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Abstract

The generalized beta distribution of the second kind (GB2), McDon-
ald [11], McDonald and Xu [12] is an important distribution with ap-
plications in finance and actuarial sciences, as well as economics, where
Dagum distribution which is a sub-model of GB2 distribution plays an
important role in size distribution of personal income. In this note,
a new class of generalized Dagum distribution called gamma-Dagum
distribution is presented. The gamma-Dagum (GD) distribution which
includes the gamma-Burr III (GB III), gamma-Fisk or gamma-log logis-
tic (GF of GLLog), Zografos and Balakrishnan-Dagum (ZB-D), ZB-Burr
III (ZB-B III), ZB-Fisk of ZB-Log logistic (ZB-F or ZB-LLog), Burr III
(B III), and Fisk or Log logistic (F or LLog) as special cases is proposed
and studied. Some mathematical properties of the new distribution
including moments, mean and median deviations, distribution of the
order statistics, and Renyi entropy are presented. Maximum likelihood
estimation technique is used to estimate the model parameters and ap-
plications to real datasets to illustrate the usefulness of the model are
presented.
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1 Introduction

Kleiber [9] traced the genesis of Dagum distribution and summarized sev-

eral statistical properties of this distribution. Domma et al. [5] obtained the

maximum likelihood estimates of the parameters of Dagum distribution from

censored samples. Dagum [3] distribution is a special case of generalized beta

distribution of the second kind (GB2), McDonald [11], McDonald and Xu [12],

when the parameter q = 1, where the probability density function (pdf) of the

GB2 distribution is given by:

fGB2(y; a, b, p, q) =
ayap−1

bapB(p, q)[1 + (y
b
)a]p+q

for y > 0. (1)

Note that a > 0, p > 0, q > 0, are the shape parameters and b > 0 is the scale

parameter and B(p, q) = Γ(p)Γ(q)
Γ(p+q)

is the beta function. Domma and Condino [4]

obtained statistical properties of the beta-Dagum distribution. The pdf and

cumulative distribution function (cdf) of Dagum distribution are given by:

fD(y;λ, β, δ) = βλδy−δ−1(1 + λy−δ)−β−1, (2)

and

FD(y;λ, β, δ) = (1 + λy−δ)−β, y > 0, λ, β, δ > 0, (3)

respectively. The hazard and the reverse hazard functions are given by:

hD(y;λ, β, δ) =
fD(y;λ, β, δ)

FD(y;λ, β, δ)
=
βλδy−δ−1(1 + λy−δ)−β−1

1− (1 + λy−δ)−β
, (4)

and

τD(y;λ, β, δ) = βλδy−δ−1(λy−δ + 1)−1, (5)

respectively. The kth raw or non central moments are:

E(Y k) = E(Y k|β, δ, λ) = βλ
k
δB

(
β +

k

δ
, 1− k

δ

)
, for δ > k.
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Motivated by the various applications of Dagum distribution in finance and

actuarial sciences, as well as in economics, where Dagum distribution plays are

important role in size distribution of personal income, we construct a new class

of Dagum-type distribution called the Gamma-Dagum (GD) distribution and

apply the model to real lifetime data.

For any baseline cdf F (x), and x ∈ R, Zografos and Balakrishnan [23]

defined the distribution (when θ = 1) with pdf g(x) and cdf G(x) (for α > 0)

as follows

g(x) =
1

Γ(α)θα
[− log(F (x))]α−1(1− F (x))(1/θ)−1f(x), (6)

and

G(x) =
1

Γ(α)θα

∫ − log(F (x))

0

tα−1e−t/θdt =
γ(−θ−1 log(F (x)), α)

Γ(α)
, (7)

respectively, for α, θ > 0, where g(x) = dG(x)/dx, Γ(α) =
∫∞

0
tα−1e−tdt de-

notes the gamma function, and γ(z, α) =
∫ z

0
tα−1e−tdt denotes the incomplete

gamma function. The corresponding hazard rate function (hrf) is

hG(x) =
[− log(1− F (x))]α−1f(x)(1− F (x))(1/θ)−1

θα(Γ(α)− γ(−θ−1 log(1− F (x)), α))
. (8)

The class of distributions for the special case of θ = 1, is referred to as the

ZB-G family of distributions. Also, (when θ = 1), Ristić and Balakrishnan

[20] proposed an alternative gamma-generator defined by the cdf and pdf

G2(x) = 1− 1

Γ(α)θα

∫ − logF (x)

0

tα−1e−t/θdt, α > 0, (9)

and

g2(x) =
1

Γ(α)θα
[− log(F (x))]α−1(F (x))(1/θ)−1f(x), (10)

respectively. Note that if θ = 1 and α = n+ 1, in equation (6), we obtain the

cdf and pdf of the upper record values U given by

G
U
(u) =

1

n!

∫ − log(1−F (u))

0

yne−ydy, (11)

and

g
U
(u) = f(u)[− log(1− F (u))]n/n!. (12)
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Similarly, from equation (10), the pdf of the lower record values is given by

g
L
(t) = f(t)[− log(F (t))]n/n!. (13)

In this paper, we consider the generalized family of distributions given in equa-

tion (6) via Dagum distribution. Zografos and Balakrishnan [23] motivated the

ZB-G model as follows. Let X(1), X(2), ......, X(n) be lower record values from a

sequence of independent and identically distributed (i.i.d.) random variables

from a population with pdf f(x). Then, the pdf of the nth upper record value

is given by equation (6), when θ = 1. A logarithmic transformation of the

parent distribution F transforms the random variable X with density (6) to a

gamma distribution. That is, if X has the density (6), then the random vari-

able Y = − log[1− F (X)] has a gamma distribution GAM(α; 1) with density

k(y;α) = 1
Γ(α)

yα−1e−y, y > 0. The opposite is also true, if Y has a gamma

GAM(α; 1) distribution, then the random variable X = G−1(1 − e−Y ) has a

ZB-G distribution (Zografos and Balakrishnan [23]). In addition to the mo-

tivations provided by Zografos and Balakrishnan [23], we are also interested

in the generalization of the Dagum distribution via the gamma-generator and

establishing the relationship between the distributions in equations (6) and

(10), and weighted distributions in general.

Weighted distribution provides an approach to dealing with model specifi-

cation and data interpretation problems. It adjusts the probabilities of actual

occurrence of events to arrive at a specification of the probabilities when those

events are recorded. Fisher [13] first introduced the concept of weighted dis-

tribution, in order to study the effect of ascertainment upon estimation of fre-

quencies. Rao [19] unified concept of weighted distribution and use it to iden-

tify various sampling situations. Cox [2] and Zelen [22] introduced weighted

distribution to present length biased sampling. Patil [16] used weighted dis-

tribution as stochastic models in the study of harvesting and predation. The

usefulness and applications of weighted distribution to biased samples in vari-

ous areas including medicine, ecology, reliability, and branching processes can

also be seen in Nanda and Jain [14], Gupta and Keating [7], Oluyede [15] and

in references therein.

Suppose Y is a non-negative random variable with its natural pdf f(y; θ),

where θ is a vector of parameters, then the pdf of the weighted random variable



Broderick O. Oluyede, Shujiao Huang and Mavis Pararai 129

Y w is given by:

fw(y; θ, β) =
w(y, β)f(y; θ)

ω
, (14)

where the weight function w(y, β) is a non-negative function, that may depend

on the vector of parameters β, and 0 < ω = E(w(Y, β)) <∞ is a normalizing

constant. In general, consider the weight function w(y) defined as follows:

w(y) = ykelyF i(y)F
j
(y). (15)

Setting k = 0; k = j = i = 0; l = i = j = 0; k = l = 0; i → i − 1; j = n − i;

k = l = i = 0 and k = l = j = 0 in this weight function, one at a time, im-

plies probability weighted moments, moment-generating functions, moments,

order statistics, proportional hazards and proportional reversed hazards, re-

spectively, where F (y) = P (Y ≤ y) and F (y) = 1 − F (y). If w(y) = y, then

Y ∗ = Y w is called the size-biased version of Y .

Ristić and Balakrishnan [20], provided motivations for the new family of

distributions given in equation (9) when θ = 1, that is for n ∈ N, equation (9)

above is the pdf of the nth lower record value of a sequence of i.i.d. variables

from a population with density f(x). Ristić and Balakrishnan [20] used the

exponentiated exponential (EE) distribution with cdf F (x) = (1 − e−βx)α,

where α > 0 and β > 0, in equation (10) to obtained and study the gamma-

exponentiated exponential (GEE) model. See references therein for additional

results on the GEE model. Pinho et al. [17] presented the statistical properties

of the gamma-exponentiated Weibull distribution. In this note, we obtain a

natural extension for Dagum distribution, which we call the gamma-Dagum

(GD) distribution.

This paper is organized as follows. In section 2, some basic results, the

gamma-Dagum (GD) distribution, series expansion and its sub-models, haz-

ard and reverse hazard functions and the quantile function are presented. The

moments and moment generating function, mean and median deviations are

given in section 3. Section 4 contains some additional useful results on the

distribution of order statistics and Renyi entropy. In section 5, results on the

estimation of the parameters of the GD distribution via the method of maxi-

mum likelihood are presented. Applications are given in section 6, followed by

concluding remarks.
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2 GD Distribution, Expansion, Sub-models,

Hazard and Reverse Hazard Functions

In this section, the GD distribution, series expansion of its pdf, some sub-

models, hazard and reverse hazard functions as well some graphs of these

functions are presented. By inserting Dagum distribution in equation (7), the

cdf GGD(x) = G(x) of the GD distribution is obtained as follows:

GGD(x) =
1

Γ(α)θα

∫ − log[1−(1+λx−δ)−β ]

0

tα−1e−t/θdt

=
γ(−θ−1 log[1− (1 + λx−δ)−β], α)

Γ(α)
, (16)

where x > 0, λ > 0, β > 0, δ > 0, α > 0, θ > 0, and γ(x, α) =
∫ x

0
xα−1e−tdt is

the lower incomplete gamma function. The corresponding GD pdf is given by

g
GD

(x) =
λβδx−δ−1

Γ(α)θα
(1 + λx−δ)−β−1

(
− log[1− (1 + λx−δ)−β]

)α−1

× [1− (1 + λx−δ)−β](1/θ)−1. (17)

Figure 1: Graph of GD pdf for selected parameters

The graph of pdf for some combinations of values of the model parameters
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are given in Figure 1. The plots indicate that the GD pdf can be decreasing

or right skewed. The GD distribution has a positive asymmetry.

If a random variable X has the GD density, we write X ∼ GD(λ, β, δ, α, θ).

Let y = [1 + λx−δ]−β, and ψ = 1/θ, then using the series representation

− log(1− y) =
∑∞

i=0
yi+1

i+1
, we have[

− log(1− y)

]α−1

= yα−1

[ ∞∑
m=0

(
α− 1

m

)
ym

( ∞∑
s=0

ys

s+ 2

)m]
,

and applying the result on power series raised to a positive integer, with as =

(s+ 2)−1, that is, ( ∞∑
s=0

asy
s

)m

=
∞∑
s=0

bs,my
s, (18)

where bs,m = (sa0)
−1

∑s
l=1[m(l + 1) − s]albs−l,m, and b0,m = am0 , (Gradshteyn

and Ryzhik [6]), the GD pdf can be written as

g
GD

(x) =
λβδx−δ−1[1 + λx−δ]−β−1

Γ(α)θα
yα−1

×
∞∑
m=0

∞∑
s=0

(
α− 1

m

)
bs,my

m+s

∞∑
k=0

(
ψ − 1

k

)
(−1)kyk

=
λβδx−δ−1[1 + λx−δ]−β−1

Γ(α)θα

×
∞∑
m=0

∞∑
s,k=0

(
α− 1

m

)(
ψ − 1

k

)
(−1)kbs,my

α+m+s+k−1

=
∞∑
m=0

∞∑
s,k=0

(
α− 1

m

)(
ψ − 1

k

)
(−1)k

bs,m
(m+ s+ k + α)θαΓ(α)

× λβ(m+ s+ k + α)δx−δ−1[1 + λx−δ]−β(m+s+k+α)−1,

where f(x;λ, β(m+ s+k+α), δ) is the Dagum pdf with parameters λ, β(m+

s+ k+α), and δ. Let C = {(m, s, k) ∈ Z3
+}, and ψ = 1/θ, then the weights in

the GD pdf are

wν = (−1)k
(
α− 1

m

)(
ψ − 1

k

)
bm,s

(m+ s+ k + α)θαΓ(α)
,

and

g
GD

(x) =
∑
ν∈C

wvfD(x;λ, β(m+ s+ k + α), δ). (19)
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It follows therefore that the GD density is a linear combination of the Dagum

pdfs. The statistical and mathematical properties can be readily obtained from

those of the Dagum distribution. Note that g
GD

(x) is a weighted pdf with the

weight function

w(x) = [− log(1− F (x))]α−1[1− F (x)]
1
θ
−1, (20)

that is,

g
GD

(x) =
[− log(1− F (x))]α−1[1− F (x)]

1
θ
−1

θαΓ(α)
f(x)

=
w(x)f(x)

EF (w(X))
, (21)

where 0 < EF [[− log(1 − F (x))]α−1[1 − F (x)]
1
θ
−1] = θαΓ(α) < ∞, is the

normalizing constant. Similarly,

g2(x) =
[− log(F (X))]α−1[F (X)]

1
θ
−1

θαΓ(α)
f(x) =

w(x)f(x)

EF (w(X))
, (22)

where 0 < EF (w(X)) = EF ([− log(F (X))]α−1[F (X)]
1
θ
−1) = θαΓ(α) <∞.

2.1 Some Sub-models of the GD Distribution

Some of the sub-models of the GD distribution are listed below:

• If θ = 1, we obtain the gamma-Dagum distribution via the ZB-D (ZB-

Dagum) distribution.

• When λ = θ = 1, we have the ZB-Burr III (ZB-B III) distribution.

• When β = θ = 1, we obtain the ZB-Fisk or ZB-Log logistic (ZB-F or

ZB-LLog) distribution.

• If α = 1, we get the exponentiated Dagum (ED) distribution, which is

also a Dagum distribution.

• When β = 1, we have the gamma-Fisk or gamma-Log logistic (GF or

GLLog) distribution.

• If λ = 1, we obtain the gamma-Burr III (GB III) distribution.
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• If θ = 1, and α = 1 we have Dagum (D) distribution.

• When λ = α = θ = 1, we have Burr III (B III) distribution.

• When λ = α = 1 we have exponentiated Burr III (EB III) distribution.

• When β = α = 1, we obtain Fisk or Log logistic (F or LLog) distribution.

2.2 Hazard and Reverse Hazard Functions

Let X be a continuous random variable with distribution function F, and

probability density function (pdf) f, then the hazard function, reverse hazard

function and mean residual life functions are given by hF (x) = f(x)/F (x),

τF (x) = f(x)/F (x), and δF (x) =
∫∞
x
F (u)du/F (x) respectively. The functions

hF (x), δF (x), and F (x) are equivalent (Shaked and Shanthikumar [21]). The

hazard and reverse hazard functions of the GD distribution are

hG(x) =
λβδx−δ−1[1 + λx−δ]−β−1(− log(1− [1 + λx−δ]−β))α−1[1− (1 + λx−δ)−β](1/θ)−1

θα(Γ(α)− γ(−θ−1 log(1− (1 + λx−δ)−β), α))
,

(23)

and

τG(x) =
λβδx−δ−1[1 + λx−δ]−β−1(− log(1− [1 + λx−δ]−β))α−1[1− (1 + λx−δ)−β](1/θ)−1

θα(γ(−θ−1 log(1− (1 + λx−δ)−β), α))
,

(24)

for x ≥ 0, λ > 0, β > 0, δ > 0, α > 0, and θ > 0, respectively.

The graph of hazard function for selected parameters are given in Figure

2. The plots show various shapes including monotonically decreasing, mono-

tonically increasing, and bathtub followed by upside down bathtub shapes for

five combinations of values of the parameters. This very attractive flexibility

makes the GD hazard rate function useful and suitable for monotonic and non-

monotone empirical hazard behaviors which are more likely to be encountered

or observed in real life situations.

2.3 GD Quantile Function

The quantile function of GD distribution is obtained by solving the equation

G(Q(y)) = y, 0 < y < 1. (25)
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Figure 2: Graph of hazard function for selected parameters

Note that the inverse or quantile function of Dagum distribution, FD(x) =

[1 + λx−δ]−β is given by QD(.), that is

QD(y) = λ
1
δ

(
y
−1
β − 1

)−1
δ
. (26)

The quantile function of the GD distribution is obtained by inverting equation

(16) to obtain

QGD(y) = λ
1
δ

[(
1− e−θu

)−1
β

− 1

]−1
δ

, (27)

where u = γ−1(yΓ(α), α).

3 Moments, Moment Generating Function, Mean

and Median Deviations

In this section, we present the moments, moment generating function, mean

and median deviations for the GD distribution. These measures can be readily

obtained for the sub-models given in section 2.
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3.1 Moments and Moment Generating Function

Let β∗ = β(m+s+k+α), and Y ∼ D(λ, β∗, δ). Note that from Y ∼ D(α, β∗, δ),

the rth moment of the random variable Y is

E(Y r) = β∗λr/δB

(
β∗ +

r

δ
, 1− r

δ

)
, (28)

r < δ, so that the rth raw moment of GD distribution is given by:

E(Xr) =
∑
ν∈C

wνE(Y r) =
∑
ν∈C

wνβ
∗λr/δB

(
β∗ +

r

δ
, 1− r

δ

)
, (29)

r < δ. The moment generating function (MGF) , for |t| < 1, is given by:

MX(t) =
∑
ν∈C

wνMY (t)

=
∑
ν∈C

∞∑
i=0

wν
ti

i!
β∗λr/δB

(
β∗ +

r

δ
, 1− r

δ

)
, (30)

for r < δ.

Theorem 3.1.

E{[− log(1− F (X))]r[(1− F (X))s]} =
θr+αΓ(r + α)

(sθ + 1)αθαΓ(α)
. (31)

Proof:

E{[− log(1− F (X))]r[(1− F (X))s]}

=

∫ ∞

0

f(x)

θαΓ(α)
[− log(1− F (x))]r+α−1[1− F (x)]s+(1/θ)−1dx

=
θr+αΓ(r + α)

(sθ + 1)αθαΓ(α)
. (32)

Corollary 3.2. If s = 0 , we have E[− log(1 − F (X))r] = θr+αΓ(r+α)
θαΓ(α)

, and

if r = 0, E[(1− F (X))s] = [sθ + 1]−α.

Proof: Let s = 0 in equation (31) or equation (32), then

E[− log(1− F (X))r] =
θr+αΓ(r + α)

θαΓ(α)
. (33)

Let θ∗ = s+ 1
θ
, then with r = 0 in equation (31) or equation(32), we obtain

E[(1− F (X))s] = [sθ + 1]−α. (34)
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3.2 Mean and Median Deviations

If X has the GD distribution, we can derive the mean deviation about the

mean µ by

δ1 =

∫ ∞

0

|x− µ|g
GD

(x)dx = 2µG
GD

(µ)− 2µ+ 2T (µ), (35)

and the median deviation about the median M by

δ2 =

∫ ∞

0

|x−M |g
GD

(x)dx = 2T (M)− µ, (36)

where µ = E(X) is given in equation (29), M = QGD(0.5) in equation (27)

and T (a) =
∫∞
a
x · g

GD
(x)dx. Let β∗ = β(m+ s+ k + α), then

T (a) =
∑
ν∈C

wνTD(λ,β∗,δ)(a)

=
∑
ν∈C

wνβ
∗λ

1
δ

[
B

(
β∗ +

1

δ
, 1− 1

δ

)
−B

(
t(a); β∗ +

1

δ
, 1− 1

δ

)]
,(37)

where t(a) = (1 + λa−δ)−1, and B(x; a, b) =
∫ x

0
ta−1(1− t)b−1dt.

4 Order Statistics and Renyi Entropy

Order Statistics play an important role in probability and statistics. The

concept of entropy plays a vital role in information theory. The entropy of a

random variable is defined in terms of its probability distribution and can be

shown to be a good measure of randomness or uncertainty. In this section, we

present the distribution of the order statistics, and Renyi entropy for the GD

distribution.
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4.1 Order Statistics

The pdf of the ith order statistics from the GD pdf g(x) is given by

gi:n(x) =
n!g(x)

(i− 1)!(n− i)!
[G(x)]i−1[1−G(x)]n−i

=
n!g(x)

(i− 1)!(n− i)!

n−i∑
j=0

(−1)j
(
n− i

j

)
[G(x)]i+j−1

=
n!g(x)

(i− 1)!(n− i)!

n−i∑
j=0

(−1)j
(
n− i

j

)[
γ(−θ−1 log(F (x), α))

Γ(α)

]i+j−1

,

where F (x) = 1− F (x). Using the fact that

γ(x, α) =
∞∑
m=0

(−1)mxm+α

(m+ α)m!
, (38)

and setting cm = (−1)m/((m+ α)m!), we have

gi:n(x) =
n!g(x)

(i− 1)!(n− i)!

n−i∑
j=0

(−1)j
(
n− i

j

)
(−1)j

[Γ(α)]i+j−1
[−θ−1 log(F (x))]α(i+j−1)

×
[ ∞∑
m=0

(−1)m(−θ−1 log(F (x)))m

(m+ α)m!

]i+j−1

=
n!g(x)

(i− 1)!(n− i)!

n−i∑
j=0

(
n− i

j

)
(−1)j

[Γ(α)]i+j−1
[−θ−1 log(F (x))]α(i+j−1)

×
∞∑
m=0

dm,i+j−1(−θ−1 log(F (x)))m,
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where d0 = c
(i+j−1)
0 , dm,i+j−1 = (mc0)

−1
∑m

l=1[(i+ j − 1)l −m+ l]cldm−l,i+j−1.

Now,

gi:n(x) =
n!g(x)

(i− 1)!(n− i)!

n−i∑
j=0

∞∑
m=0

(
n− i

j

)
(−1)jdm,n−i+j
[Γ(α)]i+j−1

[−θ−1 log(F (x))]α(i+j−1)+m

=
n![− log(F (x))]α−1[F (x)]ψ−1f(x)

(i− 1)!(n− i)!Γ(α)θα

n−i∑
j=0

∞∑
m=0

(
n− i

j

)
(−1)jdm,i+j−1

[Γ(α)]i+j−1

× [−θ−1 log(F (x))]α(i+j−1)+m

=
n!

(i− 1)!(n− i)!

n−i∑
j=0

∞∑
m=0

(
n− i

j

)
(−1)jdm,i+j−1

[Γ(α)]i+j

× [log(F (x))]α(i+j)+m−1

θα(i+j)+m
[F (x)]ψ−1f(x)

=
n!

(i− 1)!(n− i)!

n−i∑
j=0

∞∑
m=0

(
n− i

j

)
(−1)jdm,i+j−1

[Γ(α)]i+j

× Γ(α(i+ j) +m)

θα(i+j)+m

[− log(F (x))]α(i+j)+m−1

Γ(α(i+ j) +m)
[F (x)]ψ−1f(x).

That is,

gi:n(x) =
n!

(i− 1)!(n− i)!

n−i∑
j=0

∞∑
m=0

(
n− i

j

)
(−1)jdm,i+j−1Γ(α(i+ j) +m)

[Γ(α)]i+j

× g(x;α(i+ j) +m,β, λ, δ, θ),

where g(x;α(i+ j)+m,β, λ, δ, θ) is the GD pdf with parameters λ, β, δ, θ, and

shape parameter α∗ = α(i+ j) +m. It follows therefore that

E(Xj
i:n) =

n!

(i− 1)!(n− i)!

∑
ν∈C

n−i∑
j=0

∞∑
m=0

(
n− i

j

)
(−1)jwνdm,i+j−1

[Γ(α)]i+j

× Γ(α(i+ j) +m)β∗λj/δB

(
β∗ +

j

δ
, 1− j

δ

)
,

for j < δ, where B(., .) is the beta function. These moments are often used in

several areas including reliability, insurance and quality control for the predic-

tion of future failures times from a set of past or previous failures.
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4.2 Renyi Entropy

Renyi entropy is an extension of Shannon entropy. Renyi entropy is defined

to be

IR(v) =
1

1− v
log

(∫ ∞

0

[g(x;λ, β, δ, α, θ)]vdx

)
, v 6= 1, v > 0. (39)

Renyi entropy tends to Shannon entropy as v → 1. Let y = [1+λx−δ]−β. Note

that for α > 1 and ν/θ a natural number,

gvGD(x) =
(λβδ)v

(θΓ(α))v

∞∑
m=0

∞∑
s,k=0

(−1)k
(
v(α− 1)

m

)(
v/α− 1

k

)
x−vδ−v

× [1 + λx−δ]−vβ−vym+s+vα−v+k

=
(λβδ)v

(θΓ(α))v

∞∑
m=0

∞∑
s,k=0

(−1)k
(
v(α− 1)

m

)(
v/α− 1

k

)
× x−vδ−v[1 + λx−δ]−β(m+s+k+vα)−v.

Now, ∫ ∞

0

gvGD(x)dx =
(λβδ)v

(θΓ(α))v

∞∑
m=0

∞∑
s,k=0

(−1)k
(
v(α− 1)

m

)(
v/α− 1

k

)
×

∫ ∞

0

x−vδ−v[1 + λx−δ]−β(m+s+k+vα)−vdx.

Let t = [1 + λx−δ]−1, then∫ ∞

0

x−vδ−v[1 + λx−δ]−β(m+s+k+vα)−vdx

=
λ−v−

v
δ
+δ

δ

∫ 1

0

tβ(m+s+k+vα)− v
δ
+δ−1(1− t)v+

v
δ
−δ−1dt

=
λ−v−

v
δ
+δ

δ
B

(
β(m+ s+ k + vα) + δ − v

δ
, v +

v

δ
− δ

)
,

where B(a, b) =
∫ 1

0
ta−1(1− t)b−1dt is the beta function. Consequently, Renyi

entropy for GD distribution is given by

IR(v) =
1

1− v
log

[
λv−

v
δ βvδv−1

θvα(Γ(α))v

∞∑
m=0

∞∑
s,k=0

(−1)k
(
v(α− 1)

m

)(
(v/θ)− 1

k

)
bs,m

× B

(
β(m+ s+ k + vα) + δ − v

δ
, v +

v

δ
− δ

)]
,

for v > 0, v 6= 1.
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5 Maximum Likelihood Estimation

Consider a random sample x1, x2, ......, xn from the gamma-Dagum distri-

bution. The likelihood function is given by

L(λ, β, δ, θ, α) =
(λβδ)n

[θαΓ(α)]n

n∏
i=1

{
x−δ−1
i [1 + λx−δi ]−β−1

×
[
− log

(
1− (1 + λx−δi )−β

)]α−1[
1− (1 + λx−δi )−β

](1/θ)−1}
.

Now, the log-likelihood function denoted by ` is

` = log[L(λ, β, δ, θ, α)]

= n log(λ) + n log(β) + n log(δ) + (−δ − 1)
n∑
i=1

log(xi)

+ (−β − 1)
n∑
i=1

log(1 + λx−δi ) + (α− 1)
n∑
i=1

log

[
− log

(
1− (1 + λx−δi )

)]
+

(
1

θ
− 1

) n∑
i=1

log

[
1− (1 + λx−δi )

]
− nα log(θ)− n log(Γ(α)). (40)

The entries of the score function are given by

∂`

∂λ
=

n

λ
+ (−β − 1)

n∑
i=1

x−δi
1 + λx−δi

+ (α− 1)
n∑
i=1

β(1 + λx−δi )−β−1x−δi
(1− (1 + λx−δi )−β) log(1− (1 + λx−δi )−β)

+

(
1

θ
− 1

) n∑
i=1

β(1 + λx−δi )−β−1x−δi
log(1− (1 + λx−δi )−β)

, (41)

∂`

∂β
=

n

β
−

n∑
i=1

log(1 + λx−δi )

+ (α− 1)
n∑
i=1

(1 + λx−δi )−β log(1 + λx−δi )(−1)

(1− (1 + λx−δi )−β)(log(1− (1 + λx−δi )−β))

+

(
1

θ
− 1

) n∑
i=1

(1 + λx−δi )−β log(1 + λx−δi )

[1− (1 + λx−δi )−β]
, (42)
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∂`

∂δ
=

n

δ
−

n∑
i=1

log(xi) + (−β − 1)
n∑
i=1

λx−δi log(x−δi )(−1)

1 + λx−δi

+ (α− 1)
n∑
i=1

λx−δi log(λx−δi )

(1− (1 + λx−δi )−β)(log(1− (1 + λx−δi )−β))
, (43)

∂`

∂α
= −nΓ′(α)

Γ(α)
− n log(α) +

n∑
i=1

log

(
− log

(
1− (1 + λx−δi )−β

))
, (44)

and
∂`

∂θ
= −nα

θ
− 1

θ2

n∑
i=1

log

(
− log

(
1− (1 + λx−δi )−β

))
. (45)

The equations obtained by setting the above partial derivatives to zero

are not in closed form and the values of the parameters λ, β, δ, α, θ must

be found by using iterative methods. The maximum likelihood estimates of

the parameters, denoted by ∆̂ is obtained by solving the nonlinear equation

( ∂`
∂λ
, ∂`
∂β
, ∂`
∂δ
, ∂`
∂α
, ∂`
∂θ

)T = 0, using a numerical method such as Newton-Raphson

procedure. The Fisher information matrix is given by I(∆) = [Iθi,θj
]5X5 =

E(− ∂2`
∂θi∂θj

), i, j = 1, 2, 3, 4, 5, can be numerically obtained by MATHLAB or

MAPLE software. The total Fisher information matrix nI(∆) can be approx-

imated by

Jn(∆̂) ≈
[
− ∂2`

∂θi∂θj

∣∣∣∣
∆=∆̂

]
5X5

, i, j = 1, 2, 3, 4, 5. (46)

For a given set of observations, the matrix given in equation (46) is obtained

after the convergence of the Newton-Raphson procedure in MATHLAB soft-

ware.

5.1 Asymptotic Confidence Intervals

In this section, we present the asymptotic confidence intervals for the pa-

rameters of the GD distribution. The expectations in the Fisher Information

Matrix (FIM) can be obtained numerically. Let ∆̂ = (λ̂, β̂, δ̂, α̂, θ̂) be the

maximum likelihood estimate of ∆ = (λ, β, δ, α, θ). Under the usual regularity

conditions and that the parameters are in the interior of the parameter space,
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but not on the boundary, we have:
√
n(∆̂ − ∆)

d−→ N5(0, I
−1(∆)), where

I(∆) is the expected Fisher information matrix. The asymptotic behavior is

still valid if I(∆) is replaced by the observed information matrix evaluated at

∆̂, that is J(∆̂). The multivariate normal distribution N5(0, J(∆̂)−1), where

the mean vector 0 = (0, 0, 0, 0, 0)T , can be used to construct confidence inter-

vals and confidence regions for the individual model parameters and for the

survival and hazard rate functions. A large sample 100(1 − η)% confidence

intervals for λ, β, δ, θ and α are:

λ̂± Z η
2

√
I−1
λλ (∆̂), β̂ ± Z η

2

√
I−1
ββ (∆̂), δ̂ ± Z η

2

√
I−1
δδ (∆̂)

α̂± Z η
2

√
I−1
αα (∆̂), θ̂ ± Z η

2

√
I−1
θθ (∆̂),

respectively, where I−1
λλ (∆̂), I−1

ββ (∆̂), I−1
δδ (∆̂), I−1

αα (∆̂) and I−1
θθ (∆̂) are the di-

agonal elements of I−1
n (∆̂), and Z η

2
is the upper η

2
th percentile of a standard

normal distribution.

We can use the likelihood ratio (LR) test to compare the fit of the GD

distribution with its sub-models for a given data set. For example, to test

θ = α = 1, the LR statistic is ω = 2[ln(L(λ̂, β̂, δ̂, α̂, θ̂)) − ln(L(λ̃, β̃, δ̃, 1, 1))],

where λ̂, β̂, δ̂, α̂ and θ̂, are the unrestricted estimates, and λ̃, β̃, and δ̃ are

the restricted estimates. The LR test rejects the null hypothesis if ω > χ2
ε
,

where χ2
ε

denote the upper 100ε% point of the χ2 distribution with 2 degrees

of freedom.

6 Applications

In this section, we present examples to illustrate the flexibility of the GD

distribution and its sub-models for data modeling. We also compare the four

parameter GD sub-model to the gamma-exponentiated Weibull (GEW) distri-

bution [17]. The pdf of GEW is given by

g
GEW

(x) =
kαδ

λΓ(δ)

(
x

λ

)k−1

e−( x
λ
)k

[
1−e−( x

λ
)k

]α−1[
− log

(
1−e−( x

λ
)k

)]δ−1

, (49)

for α, δ, λ, k > 0.

The maximum likelihood estimates (MLEs) of the GD parameters λ, β,

δ, α, and θ are computed by maximizing the objective function via the sub-

routine NLMIXED in SAS. The estimated values of the parameters (standard
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Table 1: Descriptive Statistics
Data N Mean Median Mode SD Variance Skewness Kurtosis Min. Max.

Air Conditioning System 188 92.07 54.00 14.00 107.92 11646.00 2.16 5.19 1.0 603.0

Baseball Player Salary 818 3.260059 1.151 0.4 4.36406 19.04505 2.09955602 5.12663081 0.4 33

Bladder 128 9.365625 6.395 2.02 10.50833 110.42497 3.32566967 16.1537298 0.08 79.05

error in parenthesis), -2log-likelihood statistic, Akaike Information Criterion,

AIC = 2p− 2 ln(L), Bayesian Information Criterion, BIC = p ln(n)− 2 ln(L),

and Consistent Akaike Information Criterion, AICC = AIC + 2 p(p+1)
n−p−1

, where

L = L(∆̂) is the value of the likelihood function evaluated at the parameter

estimates, n is the number of observations, and p is the number of estimated

parameters are presented in Table 3 and 4. Also, presented are values of the

Kolmogorov-Smirnov statistic, KS = max1≤i≤n{GGD(xi)− i−1
n
, i
n
−GGD(xi)},

and the sum of squares SS =
∑n

j=1

[
G

GD
(x(j); λ̂, β̂, δ̂, θ̂, α̂)−

(
j − 0.375

n+ 0.25

)]2

.

These statistics are used to compare the distributions presented in these ta-

bles. Plots of the fitted densities and the histogram of the data are given in

Figures 4 and 5. Probability plots (Chambers et al. [1]) are also presented

in Figures 4 and 5. For the probability plot, we plotted G
GD

(x(j); λ̂, β̂, δ̂, θ̂, α̂)

against
j − 0.375

n+ 0.25
, j = 1, 2, · · · , n, where x(j) are the ordered values of the

observed data. Table 1 gives the descriptive statistics for the data sets.

The first example consists of the salaries of 818 professional baseball players

for the year 2009 (USA TODAY). Estimates of the parameters of GD distribu-

tion and its related sub-models (standard error in parentheses), AIC, AICC,

BIC,KS and SS for baseball player salaries data are give in Table 2.

Table 2: Estimates of Models for Baseball Player Salaries Data Set

Estimates Statistics

Model λ β δ α θ −2 log L AIC AICC BIC SS

GD(λ, β, δ, α, θ) 0.000024 99.9919 7.4586 0.525 16.2026 2884.5 2894.5 2894.6 2918.0 8.4755

(0.000004361) (0.1127) (0.04404) (0.05415) (1.4405)

ZB −D(λ, β, δ, α, 1) 0.000816 98.7384 1.5113 3.1337 1 3201.7 3209.7 3209.8 3228.6 6.5759

(0.000473) (0.000063) (0.1338) (0.598)

ZB −BurrIII(1, β, δ, α, 1) 1 1.7986 1.1777 0.8104 1 3366.3 3372.3 3372.3 3386.4 5.9665

(0.4834) (0.05465) (0.1796)

ZB − Fisk(λ, 1, δ, α, 1) 0.008731 1 1.9669 5.4912 1 3221.5 3227.5 3227.5 3241.6 6.3701

(0.005115) (0.1193) (0.621)

Plots of the fitted densities and the histogram, observed probability vs

predicted probability, and empirical survival function for the baseball player
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salaries data are given in Figure 3.

The LR test statistic of the hypothesis H0: GD against Ha: ZB-D, H0:

GD against Ha: ZB-BurrIII and H0: GD against Ha: ZB-Fisk are 317.2 (p-

value < 0.0001), 481.8 (p-value < 0.0001) and 337 (p-value < 0.0001). We

can conclude that there is a significant difference between GD and ZB-D, ZB-

BurrIII and ZB-Fisk distributions. The values of the statistics AIC, AICC

and BIC shows that GD is the best fit for baseball salary data. Note that

ZB-BurrIII gives the smallest SS value.

Table 3: Estimates of Models for Air Conditioning System Data Set

Estimates Statistics

Model λ β δ α θ −2 log L AIC AICC BIC SS KS

GD 2.1816 31.0783 0.538 0.1856 0.05384 2065.1 2075.1 2075.4 2091.2 0.0334 0.0401

(0.8567) (7.1966) (0.05068) (0.0188) (0.034)

ZB-D 10.611 14.8939 0.9507 0.1885 1 2084.7 2092.7 2092.9 2105.7 0.5144 0.0982

(1.9869) (1.0488) (0.0375) (0.0194) -

ZB-BurrIII 1 51.7658 0.7498 0.2579 1 2101.5 2107.5 2107.6 2117.2 0.3876 0.0786

- (1.0861) (0.0327) (0.02906) -

ZB-Fisk 102.03 1 1.2902 1.2013 1 2078.5 2084.5 2084.6 2094.2 0.0797 0.0467

(51.2069) - (0.07275) (0.1991) -

D 118.02 1.1792 1.2873 1 1 2077.4 2083.4 2083.5 2093.1 0.0687 0.0421

(71.3654) (0.2375) (0.09666)

k α δ λ

GEW 0.2651 1.3363 0.05339 0.0007 2338.4 2346.4 2346.6 2359.3 8.4196 0.3863

(0.001118) (0.4333) (0.003965) (0.000001897)

The second example consists of the number of successive failures for the air

conditioning system of each member in a fleet of 13 Boeing 720 jet airplanes

(Proschan [18]). Initial value for GD model in SAS code are λ = 1.2, β =

14, δ = 1, α = 0.9, θ = 0.01. Estimates of the parameters of GD distribution

and its related sub-models (standard error in parentheses), AIC, AICC, BIC,

KS and SS for air conditioning system data are give in Table 3. The asymptotic

covariance matrix of the MLEs of the GD model parameters, which is the

inverse of the observed Fisher information matrix I−1
n (∆̂) is given by:

0.7339 −6.1407 0.02873 −0.00537 0.006472

−6.1407 51.7908 −0.2362 0.04324 −0.05223

0.02873 −0.2362 0.002568 0.00014 0.001453

−0.00537 0.04324 0.00014 0.000353 0.000194

0.006472 −0.05223 0.001453 0.000194 0.001156

 ,
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and the 95% confidence intervals for the model parameters are given by λ ∈
(2.1816±1.6791), β ∈ (31.0783±14.1053), δ ∈ (0.5380±0.0993), α ∈ (0.1856±
0.03685), and θ ∈ (0.05384± 0.06664), repectively.

Plots of the fitted densities and the histogram, observed probability vs

predicted probability, and empirical survival function for the air conditioning

system data are given in Figure 4.

The LR test statistic of the hypothesis H0: ZB-D against Ha: GD, H0:

ZB-BurrIII against Ha: GD and H0: ZB-F against Ha: GD are 19.6 (p-value

< 0.0001), 36.4 (p-value < 0.0001) and 13.4 (p-value = 0.0012). We can

conclude that there is a significant difference between GD and ZB-D, ZB-

BurrIII and ZB-Fisk distributions. Considering the statistics (−2 log(L), AIC,

BIC, KS and the values of SS given in Table 2, we observe that the GD

distribution gives a better fit than the ZB-D, ZB-BurrIII, ZB-F, D, and GEW

distributions. The value of the KS statistics (smaller is better) confirms that

the GD model yields a better fit than the other models in Table 3.

Table 4: Estimates of Models for Remission Times Data Set

Estimates Statistics

Model λ β δ α θ −2 log L AIC AICC BIC SS KS

GD 36.5904 4.6432 1.6783 0.1763 0.827 818.9 828.9 829.4 843.2 0.0153 0.0345

(20.0777) (0.6152) (0.2154) (0.02128) (0.3848)

ZB-D 14.4218 5.6739 1.4787 0.1932 1 821.4 829.4 829.7 840.8 0.0422 0.0457

(4.9839) (0.5272) (0.1038) (0.02313) -

ZB-BurrIII 1 14.0701 0.955 0.3086 1 846.8 852.8 853.0 861.4 0.3641 0.0945

- (0.8515) (0.054) (0.04013) -

ZB-Fisk 78.8617 1 1.9597 0.6595 1 819.6 825.6 825.8 834.1 0.0205 0.0396

(47.7597) - (0.1721) (0.1125) -

D 0.04426 56.2014 0.7713 1 1 884.2 890.2 890.4 898.8 0.9490 0.1382

(0.02063) (25.1544) (0.04672)

k α δ λ

GEW 0.9718 1.8349 0.03244 1.9013 1154.7 1162.7 1163.0 1174.1 25.4662 0.6689

(0.008578) (0.9136) (0.002901) (0.002509)

The third example represents the remission times (in months) of a random

sample of 128 bladder cancer patients (Lee and Wang, [10]). Initial value

for GD model in SAS code are λ = 7, β = 1, δ = 0.84, α = 0.21, θ = 0.3.

Estimates of the parameters of GD distribution and its related sub-models

(standard error in parentheses), AIC, AICC, BIC and SS for remission times

data are give in Table 4. The asymptotic covariance matrix of the MLEs of the

GD model parameters, which is the inverse of the observed Fisher information
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matrix I−1
n (∆̂) is given by:

403.11 −11.7265 3.5502 −0.1583 2.8776

−11.7265 0.3785 −0.1238 0.002601 −0.1345

3.5502 −0.1238 0.0464 −0.00018 0.06253

−0.1583 0.002601 −0.00018 0.000453 0.000548

2.8776 −0.1345 0.06253 0.000548 0.148


Plots of the fitted densities and the histogram, observed probability vs

predicted probability, and empirical survival function for the remission times

data are given in Figure 5.

The LR test statistic of the hypothesis H0: ZB-D against Ha: GD and

H0: ZB-BurrIII against Ha: GD are 2.5 (p-value = 0.1138) and 27.9 (p-value

< 0.0001). We can conclude that there is a significant difference between GD

and ZB-BurrIII distributions. Note that the GD distribution gives smaller

AIC, AICC, BIC, SS and the value of KS statistic shows that this model

yields a better fit than its sub-models and the GEW distribution.

7 Concluding Remarks

A new class of generalized Dagum distribution called the gamma-Dagum

distribution is proposed and studied. The GD distribution has the GB, GF,

ED and D distributions as special cases. The density of this new class of distri-

butions can be expressed as a linear combination of Dagum density functions.

The GD distribution possesses hazard function with flexible behavior. We also

obtain closed form expressions for the moments, mean and median deviations,

distribution of order statistics and entropy. Maximum likelihood estimation

technique is used to estimate the model parameters. Finally, the GD model is

fitted to real data sets to illustrate the usefulness of the distribution.
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Figure 3: Fitted densities, probability plots of the baseball player salaries data
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Figure 4: Fitted densities, probability plots of the air conditioning system data
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Figure 5: Fitted densities, probability plots of remission times data


