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The orbit spaces of linearly ordered systems

on continuums

Peiyong Zhu1, Jianjun Wang2 and Tianxiu Lu3

Abstract

In this paper, the concept of an orbit space is generalized from a dis-

crete dynamical system (X, f) to a linearly ordered system {Xα, π
β
α, Γ},

and it is shown that a general orbit space is a continuum if each Xα is a

continuum in a linearly ordered system {Xα, π
β
α, Γ}. As a special case, it

is obtained that the orbit space of any discrete dynamical system (X, f)

is a continuum if X is a continuum.
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1 Introduction

In recent years, the inverse limits has been widely used in Dynamical Systems,

a series of good results were obtained (cf. [1]-[6]). But the applications of

inverse limits in Dynamical Systems have been encountered many difficulties

because the direction of the chain maps of inverse limits is exactly the opposite
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to the tracks of the relative dynamical system. In this paper, we introduce the

concepts of the orbit spaces by reversing the direction of chain maps of inverse

limit space, and discuss to preserve the nature of continuums in their orbit

space.

Let {Xα}α∈Γ be a family of topological spaces, where Γ is linearly ordered

set[7], we denote by Πα∈ΓXα the product space of {Xα}α∈Γ, and assume that

πβ
α : Xα → Xβ is a continuous mapping when α ≤ β for any α, β ∈ Γ. The

triples {Xα, πβ
α, Γ} is called to be a linearly ordered system if the following two

conditions are satisfied:

(A1) π
γ
βπβ

α = πγ
α when α ≤ β ≤ γ for any α, β, γ ∈ Γ,

(A2) πα
α = idXα

for any α ∈ Γ, where idXα
is an identity mapping from Xα

to Xα.

Usually, the subspace {x = (xα)α∈Γ ∈ Πα∈ΓXα : πβ
α(xα) = xβ, α ≤

β(∀α, β ∈ Γ)} of the product space Πα∈ΓXα is called to be the orbit space

of the linearly ordered system {Xα, πβ
α, Γ} and is denoted by O{Xα, πβ

α, Γ},

where each point x ∈ O{Xα, πβ
α, Γ} is called to be an orbit(or,a direct limit)

of {Xα, πβ
α, Γ}, each mapping πβ

α is called to be a link mapping of {Xα, πβ
α, Γ}.

Assume that f : X → X is a continuous mapping where X is a topological

space. In Dynamical Systems, we call that (X, f) is a discrete dynamical

system,and for every x0 ∈ X, the sequence {x0, f(x0), f
2(x0), ...} is called to

be an orbit of (X, f) and is denoted by O+

f (x0). The set of all orbits of (X, f)

is a subspace of the product space Π∞
n=0Xn where each Xn = X, we call it an

orbit space of (X, f) and denote it by O+

f (X).

As a special case of a linearly ordered system, when Γ = Z+ (the set of all

non-negative integers),let us put Xn = X and πn+1
n = f for each n ∈ Z+. It

is easy to see that the linearly ordered system {X, fm−n, Z+} is the discrete

system (X, f) and O{X, fm−n, Z+}=O+

f (X).

As a discrete dynamical system (X, f), the following two questions should

be fundamental questions :

Question 1.1. Is O+

f (X) a compact space if X is a compact space?

Question 1.2. Is O+

f (X) a continuum space if X is continuum?

In this paper, we first study orbit spaces of a linearly ordered system

{Xα, πβ
α, Γ}, several topological properties are obtained. By using them, the

following theorem is proved:
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Main Theorem Let {Xα, πβ
α, Γ} be a linearly ordered system, if each link

map πβ
α is a continuous and onto map, the following two conclusions hold:

(B1) O{Xα, πβ
α, Γ} is a compact space if each Xα is a compact space.

(B2) O{Xα, πβ
α, Γ} is a continuum if each Xα is a continuum.

As a special case of these results, the above two questions will be given

certainly answer.

In this paper, X denotes a topological space, φ denotes empty set, NY (x)

denotes the open neighborhood system of a point x in a subspace Y of X and

is denoted by N (x) when Y = X. A denotes the closure of a subset A of X.

Let X = O{Xα, πβ
α, Γ}, we denote by pα the mapping of the projection from

Πα′∈ΓXα′ onto Xα, and put πα = pα|X : X → Xα for each α ∈ Γ.

Throughout this paper, all concepts and terminologies on topological spaces

are from [7] and all topological spaces are Hausdorff spaces.

2 The fundamental proposition of orbit spaces

Proposition 2.1. The orbit space of a linearly order system {Xα, πβ
α, Γ} is

a closed set of the product space
∏

α∈Γ
Xα

Proof. Let X = O{Xα, πβ
α, Γ}. For any α, β ∈ Γ satisfying α ≤ β, let’s

pick

Mβ
α = {x = (xα)α∈Γ ∈ Πα∈ΓXα : πβ

α(xα) = xβ}.

Because πβ
απα(x) = πβ

α(xα) = xβ = πβ(x),i.e.,

Mαβ = {x = (xα)α∈Γ ∈ Πα∈ΓXα : πβ
απα(x) = πβ(x)},

then Mαβ is a closed subset of the product space Πα′∈ΓXα′ by[7,Theorem 1.5.4].

Thus,

X =
⋂

α≤β

Mαβ

is closed in Πα∈ΓXα.

It is known that a closed subset of a compact space is compact. There-

fore, the following corollary holds trivially by Tychonoff Theorem ([7,Theorem

3.2.4]),
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Corollary 2.2. Let {Xα, πβ
α, Γ} be a linearly ordered system, then O{Xα, πβ

α, Γ}

is a nonempty compact subset of the product space Πα∈ΓXα if Xα is a compact

space and Xα 6= φ for every α ∈ Γ.

Proposition 2.3 Assume that X is the orbit space of a linearly ordered

system {Xα, πβ
α, Γ}, then the following family of open subsets of X:

B={π−1
α (Uα): Uα is an open subset of Xα, α ∈ Γ}

is a base of X.

Proof Let X = O{Xα, πβ
α, Γ}. For any x ∈ X and for any U ∈ NX(x),

there exists an open subset V of the product space Πα∈ΓXα such that U =

X ∩ V . Thus, there are Wα1
,Wα2

, ...,Wαk
which are respectively open subsets

of Xα1
, ..., Xαk

such that

x ∈
k⋂

i=1

p−1

αi
(Wi) ⊂ V.

where k is a nature number. Put α = min{αi : 1 ≤ i ≤ k}, then α ≤

αi and (παi

α )−1(Wi) is an open subset of Xα for i = 1, 2, ..., k, then Uα =
⋂k

i=1
(παi

α )−1(Wi) is an open subset of Xα. We can readily check that x ∈

π−1
α (Uα)=π−1

α (
⋂k

i=1
(παi

α )−1(Wi)) =
⋂k

i=1
(π−1

α (παi

α )−1(Wi))= X
⋂

(
⋂k

i=1
(p−1

αi
(Wi)) ⊂

X
⋂

V = U .

Thus, B is a topological base of X.

Proposition 2.3. Let X = O{Xα, πβ
α, Γ}, A ⊂ X and Aα = πα(A) for ev-

ery α ∈ Γ. If π̂β
α = πβ

α|Aα
when α ≤ β for any pair α, β ∈ Γ, then {Aα, π̂β

α, Γ}

is a linearly ordered system and O{Aα, π̂β
α, Γ} = A, where A and Aα are re-

spectively closures of A and Aα in X.

Proof. For any α, β ∈ Γ satisfying α ≤ β, it is easy to check that

π̂β
α(Aα) = π̂β

α(πα(A)) ⊂ π̂
β
απα(A) = πβ(A) = Aβ,

then π̂β
α : Aα → Aβ is a well continuous map. Thus {Aα, π̂β

α, Γ} is a linearly

ordered system.

Let us put Y = O{Aα, π̂β
α, Γ}, we assert first that Y is a closed set of X.

For any x = (xα)α∈Γ ∈ X−Y , there exists α0 ∈ Γ such that x0 ∈ Xα0
−Aα0

,

i.e., π−1
α0

(Xα0
− Aα0

) ∈ N (x) and π−1
α0

(Xα0
− Aα0

)
⋂

Y = φ. In fact, if there is

some y ∈ π−1
α0

(Xα0
−Aα0

)
⋂

Y , i.e., y ∈ π−1
α0

(Xα0
−Aα0

) and y ∈ Y ⊂ Πα∈ΓAα,
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then πα0
(y) = yα0

∈ (Xα0
− Aα0

)
⋂

Aα0
= φ. This is a contradiction. So, Y is

a closed set of X.

Moreover, we show that A = Y .

In fact, for any x ∈ Y and for any V ∈ NY (x), there exist α ∈ Γ and

Uα ∈ NXα
(xα) such that x ∈ π−1

α (Uα)
⋂

Y ⊂ V since BY (x) = {π−1
α (Uα)

⋂
Y :

Uα ∈ N (xα), α ∈ Γ} is a neighborhood base of a point x in Y , then πα(x) =

xα ∈ Uα

⋂
πα(Y ) ⊂ Uα

⋂
Aα. Therefore,

V
⋂

A ⊃ (π−1

α (Uα)
⋂

Y )
⋂

A = (π−1

α (Uα))
⋂

A 6= φ,

i.e., x ∈ A. Thus Y ⊂ A. On the other hand, it is obvious that A ⊂ Y = Y ⊂

X holds because A ⊂ Y . Thus, Y = A. The proof is completed.

3 The proof of main theorems

Theorem 3.1. Let {Xα, πβ
α, Γ} be a linearly ordered system, if each link

map πβ
α is an onto map, then O{Xα, πβ

α, Γ} is a continuum if and only if each

Xα is a continuum.

Proof Take X = O{Xα, πβ
α, Γ}, it has been shown that X is compact if

each Xα is compact in Corollary 2.2.

Now we assert that X is a connected space.

Assume that there exist two closed subsets A1, A2 of X such that X =

A1

⋃
A2 and A1

⋂
A2 = φ, now we show that it is inevitable that either A1 = φ

or A2 = φ.

For every α ∈ Γ, let us pick Aiα = πα(Ai) for i = 1, 2 and let Bα =

A1α

⋂
A2α, where πα is the projection mapping from X to Xα. Then three

subsets A1α, A2α, Bα of Xα are compact and connected, i.e., they are subcon-

tinuums of Xα.

Let’s put π̂β
α = πβ

α|Bα
for any pair α, β ∈ Γ satisfying α ≤ β, it is

obvious that π̂β
α is well defined as a map from Bα to Bβ since π̂β

α(Bα) =

πβ
α(Bα) = πβ

α(A1α

⋂
A2α) ⊂ πβ

α(A1α)
⋂

πβ
α(A2α) = πβ

απα(A1)
⋂

πβ
απα(A2) =

πβ(A1)
⋂

πβ(A2) = A1β

⋂
A2β = Bβ. So, {Bα, π̂β

α, Γ} be a linearly ordered

system.

Similarly, it is easily seen that each {Aiα, π
β
i , Γ} is also a linearly ordered

system when we put each π
β
iα = πβ

α|Ai
, since π

β
iα(Aiα) = πβ

απα(Xi) = πβ(Ai) =
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Aiβ for i = 1, 2. By using Proposition 2.3, we have O{Aiα, π
β
iα, Γ} = Ai for

i = 1, 2.

Let B = O{Bα, π̂β
α, Γ}, it is obvious that B ⊂ O{Aiα, π

β
iα, Γ} = Ai since

each Bα ⊂ Aiα and π̂β
α = πβ

α|Bα
= (πβ

α|Aiα
)|Bα

= π
β
iα|Bα

for i = 1, 2. So,

B = φ because A1

⋂
A2 = φ. Moreover, there exists α0 ∈ Γ such that Bα0

=

A1α0

⋂
A2α0

= φ since each πβ
α : Xα → Xβ is an onto mapping for α ≤ β.

Since πα0
(X) is a normal subspace of Xα0

, there exist two open subsets

U1α0
, U2α0

of πα0
(X) such that

(1) A1α0
⊂ U1α0

, A2α0
⊂ U2α0

and U1α0

⋂
U2α0

= φ.

For any α ∈ Γ, we put Zα = Xα − (U1α

⋃
U2α) where Uiα = (πα0

α )−1(Uiα0
)

when α ≤ α0 and i = 1, 2, and let Zα = Xα when α > α0. Then

(2) {Zα, πβ
α, Γ} is a linearly order system, where πβ

α = πβ
α|Zα

for any α ∈ Γ.

In fact, for any pair α, β ∈ Γ satisfying α ≤ β, if β ≤ α0, then πβ
α(Zα) =

πβ
α[Xα−(πα0

α )−1(A1α0

⋃
A2α0

)] = πβ
α(πα0

α )−1[Xα0
−(A1α0

⋃
A2α0

)] = πβ
α(πα0

β πβ
α)−1[Xα0

−

(A1α0

⋃
A2α0

)] =πβ
α(πβ

α)−1(πα0

β )−1[Xα0
− (A1α0

⋃
A2α0

)] ⊂ Xβ − (U1β

⋃
U2β) =

Zβ. If α0 < β, then πβ
α(Zα) ⊂ πβ

α(Xα ⊂ Xβ = Zβ. I.e., (2) is true.

Put Z = O{Zα, πβ
α, Γ}, since Z ⊂ X and πα0

(X) = πα0
(A1)

⋃
πα0

(A2) =

A1α0

⋃
A2α0

⊂ U1α0

⋃
U2α0

, then πα0
(X)

⋂
Zα0

= φ. If Z 6= φ, we can put x =

(xα)α∈Γ ∈ Z ⊂ Πα∈ΓZα, then xα0
= πα0

(x) ∈ πα0
(X)

⋂
Zα0

. This contradicts

to πα0
(X)

⋂
Zα0

= φ. So, we have Z = φ.

Then, there exists some α∗ ∈ Γ such that Zα∗ = φ. It holds obviously that

α∗ ≤ α0, since Zα = Xα 6= φ for every α > α0. Then

πα∗(X) = A1α∗

⋃
A2α∗ ⊂ U1α∗

⋃
U2α∗ ⊂ πα∗(X),

i.e., πα∗(X) = U1α∗

⋃
U2α∗ , therefore it is true that either U1α∗ = φ or U2α∗ = φ

holds because πα∗(X) is connected, and

U1α∗

⋂
U2α∗ = (πα0

α∗)−1(U1α0
)
⋂

(πα0

α∗)−1(U2α0
)

= (πα0

α∗)−1(U1α∗

⋂
U2α0

) = φ.

By (1), it is true that either A1α∗ = φ or A2α∗ = φ holds. So, A1 = φ or

A2 = φ.

This proof is completed.

Corollary 3.2. Let X be continuum, f : X → X is a continuous map from

X onto self, then O+

f (X) is a continuum.
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