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The Approximate Method for

Solving Poincaré Problem of Nonlinear

Elliptic Equations of Second Order

Guochun Wen1, Yanhui Zhang2 and Dechang Chen3

Abstract

This article deals with the approximate method used to solve the
Poincaré boundary value problem for nonlinear elliptic equations of sec-
ond order in unbounded multiply connected domains. This type of
boundary value problems are known to have applications in many fields
such as mechanics and physics. We first present a formulation of the
boundary value problem and the corresponding modified well-posedness.
Then we obtain the representation theorem and a priori estimates of so-
lutions for the modified problem. Finally by the estimates of solutions
and the continuity method, we obtain the solvability results and er-
ror estimates of approximate solutions of the modified problem for the
nonlinear elliptic equations of second order.
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1 Formulation of the Poincaré boundary value

problem

Let D be an (N + 1)-connected domain including the infinite point with

the boundary Γ = ∪N
j=0Γj in C, where Γ ∈ C2

µ (0 < µ < 1). Without loss

of generality, we assume that D is a circular domain in |z| > 1, where the

boundary consists of N + 1 circles Γ0 = ΓN+1 = {|z| = 1}, Γj = {|z − zj| =

rj}, j = 1, ..., N and z = ∞ ∈ D. In this article, the notations are the same

as in references [1–8]. We consider the second order equation in the complex

form 



uzz̄ =F (z, u, uz, uzz), F =Re [Quzz+A1uz]+A2u+A3,

Q = Q(z, u, uz, uzz), Aj = Aj(z, u, uz), j = 1, 2, 3,
(1.1)

satisfying the following Condition C.

Condition C (1) Q(z, u, w, U), Aj(z, u, w)(j = 1, 2, 3) are continuous in u∈
R, w∈C for almost every point z ∈ D, U ∈ C, and Q = 0, Aj = 0 (j = 1, 2, 3)

for z 6∈ D.

(2) The functions Q(z, u, w, U), Aj(z, u, w)(j = 1, 2, 3) are measurable in

z ∈ D for all continuous functions u(z), w(z) in D, and Aj(z, u, w)(j =1, 2, 3)

satisfy

Lp,2[A1(z, u, w), D] ≤ k0, Lp,2[A2(z, u, w), D] ≤ εk0, Lp,2[A3(z, u, w), D] ≤ k1,

(1.2)

in which p, ε, k0, k1 are non-negative constants.

(3) The function F in equation (1.1) satisfies the uniform ellipticity condi-

tion, namely for any number u ∈ R and w, U1, U2 ∈ C, the inequality

|F (z, u, w, U1)− F (z, u, w, U2)| ≤ q0|U1 − U2|, (1.3)

holds for almost every point z ∈ D, where q0(< 1) is a non-negative constant.

We formulate the Poincaré boundary value problem as follows.
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Problem P In the domain D, find a solution u(z) of equation (1.1), such

that it is continuously differentiable in D, and satisfies the boundary condition

1

2

∂u

∂ν
+c1(z)u=c2(z), i.e. Re[λ(z)uz]+c1(z)u=c2(z), z∈Γ, (1.4)

in which ν is any unit vector at every point on Γ = ∂D, λ(z) = cos(ν, x) −
i cos(ν, y), c1(z) and c2(z) are known functions satisfying the conditions

Cα[λ, Γ] ≤ k0, Cα[c1, Γ] ≤ εk0, Cα[c2, Γ] ≤ k2, (1.5)

where ε (> 0), α (1/2 < α < 1), k0, k2 are non-negative constants.

Since the directional derivative can be arbitrary, (1.4) indicates a very

general boundary condition. If cos(ν, n) = 0 and c1 = 0 on Γ, where n is the

outward normal vector on Γ, then Problem P is the Dirichlet boundary value

problem (Problem D). If cos(ν, n) = 1 and c1 = 0 on Γ, then Problem P is

the Neumann boundary value problem (Problem N). And if cos(ν, n) > 0, and

c1 ≥ 0 on Γ, then Problem P is the regular oblique derivative problem, i.e. the

third boundary value problem (Problem III or O).

We call the integer

K =
1

2π
∆Γ arg λ(z)

the index of Problem P. Note that the Dirichlet boundary value problem,

Neumann boundary value problem and regular oblique derivative boundary

value problem are the special cases of Problem P, whose indexes are equal

to K = N −1. In general, the index of Problem P can be any negative or

non-negative integer, hence the boundary condition of Problem P is very gen-

eral. And the index is directly related to the existence and uniqueness of the

solution. When the index K < 0, Problem P may not be solvable, and when

K ≥ 0, the solution of Problem P is not necessarily unique. Hence we consider

the well-posedness of Problem P with modified boundary conditions as follows.

Problem Q Find a continuous solution [w(z), u(z)] of the complex equation

wz̄ = F (z, u, w, wz), F (z, u, w, wz)=Re [Qwz+A1w]+A2u+A3, (1.6)

satisfying the boundary condition

Re[λ(z)w(z)] + c1(z)u = c2(z) + h(z), z ∈ Γ , (1.7)
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and the relation

u(z) = −2Re

∫ z

a0

[
w(z)

z2
−

N∑
j=a0

idjzj

z(z − zj)
dz] + b0, (1.8)

where a0 = 1, dj(j = 1, ..., N) are appropriate real constants such that the

function determined by the integral in (1.8) is single-valued in D, and the

undetermined function h(z) is as stated in

h(z) =





0, z ∈ Γ , K ≥ N,

hj, z ∈ Γj, j = 1, ..., N −K,

0, z ∈ Γj, j = N−K + 1, ..., N+1

}
0 ≤ K < N,

hj, z ∈ Γj, j = 1, ..., N,

h0 + Re
−K−1∑
m=1

(h+
m + ih−m)zm, z ∈ Γ0

}
K < 0,

in which hj (j = 0, 1, ..., N), h±m (m = 1, ...,−K−1, K < 0) are unknown real

constants to be determined appropriately. In addition, for K ≥ 0 the solution

w(z) is assumed to satisfy the point conditions

Im[λ(aj)w(aj)]=bj, j ∈ J =

{
1, ..., 2K−N+ 1, K ≥ N,

N−K+1, ..., N+1, 0≤K <N,
(1.9)

where aj ∈ Γj (j = 1, ..., N), aj ∈ Γ0 (j = N + 1, ..., 2K − N + 1, K ≥ N)

are distinct points, and bj(j ∈ J ∪ {0}) are all real constants satisfying the

conditions

|bj| ≤ k3, j ∈ J ∪ {0}, (1.10)

for a non-negative constant k3. The condition 0 < K < N , a singular case

which only occurs in the case of multiply connected domains, can not be easily

handled.

2 Estimates of solutions for the Poincaré bound-

ary value problem

First of all, we give a prior estimates of solutions of Problem Q for (1.6).
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Theorem 2.1. Suppose that Condition C holds and ε = 0 in (1.2) and (1.5).

Then any solution [w(z), u(z)] of Problem Q for (1.6) satisfies the estimates

Cβ[w(z), D] + Cβ[u(z), D] ≤ M1k
∗, (2.1)

Lp0,2[|wz̄|+ |wz|, D] ≤ M2k
∗, (2.2)

in which β = min(α, 1−2/p0) with 2 < p0 ≤ p, Mj = Mj(q0, p0, k0, β,K,D), j =

1, 2, k∗ = k1 + k2 + k3.

Proof: Note that the solution [w(z), u(z)] of Problem Q satisfies the equation

and boundary conditions

wz̄− Re[Qwz + A1w] = A3 in D, (2.3)

Re[λ(z)w] = c2(z) + h(z) on Γ, (2.4)

Im[λ(aj)w(aj)] = bj, j ∈ J, u(1) = b0. (2.5)

According to the method in the proof of Theorem 3.1, Chapter V, [3] or The-

orem 2.2.1, [5], we can derive that the solution w(z) satisfies the estimates

Cβ[w(z), D] ≤ M3k
∗, (2.6)

Lp0,2[|wz|+ |wz|, D] ≤ M4k
∗, (2.7)

where Mj = Mj(q0, p0, k0, β,K,D), j = 3, 4 and k∗ = k1 + k2 + k3. From (1.8),

it follows that

Cβ[u(z), D] ≤ M5Cβ[w(z), D] + k3, (2.8)

Lp0,2[|uz̄|+ |uz|, D] ≤ M5Cβ[w(z), D] + k3, (2.9)

in which M5 = M5(p0, D) is a non-negative constant. Combining (2.6)–(2.9),

we see that the estimates (2.1) and (2.2) are obtained.

Theorem 2.2. Let the equation (1.6) satisfy Condition C and ε in (1.2), (1.5)

be small enough. Then any solution [w(z), u(z)] of Problem Q for (1.6) satisfies

the estimates

Cβ[w(z), D] + Cβ[u(z), D] ≤ M6k
∗, (2.10)

Lp0,2[|wz̄|+ |wz|, D] + Lp0,2[uz, D] ≤ M7k
∗, (2.11)

where β, k∗ are as stated in Theorem 2.1, Mj =Mj(q0, p0, k0, β,K, D), j =6, 7.



82 Approximate method

Proof: It is easy to see that [w(z), u(z)] satisfies the equation and boundary

conditions

wz̄−Re[Qwz] + A1w]=A2u +A3, z ∈ D, (2.12)

Re[λ(z)w(z)]=−c1u + c2(z)+h(z), z ∈ Γ, (2.13)

Im[λ(aj)w(aj)] = bj, j ∈ J, u(1) = b0. (2.14)

Similarly to the derivations of (2.6) and (2.7), we can obtain

{
Cβ[w(z), D] ≤ M3{k∗ + εk0Cβ[u, D]},
Lp0,2[|wz̄|+ |wz|, D] ≤ M4{k∗ + εk0Cβ[u, D]}.

(2.15)

Then from (2.8), it follows that

{
Cβ[w(z), D] ≤ M3{k∗ + εk0[M5Cβ[w(z), D] + k3]},
Lp0,2[|wz̄|+ |wz|, D] ≤ M4{k∗ + εk0[M5Cβ[w(z), D] + k3]}.

(2.16)

If the positive constant ε is small enough such that 1− εk0M3M5 ≥ 1/2, then

the first inequality in (2.16) implies that

Cβ[w(z), D] ≤ (1 + εk0)M3

1− εk0M3M5

k∗ ≤ 2(1 + εk0)M3k
∗ = M8k

∗. (2.17)

Combining (2.8) and (2.17), we obtain

Cβ[w(z), D] + Cβ[u(z), D] ≤ [1 + (1 + M5)M8]k
∗ = M6k

∗, (2.18)

which is the estimate (2.10). The estimates in (2.11) can be easily derived

from (2.9) and the second inequality in (2.16), i.e.




Lp0,2[|wz̄|+ |wz|, D] + Lp0,2[uz, D]

≤ M4{k∗ + εk0[M5Cβ[w(z), D] + k3]}+ M5Cβ[w(z), D] + k3

≤ [1 + M4(1 + εk0) + M5M8(1 + εk0M4)]k
∗ = M7k

∗.

(2.19)

In the following, we prove the uniqueness theorem of solutions of Problem

Q for equation (1.1) as follows.

Theorem 2.3. Suppose that equation (1.6) satisfies Condition C. Also

suppose that for any real functions uj(z), wj(z) (uj(z), wj(z) ∈ C(D), j =

1, 2), V (z) ∈ Lp,2(D), the equality

F (z, u1, w1, V )−F (z, u2, w2, V )=Re[Q̃V +Ã1(w1−w2)]+Ã2(u1−u2)

(2.20)
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holds, where |Q̃| ≤ q0(< 1), Lp,2[Ã1, D] ≤ k0, Lp,2[Ã2, D] ≤ εk0 with the suf-

ficiently small positive constant ε. Then Problem Q for equation (1.1) has at

most one solution.

Proof: Denote by [wj(z), uj(z)](j = 1, 2) the two solutions of Problem Q for

(1.6), and substitute them into (1.6)-(1.9), we see that [w(z), u(z)]= [w1(z)−
w2(z), u1(z)]−u2(z)] is a solution of the following homogeneous boundary value

problem

wz̄ = Re[Q̃wz + Ã1w] + Ã2u, z ∈ D,

Re[λ(z)w(z) + c1(z)u(z)] = h(z), z ∈ Γ∗,

Im[λ(aj)w(z)] = 0, j ∈ J,

u(z)=
∫ z

a0
[w(z)dz +

∑N
m=1

idj

z−zj
dz] in D,

the coefficients of which satisfy the same conditions of (1.2),(1.3),(1.5) and

(1.10) with k1 = k2 = k3 = 0. On the basis of Theorem 2.2, provided that ε

is sufficiently small, we can derive that w(z) = u(z) = 0 in D, i.e. w1(z) =

w2(z), u1(z) = u2(z) in D.

3 The approximate method of solving Poincaré

boundary value problem

In this section, we shall prove the solvability of Poincaré boundary value

problem by the continuity method.

Theorem 3.1. Suppose that the nonlinear elliptic equation (1.1) satisfies

Condition C and (2.20) and ε in (1.2) and (1.5) is small enough. Then there

exists a solution u(z) of Problem Q for (1.6) and u(z) ∈ B = C1
β(D)∩W 2

p0,2(D),

where β and p0 are positive constants as before.

Proof: We introduce the nonlinear elliptic equation with the parameter t ∈
[0, 1]:

uzz̄ = tF (z, u, uz, uzz) + A(z), (3.1)

where A(z) is any measurable function in D and A(z) ∈ Lp0,2(D) for 2 < p0 ≤
p. Let E be a subset of 0 ≤ t ≤ 1 such that Problem Q is solvable for (3.1)
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with any t ∈ E and any A(z) ∈ Lp0,2(D). We can prove that when t = 0,

Problem Q has the unique solution

u(z)=U(z)+Ψ(z), Ψ(z)=HA=
2

π

∫ ∫

D0

A(1/ζ)

|ζ|4 ln

∣∣∣∣
1− ζz

ζ

∣∣∣∣dσζ , (3.2)

where Ψ(z), U(z) are the solutions of

Ψzz̄ = A(z), Uzz̄ = 0 in D (3.3)

satisfying the boundary conditions

Re[λ(z)Uz] + c1(z)U(z) = R(z) + h(z),

R(z) = c2(z)− c1Ψ(z)− Re[λ(z)Ψz], z ∈ Γ,
(3.4)

Re[λ(z)(Uz+Ψz)]|z=aj
=bj, j∈J, U(1)+Ψ(1)=b0, (3.5)

respectively(see Chapter VI in [3]). According to Theorem 2.3, we know that

Problem Q for the above equation has a unique solution. This shows that the

point set E is not empty. If we can prove that E is both open and closed in

0 ≤ t ≤ 1, then E is 0 ≤ t ≤ 1. Hence Problem Q for (3.1) with t = 1 and

A(z) = (1− t)F (z, 0, 0, 0) is solvable. Thus this theorem is proved.

Now, we verify that E is open in 0 ≤ t ≤ 1. Suppose that t0 ∈ E and

0 ≤ t0 ≤ 1, namely Problem Q for (3.1) with t = t0 for any A(z) ∈ Lp0,2(D)

is solvable. We shall prove that there exists a neighborhood E = {|t − t0| ≤
δ, 0 ≤ t ≤ 1, δ > 0}, so that for every t ∈ E and any function A(z) ∈ Lp0,2(D),

Problem Q for (3.1) has a unique solution. The equation (3.1) can be rewritten

in the form

uzz̄ − t0F (z, u, uz, uzz) = (t− t0)F (z, u, uz, uzz) + A(z). (3.6)

Choosing any function u0(z) ∈ B = C1
β(D)∩W 2

p0,2(D), in particular u0(z) = 0

in D and substituting u0(z) into the position of u0(z) in the right hand side of

(3.6), we see that

(t− t0)F (z, u0, u0z, u0zz) + A(z) ∈ Lp0,2(D).

Consequently the equation (3.6) has a unique solution u1(z) ∈ B. By using the

successive iteration, we can find out a sequence of functions: un(z) ∈ B, n =

1, 2, ..., which are the solutions of the boundary value problems

un+1zz̄−t0F (z, un+1, un+1z, un+1zz)=(t−t0)F (z, un, unz, unzz)+A(z), (3.7)
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Re[λ(z)un+1z] + c1(z)un+1(z) = c2(z) + h(z), z ∈ Γ, (3.8)

Im[λ(z)un+1z]|z=aj
= bj, j ∈ J, un+1(1) = b0. (3.9)

From (3.7)–(3.9), it follows that

(un+1 − un)zz̄ − t0[F (z, un+1, un+1z, un+1zz)− F (z, un, unz, unzz)]

=(t−t0)[F (z, un, unz, unzz)−F (z, un−1, un−1z, un−1zz)], n=1, 2, ....
(3.10)

Re[λ(z)(un+1(z)−un(z))z] + c1(z)(un+1−un) = h(z), z ∈ Γ, (3.11)

Im[λ(z)(un+1z − unz)]|z=aj
= 0, j ∈ J, un+1(1)− un(1) = 0. (3.12)

By Condition C, we have

F (z, un+1, un+1z, un+1zz)− F (z, un, unz, unzz)

= Re[Q̃(un+1 − un)zz + Ã1(un+1 − un)z] + Ã2(un+1 − un),

where |Q̃| ≤ q0 < 1, Lp0,2[Ãj, D] ≤ k0, j = 1, 2, n = 0, 1, 2, .... In addition, we

can obtain the estimate

S(un+1−un)=C1
β[un+1−un,D]+Lp0,2[|(un+1−un)zz̄|+|(un+1−un)zz|,D]

≤ M |t− t0|Lp0,2[F (z, un, unz, unzz)− F (z, un−1, un−1z, un−1zz), D]

≤ M |t− t0|{q0Lp0,2[|(un − un−1)zz̄|+ |(un − un−1)zz|, D]

+k0C
1[un − un−1, D] ≤ M9|t− t0|(q0 + k0)S(un − un−1),

(3.13)

in which M9 = M9(q0, p0, k0, α, K, D) is a positive constant. Choosing δ to be

small enough so that η = δM9(q0 + k0) < 1, we can derive

S(un+1 − un) ≤ ηnS(u1 − u0) ≤ ηn[C1
β(u, D] + Lp0,2[|u1zz̄|+ |u1zz|, D] (3.14)

for every t ∈ E, and

S(un − um) ≤ (ηn−1 + ηn−2 + · · ·+ ηm)S(u1)

≤ ηN+1 1− ηn−m

1− η
S(u1) ≤ ηN+1

1− η
S(u1)

(3.15)

for n ≥ m > N, where N is a positive integer. Thus S(wn − wm) → 0 as

n,m → ∞. Since B = C1
β(D) ∩ W 2

p0,2(D) is a Banach space, there exists a
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solution of Problem Q for (3.6), i.e. (3.1) with t ∈ E. This shows that E is an

open set in 0 ≤ t ≤ 1.

Finally, we verify that E is closed in 0 ≤ t ≤ 1. Choosing an arbitrary

sequence tn ∈ E(n = 1, 2, ...) and tn → t0 as n → ∞, it is sufficient to prove

Problem Q for (3.1) with t = t0 is solvable. In fact, substituting the above

solutions un(z), um(z) into the equations (3.1) with t = tn, t = tm respectively,

we obtain the following difference between the two equations:

(un − um)zz̄−tn[F (z, un, unz, unzz)−F (z, um, umz, umzz)]

= Anm(z), Anm(z) = (tn − tm)f(z, um, umz, umzz),

where

f(z, um, umz, umzz) = F (z, um, umz, umzz)− F (z, 0, 0, 0),

and
F (z, un, unz, unzz)− F (z, um, umz, umzz)

= F (z, un, unz, unzz)− F (z, un, unz, umzz)

+F (z, un, unz, umzz)− F (z, um, umz, umzz)

= Re[Q̃(un − um)zz + Ã1(un − um)] + Ã2(un − um),

(3.16)

with

|Q̃| ≤ q0 < 1, Lp0,2[Ãj, D] ≤ k0, j = 1, 2,

and
Lp0,2[Anm, D] ≤ |tn − tm|[q0Lp0,2(umzz, D) + k0C

1(um, D)]

≤ |tn − tm|(q0 + k0)S(um) ≤ |tn − tm|(q0 + k0)k,

in which

S(um) = C1
β[um, D] + Lp0,2[umzz̄|+ |umzz|, D]

≤ M1(k1 + k2 + k3) = k, M1 = M1(q0, p0, k0, α, K, D),

for

k1 = Lp0,2[F (z, 0, 0, 0), D], k2 = Cα[c2(z), D], k3 = max
1≤j≤N0

|bj|. (3.17)

Moreover, taking into account that un(z)− um(z) satisfies the boundary con-

ditions

Re[λ(z)(un(z)− um(z))z] + c1(z)(un − um) = h(z), z ∈ Γ, (3.18)
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Im[λ(z)(unz − umz)]|z=aj
= 0, j ∈ J, un(1)− um(1) = 0, (3.19)

we have

S(un−um)=C1
β[un−um,D]+Lp0,2[|(un−um)zz̄|+|(un−um)zz|,D]

≤ M1Lp0,2[Anm, D] ≤ |tn − tm|M1(q0 + k0)k.
(3.20)

Since |tn − tm| → 0 as n,m → ∞, it is easy to see that S(un − um) → 0 as

n,m →∞. And then there exists a function u0(z) ∈ B, such that S(un−u0) →
0 as n → ∞. From this we can derive that u0(z) is a solution of Problem Q

for (3.1) with t = t0. Hence E is a closed point set in 0 ≤ t ≤ 1.

¿From the above theorem, the next result can be derived.

Theorem 3.2. Under the same conditions as in Theorem 3.1, the following

statements hold.

(1) When the index K > N, Problem P for (1.1) has N solvability condi-

tions, and the solution of Problem P depends on 2K − N + 2 arbitrary real

constants.

(2) When 0 ≤ K < N, Problem P for (1.1) is solvable, if 2N −K solvabil-

ity conditions are satisfied, and the solution of Problem P depends on K + 2

arbitrary real constants.

(3) When K < 0, Problem P for (1.1) is solvable under 2N − 2K − 1 con-

ditions, and the solution of Problem P depends on one arbitrary real constant.

Moreover the solvability conditions of Problem P can be explicitly stated.

Proof: Let the solution [w(z), u(z)] of Problem Q for (1.6) be substituted into

the boundary condition (1.7) and the relation (1.8). If the function h(z) =

0, z ∈ Γ, i.e.

{
hj = 0, j = 1, ..., N −K, if 0 ≤ K < N,

hj = 0, j = 0, 1, ..., N, h±m = 0, m = 1, ...,−K−1, if K < 0,

and dj = 0, j = 1, ..., N , then we have w(z) = uz in D and the function

w(z) is just a solution of Problem P for (1.1). Hence the total number of

above equalities is just the number of solvability conditions as stated in this

theorem. Also note that the real constants b0 in (1.8) and bj(j ∈ J) in (1.9) are

arbitrarily chosen. This shows that the general solution of Problem P for (1.1)

depends on the number of arbitrary real constants as stated in the theorem.
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4 Error estimates of approximate solutions for

Poincaré problem

We provide the following error estimate of the approximate solutions of the

boundary value problem.

Theorem 4.1. Under the same conditions in Theorem 3.1, let u(z) be a

solution of Problem Q for (3.1) and ut
n = un(z, t) be its approximation as

stated in the proof of Theorem 3.1 with A(z) = (1− t)F (z, 0, 0, 0). Then u(z)

−ut
n(z) processes the estimate

S(u− ut
n) = C1

β(u− ut
n, D] + Lp0,2[|(u− ut

n)z̄z|+ |(u− ut
n)zz|, D]

≤ γk[
1− γn|t− t0|n
1− γ|t− t0| (1− t) + (γ|t− t0|)n(1− t0)],

(4.1)

where γ = M10(q0 + k0), k = M10(k1 + k2 + k3), M10 = M6 + M7, M6,M7, q0

and kj(j = 0, 1, 2, 3) are non-negative constants as stated in Sections 1 and 2.

Proof: From (3.1) and (3.7) with A(z) = (1− t)F (z, 0, 0, 0), we obtain

(u− ut
n+1)zz̄ = f(z, u, un, uzz)− t0f(z, ut

n+1, u
t
n+1z, u

t
n+1zz)

−(t− t0)f(z, un, unz, unzz) = t0[f(z, u, uz, uzz)−
−f(z, ut

n+1, u
t
n+1z, u

t
n+1zz)] + (t− t0)[f(z, u, uz, uzz)

−f(z, ut
n, u

t
nz, u

t
nzz)] + (1− t)f(z, u, uz, uzz),

(4.2)

in which f(z, u, uz, uzz)=F (z, u, uz, uzz)−F (z, 0, 0, 0). Similarly to (3.16), we

have

f(z, u, uz, uzz)− f(z, ut
n, u

t
nz, u

t
nzz) =

= Re[Q̃(u− ut
n)zz + Ã1(u− ut

n)z] + Ã2(u− ut
n), |Q̃| ≤ q0,

f(z, u, uz, uzz) = Re[Q̃uzz + Ã1uz] + Ã2u, Lp0,2[Ãj, D] ≤ k0, j = 1, 2,

and

Lp0,2[(t−t0)(f(z, u, uz, uzz)−f(z, ut
n, ut

nz, u
t
nzz))+(1−t)f(z, u, uz, uzz),D]

≤ |t−t0|[q0Lp0,2((u−ut
n)zz, D)+k0C

1(u−ut
n, D)]+(1−t)[q0Lp0,2(uzz, D)

+k0C
1(u, D)] ≤ (q0 + k0)[|t− t0|S(u− ut

n) + (1− t)S(u)].
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Noting that the function u(z) − ut
n+1(z) satisfies the homogeneous boundary

conditions

Re[λ(z)(u− ut
n+1)z] + c1(z)(u− ut

n+1) = h(z), z ∈ Γ, (4.3)

Im[λ(z)(uz−ut
n+1z)]|z=aj

=0, j∈J, u(1)−un+1(1)=0, (4.4)

and using Theorem 2.2, we have

S(u− ut
n+1) ≤ M9(q0 + k0)[|t− t0|S(u− ut

n) + (1− t)S(u)]

≤ γn+1|t− t0|n+1S(u− ut
0) + γ(1− t)S(u)(1 + γ|t− t0|+

+γ2|t− t0|2 + · · ·+ γn|t− t0|n) ≤ γn+1|t− t0|n+1S(u− ut
0)

+γ(1− t)S(u)(1− γn+1|t− t0|n+1)/(1− γ|t− t0|),

(4.5)

where γ = M10(q0 +k0) and ut
0 = u(z, t0) is the solution of Problem Q for (3.6)

with t = t0 and A(z) = (1− t0)F (z, 0, 0, 0). Since u(z) is a solution of Problem

Q for (3.1), and u− ut
0 is a solution of the following boundary value problem

(u− ut
0)zz̄ − t0[f(z, u, uz, uzz)−

−f(z, ut
0, u

t
0z, u

t
0zz)] = (1− t0)f(z, u, uz, uzz),

(4.6)

Re[λ(z)(u− ut
0z)] + c1(z)(u− ut

0) = h(z), z ∈ Γ, (4.7)

Im[λ(z)(uz −ut
0z)]|z=aj

=0, j∈J, u(1)−u0(1)=0, (4.8)

it can be seen that

S(u) ≤ M9(k1 + k2 + k3) = k, (4.9)

S(u− ut
0) ≤ M9(1− t0)Lp0,2[f(z, u, uz, uzz, D]

≤ M9(q0 + k0)(1− t0)S(u) ≤ γ(1− t0)k.
(4.10)

Thus from (4.5), it follows that

S(u−ut
n+1)≤γn+1|t−t0|n+1γ(1−t0)k+

γ(1−t)k(1−γn+1|t−t0|n+1)

1− γ|t− t0|
= γk[

1− γn+1|t− t0|n+1

1− γ|t− t0| (1− t) + (γ|t− t0|)n+1(1− t0)],

Hence (4.1) is true. If the positive constant δ is small enough, then when

|t − t0| ≤ δ, γ|t − t0| < 1, n is sufficiently large and t is close to 1, the right

hand side in (4.1) becomes very small.
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Note: The opinions expressed herein are those of the authors and do not

necessarily represent those of the Uniformed Services University of the Health

Sciences and the Department of Defense.
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