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Sequential Estimation of the Mean of a Class
of Skewed Distributions

Mohamed Tahir?!

Abstract

In this paper, we propose a sequential procedure (t, 4, ) for estimating the mean, y,
of a class of skewed probability density functions, subject to the loss
functionL, =a*(g, — x)® +t,where a is a given positive number, t is a stopping
time of the type proposed by Robbins (1959) and 4, is a bias-corrected estimator
of . We provide a second-order asymptotic expansion, as a — o, for the regret
with respect to the loss L,. For the Pareto and Skew-uniform distributions, the

proposed sequential procedure (t, /) performs better than the procedure

(t,X,),in the sense that it has a lower asymptotic regret. Moreover, the regret is
negative for large values of a under the Gamma, Pareto, Rayleigh and
Skew-uniform distributions. Using the loss considered by Chow and Yu (1981)
and Martinsek (1988), we propose a bias-corrected estimator of x and provide a

second-order asymptotic expansion, as a — oo, for the incurred regret.
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1 Introduction
Let X;, Xz, ... be independent random variables with common probability

density function f,(x), where the value of & is unknown, but lies in some

interval Q c (-0, o). Suppose that Xi, X, ... are to be observed sequentially up
to stage n at a cost of one unit per observation and that when observation is

terminated, the population mean
p= [ xf,(x)dx

is estimated by an appropriate estimator, /., and the loss incurred is of the form

L. (&2,,0) =2’ (i, — p)* +n, (1)
where a is a known positive number, determined by the cost of estimation relative

to the cost of a single observation. Robbins (1959) proposed the sequential

procedure (t, X, ), which stops the sampling process after observing X, ..., X and

estimates x by z, = X,,where

Z(Xl _>Tn)2
t=infin>m_:n> a2 - 2)

with m, being a positive integer.

Let ~ denote the class of skewed probability density functions, f,(x),

0 € Q, for which the skewness is independent of 6. This class contains, among
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others, the density functions of the following distributions:
1- GAMMA(a, 0): the Gamma distribution with known shape parameter a and
scale parameter § = 6. Its density function is

1

o (x)= 0°T(a)

a-1.x16 - .
X e x>0 andits skewness is =2 )
y //—a

2- PARETO(a, 0): the Pareto distribution with known shape parameter oo > 0

and scale parameter f= 6. Its density functionis f,(x) _90" s @ and its
XO(

+1 !

skewness is 7:2(1”) a-2 forg> 3.
a-3 a

3- RAYLEIGH(0): the Rayleigh distribution with shape parameter o =6. Its

X2

_2\/;(7r—3)

density function is fe(x)ze_xzefﬁ,x>0and its skewness is y = G
-7

4- SKEWUNIFORM(A, 6): the Skew-uniform distribution with known 2 and

unknown 6. Its density functionis f,(x) = %[max{min{ix,@},—@h ],

2
for —0<x<@ and its skewness is 72% for —+/3<A<43.

In this paper, we propose a bias-corrected estimator z, of 4 and provide a
second-order asymptotic expansion, as a — oo, for the regret r,(t,z,) with
respect to the loss defined by (1). It is seen that the asymptotic regret is negative
for the Gamma, Pareto, Rayleigh and Skew-uniform distributions. We also
provide second-order asymptotic expansion, as a — oo, for the regret with respect

to the more general loss function considered by Chow and Yu (1981) and
Martinsek (1988).
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In the Normal case, Starr and Woodroofe (1969) showed that r,(t, X,)=0(1)
as a — . Woodroofe (1977) showed that r,(t,X,)=0.5+0(1)as a -« if my > 4.

For the Gamma and Poisson cases, Starr and Woodroofe (1972) and Vardi (1979)
obtained bounded regret using stopping times different from the one in (2). For
the distribution-free case, Ghosh and Mukhopadhyay (1979) and Chow and Yu
(1981) established asymptotic risk efficiency based on (2) under certain conditions.
Tahir (1989) proposed a class of bias-reduction estimators of the mean of the
one-parameter exponential family and provided a second order approximation for

the regret.

2 Preliminary Notes
Lettbeasin (2). Martinsek (1988) indicated that
E[X,]= y—lw(l) 3)
2a a
as a — oo, provided that E[|X1|*""] < « for some p > 0, where y denotes the
population skewness; that is, y = °E[(X, - u)°], where o is the population
standard deviation. Thus, X, is an asymptotically biased estimator of u if

f,(x) e ~.. Consider the bias-corrected estimator

ﬁnzmé (4)

forn>1. Then, E[g]=x+0(@1) asa — o, by (3).

In order to define the regret incurred by the sequential procedure (t, iz, ) under the

loss (1), we first assume that Xi, ..., X, have been observed sequentially up to a

predetermined stage n from a population with  density function f,(x) e . The

risk incurred by estimating by (4), subject to the loss (1), is
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R,(n,0) = E[L,(n, &,)]
= E[a*(X, —u)2]+az—27E[(>7n —ﬂ)]+£+n
a 4

2 2 2
a‘o
BICANANTS
n 4

This risk is minimized with respect to n by choosing n as the greatest integer less

than or equal to n,=ao. The minimum risk is

2

R;{(e»):Ra(na,e?):zanT

for a > 0. Since o is unknown, there is no fixed-sample-size procedure that
attains the minimum risk in practice. Therefore, we propose to use the sequential

procedure (t,z,), Where t be as in (2).  The performance of this procedure is

measured by its regret, which is defined below.

Definition 2.1 The regret of the procedure (t, 2 ) under the loss (2) is defined as

2

r, (t ) = E[L, (t. )] - R.(0) = E[a” (1, — p)° +1]- 230—% ()

fora>0.

The stopping time t in (2) can be rewritten as

-1/2
t= inf{n >m,: n(\%j > a},

where v, =Zn:(xi - X,)? (6)

for n > 1. Let U, =t(V,/t)"*—a denote the excess over the stopping

boundary. Chang and Hsiung (1979) showed that U, converges in distribution to a

random variable U as a — oo.
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Lemma 2.2. Lett be as in (2). Then, l—)a w.p.1 as a — c. Moreover, If
a

E[IX|**?] < oo for some p > 0, then

Eft]=a+v— o.s—ga“(x—l) +o(l)
as a —» oo, where v =E[U] is the asymptotic mean of the excess over the boundary
and x=o *E[(X,—u)"] isthe population kurtosis.

Proof: The first assertion follows from Lemma 1 of Chow and Robbins (1965).

The second assertion is adopted from Chang and Hsiung (1979).

3 Main Results
3.1 Asymptotic regret under the loss (1)

Let Xi, Xp, ... beasin Section 1. The following theorem provides a

second-order asymptotic expansion for the regret in (5).

Theorem 3.1. Let t be defined by (2) with m, being such that 5va <m, = o(a) as a
— oo for some 6 > 0. For any probability density function f,(x) e~ with

respect to which E[|X;|**"] < o for some p > 0,
r,(t, i) = 2.75—0.75x + 25 —g+o(l)

asa— o,

Proof: Substituting (4) in (5) yields

r,(t 4) =E[a° (X, - p)* +t-2ac]+aE[(X, - w)]
=1, (t, X,) +aE[(X, - u)]

fora>0. Moreover,

(7)

aE[(X, - p)]=—-y/2+0(1) and r,(t,X,)=2.75-0.75x + 2y* +0(L) (8)



Mohamed Tahir 61

as a — «, by (3) and Martinsek (1983). Take the limitasa — « in (7) and use
(8) to complete the proof.

The distributions considered in Tables 1-5 in Section 4 below are positively

skewed, except for the Skew-uniform distribution with —\/§<}L<—i and

NG

Skew-Laplace distribution with A = 0.5. For Table 1, the minimum value of p* is
75/28 ~2.68, which is attained when o =49. The tables show that

1- the sequential procedure (t, ) is a clear improvement over the procedure
(t,X,) since its asymptotic regret is lower, except for the Skew-uniform

distribution with 4 =-1.4.
2- the asymptotic regret of the procedure (t,z) under the PARETO(5, 6) and

SKEWUNIFORM(A, 6) distributions is negative; which means that, for large

values of a that the procedure (t, ) performs better for these distributions

than the best fixed-sample-size procedure.

3.2 Asymptotic regret under a more general loss function

Let X3, Xz, ... be as in Section 1 and suppose that the loss function for
estimating p is of the form considered by Chow and Yu (1981) and Martinsek
(1988); that is,

L, (uy.0) =a’c®? (uy — p)* +1n ©)
for a>0, where 8 isa given positive number and 4 is an estimator of . If
0 is estimated by u = X .+ Martinsek (1988) proposed to use the stopping

time
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N B2
T=inf{n2ma:n>a(%2(xi—)7n)2j } (10)

and showed that the regret of the procedure (T, X, )under the loss (9) is
(T, X;)=E[a’c”?*(X; — u)* +T]-2ac”

Vi (ﬂz

(11)
=3+ T_ﬁJK+(ﬂ2+ﬂ)72+0(1)

as a — oo, provided that E[|X;|**P] < « for some p > 0. Straightforward

calculations yield that, for large values of a,
1) r (T, X;)is negative under the Gamma distribution with o« = 0.5 if 0 < < 0.1.
2) r (T, X;)is negative under the Pareto distribution with o =5 if 0 < < 1.24.

Martinsek (1988) also indicated that

E[X 1= u— Pr +o(1j (12)

ac?? a

asa —oo. Thus, if the distribution of X; is not symmetric, then X is biased for

large values of a.

Proposition 3.2: Suppose that ¥ does not depend on dand let
By

o =X, + -
n N o UBn s

for n >1, where #> 1. Let T be defined by (10) with m, being such that Sva <
m, = o(a) as a — « for some 6 > 0. For any probability density function

f,(x) € ~ with respect to which E[|X1|**P] < oo for some p > 0,
E[4]=p+o(1l)asa —

Proof: Fora >0,
—(1-1/p)
AE[4 — 4] = AE[X, — u] + % E[(;) } (13)

Next, E[(T/a) "] c""asa — o if § > 1, by the fact that T/a — o
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w.p.1lasa — o and (2.2) of Martinsek (1983). Taking the limit as a — o in (13),
using this fact and (12) yields the desired result.

Let r:(T,/,zT*) denote the regret of the biased-corrected procedure

(T, 2 ) under the loss (9). Then,

(T, 1) = E[a%c? (X, — )’ +T —2ac” ]+ Byo?’2a>* E[ L (X, - ﬂ)}

Tl—l/ﬂ
2 _28-2 2-2/p8
yo a
s E{T“,ﬂ} 4
o i Qv Yot a2 2h
= (T, XT)+ﬂ7/02ﬂ 2E|:T1_W a(XT _:U) + 4 E T2 2P

Lemma 3.3: Let T beasin (3.2) with 8> 1. If E[|X4|*""] < o for some p > 0,
then

TEUA ot o AR

EFW a(X; —ﬂ)} 20D o)

asa — oo.

Proof: First, observe that

g, 118 1 _ 1 _
E|:-?ll/ﬂ a(XT - ﬂ):| = E|:{-?ll/ﬂ — ﬂlja(XT - ILI):| + FaE[XT - ,U] (15)

(o2

fora>0. Moreover,

aE[X, — ] = - ng_l +0o(1) (16)

asa —» o, by(12). Next, expandg(y)=1y " aty= o’ substitutey =a/T
and multiply by a(X, —x) to obtain

L S W wz(T_ ﬂ] % - (17)
(Tll/ﬂ U/;,l Ja(XT /u) _(ﬂ ])T* a o a‘(XT /J),
where T.is a random variable such that | T.- ¢”| <|T/a - ¢”|. Next, rewrite T in

as T = inf{ n > ma: n(Va/n)?? > a}, where V, is as in (6), and let
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-pI2
U, :T(\;—Tj —a

denote the excess over the stopping boundary. Expanding h(y) = y”? aty = &%,

substituting y = V¢/T and multiplying by T yields

o?

vY™ T B B(B+2) (V; ~Tc?)?
T(T j 20_ﬂ+2 (V TG ) 821_/;’/%2 T

for a > 0, where At is a random variable between V1/T and &°. Furthermore,

.
write v, =% (X, -u)* -T(X; - u)° to obtain

i=1

«_ T B v p(B+2) (V; -Ta’)’
U :_ﬂ_ 2 ﬂ+2 (VVT T02)+20ﬂ+2T(XT_/U)2+ 82’5/2_,_2 T T

fora >0, where w, :i(xi — p)?. It follows from easily that

. B
-0 = (Ua -G )+ 2802 W, -To?) (18)
for a > 0, where

L BB+2) Vs ~To’ )
XI?’/Z-*—Z T

Vi _
S =26TT(XT ﬂ)

Substituting (18) in (17) yields

a™’ 1 v 1 Up-2 7
[Tl—l,ﬂ—WJa(xT — 1) Z(E—l}oﬁl U, - &)X —p)

+(%—j L 10w, -To?)(K, - )

2 2
=(i—1j 7 (a)+ ﬂl (@), (19)
B
say. Let S, =X, +---+X,, n=>1. Then,
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a
E[U, - &) ]\/ [T” (Tj (S ;;T] ]

JzaﬂEﬂJ]+2oﬁEL;]J {T”ﬁ4( j (S _”TJ }
T ac”’

50 (20)
as a — oo, by Holder’s inequality, the fact that T. — o’ (| T.- ¢*| <|TVa - o/|—>

U2

vp-2 (S; —uT)
R

EllL(a)[1=E

U, =&)(E uT)H

|

ao

0 w.p.1 since T/a — o, as in the first assertion of Lemma 1), S:—4T converges in
B

ao
distribution to a Standard Normal random variable by Anscombe’s theorem, the
facts that E[UZ2]— E[U%]<wand E[£7]=0(1) asa— oo and (2.3), (2.8) and

(2.9) of Martinsek (1983).  To evaluate E[l»(a)], observe that

| (a)_ Tl//i’Z(WT ~To*)(S; —4T) . ﬂaTllﬁ’ 2[W -o°T S _ﬂTj
ac” T \/aO' \/aO'
2
_25” ET*U:B*Z W —o’T _25” ET*llﬂ—Z S; _,UT
T ac” T ac”’
n discibuion 5120 (972 _ 92872 _ 9872 — 4gt2h 72 (21)

as a — oo, by Anscombe’s theorem and the factthat T. — o’ w.p.las a— o«
where Z is a random variable having the Standard Normal distribution. Thus,
E[1,(a)]= 40" +o() (22)
as a — oo, by (21) and (2.3) and (2.4) of Martinsek (1983). Taking expectation
in (19) and using (20) and (22) yields

a1 - 2(1- )
EKTl—lm—Fja(XT—y)}: 0_2/5’+l +0(l) (23)

asa — oo The lemma follows by taking the limit, as a — oo, in (15) and using
(23) and (16).
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Theorem 3.4: Let T be defined by (3.2) with m, being such that 5va < m, = 0(a)
asa — w for some 6> 0and > 1. Then, for any probability density function

f,(x) eC  with respect to which E[|X.|**"] < o for some p > 0,

r:CF,uF)=3ﬂ—ﬂ7+(ﬂ7—ﬂJK+(ﬂ2+ﬂ)yz+Zﬂ(is_l)y—ﬁzy +Lro

asa — .
Proof: The theorem follows by taking the limit, as a — oo, in (14) and using
(11), Lemma 3.3 and the fact that

a2—2/ﬁ 1
E{T 2215 } - o 2P +0(1)
asa —> «if B > 1, by the fact that T/a — o® w.p.1 as a — « (see the first
assertion of Lemma 2.2) and (2.2) of Martinsek (1983) .

4 Tables
The tables below show the values of p and p* for certain skewed

distributions, where ,*— ,_7 is the asymptotic regret incurred by the procedure
2

(t,z,) and p=2.75-0.75«+2y> represents the asymptotic regret incurred by the

procedure (t, X,).

Table 1: GAMMA(a, 6) with known «

Y K p p*
2 | 6 | 275438 | 7535 1
\/E a a o \/E
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Table 2: PARETO(5, 0)
y K p p*
3 2
204a) |@=2 _ 4 p12e | B@ +a" =6a-2) 4 00| 94 | 117238
o-3 a a(a-3)(a-4)
Table 3: RAYLEIGH(0)
¥ K p p*
2
2r(r-3) g 67" -24r+16 ., 00 | 111245 | 0.7969
S 1 =0.6311 (4—7)?
(4-7)
Table 4: SKEW-UNIFORM(%, 6) with A =-1.4 and A = 1.35
2A(54* -9) 2A(54% -9) p p*
Y=o a3z (S 21312
5(3-4%) 5(3-4%)
v<0 k>0 -29.9109 | -29.6997
it 2 e(—\/g,—i]u(&i] if —V3<2<y3 |(=-14) 1 (+=-14)
V5 V5
. -0.7671 -0.7909
>0if ——=<4<0 = =
Y NG (L =1.35) | (A=1.35)
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5 Conclusion

We have proposed a bias-corrected estimator of the mean of a class of

skewed probability density functions and provided a second-order asymptotic

expansion for the regret under the squared error loss. The results indicate that the

proposed procedure performs better than the best fixed-sample-size procedure

when the observations are taken from the Gamma, Pareto, Rayleigh or

Skew-uniform distribution. For a more general loss function, we have proposed

bias-corrected estimator of the mean and provided a second-order asymptotic

expansion for the incurred regret.
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