for given value of kurtosis (𝛾4), the shape parameter (𝑘) can be 

determined by solving (A.7), using Mathematica [28] function FindRoot. The 

solved value of 𝑘 can then be substituted into (A.4)—(A.6) for computing the 

values of mean (𝜇), standard deviation (𝜎), and skew (𝛾3), respectively, associated 

with the Burr Type VII distribution. 

  

  

  

  

 

 


