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Abstract 
In this study the distributions of the stresses, the pore pressure and the displacements 
at various locations of a layer subjected to a strip loading and resting on either a 
smooth or a rough impervious base are found. For the case of rough base, non-slipping 
condition is examined in view of Coulomb's law of friction. For both smooth and rough 
base cases, the pore pressure seems to have a parabolic distribution with depth but when 
the base becomes rough the pore water pressure increases. As the layer is consolidated, 
the pore pressure gets smaller. Additionally, the normal stress distribution appears to be 
independent of time while the shear stress distributions vary with time.  
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1  Introduction  
In studying the three dimensional consolidation problems for a soil medium, two 
types of mathematical models are proposed. In one of these theories, the soil is 
characterized by some rheological models [1, 2]. In view of the experimental studies, 
these models for the volumetric and the shear deformations are chosen as standard and 
Maxwell models respectively. In the other theory, which is proposed by Biot [3], the 
soil is considered as a two-phase material that consists of a solid soil skeleton and the 
pore water. The soil skeleton is assumed to obey Hooke's law while the flow of the 
water through the pores follows Darcy's law. 
In a paper by Gibson et al. [4], displacement functions representation is used to 
analyze the consolidation problem of a clay layer on a smooth impervious base by 
employing Biot's theory. However, in [4], the distribution of the vertical 
displacement with time is given at the centre of the loaded region only. Recently, 
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Booker [5] studied the consolidation of a layer resting on either smooth or rough rigid 
foundations by solving Biot's equations. In this work, again, only the time variation 
of the vertical displacement at the mid-point of the loaded region is found. It appears 
that there are some discrepancies between the results of Gibson et al. and Booker due 
to their different mathematical approaches. Recently, Qin, Pan and Xia et al. [8, 9, 10] 
have done some works in this area as well. 
The present study aims at finding not only the vertical displacement at the centre of 
the loaded area but also the distributions of the stresses and the pore pressure as well as 
the vertical displacement at various locations of a layer subjected to a strip loading and 
resting on a rigid impervious foundation which is either smooth or rough. 
Governing equations are those of Biot's theory and they are solved by employing 
Fourier sine, cosine transforms for the space and Laplace transform for the time variable. 
The inversions of both transforms are carried out numerically. The time variation of the 
vertical displacement at the centre of the loaded region found in the present study 
appears to agree with that found by Gibson rather than with that by Booker. 
For the case of rough base supporting, it is assumed that no-slipping occurs 
between the laver and the foundation. This no-slipping condition is examined by 
considering the weight of the layer and by studying its imposed relation with the 
coefficient of friction. It is found that for a given value of the ratio of the pressure due 
to the weight and the applied pressure, there exists a critical coefficient of friction 
such that slipping occurs if the coefficient of friction is less than this critical value. 

 
 
2  Formulation of the Problem 
We consider a porous elastic layer of thickness H , loaded uniformly by a strip 
pressure 0p  of width a2 . It is assumed that the layer rests on an impervious rigid 
foundation which may be either smooth or rough (see Fig. 1).  

 
 

 
Figure 1: Configuration of the layer 

 
The body is referred to a right handed Cartesian coordinate system in which zx − plane 
coincides with the upper surface of the layer, the y axis is directed downwards and the 
loading is uniform in z  direction. 
The following equations which govern the displacements and the diffusion of the pore 
pressure are derived by Biot [3]: 
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where vu, are the horizontal and the vertical components of the displacement vector, 
σ  the excess pore water pressure, k  the coefficient of permeability; λ  and µ  are 
Lame's constants. 
The boundary conditions of the problem for smooth and rough bases are: 
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( )∞<<∞−== xHyu ,,0   for rough base, (without slipping)            (7b) 
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and )(tU  is the Heaviside step function, and the initial condition is: 
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In order to solve eqs. (1.a), (1.b), and (1.c) subjected to boundary conditions, eqs. (2-7), 
and the initial condition given by eq. (9) we express the unknown functions vu, and σ
as: 
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where ,, LCLS vu  and 

LCσ  are repeated Fourier (sine or cosine) and Laplace 
transforms of ,,vu and σ . They are defined as: 
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    We note that, in eq. (10), the symmetry or anti-symmetry conditions are used to 
utilize Fourier sine or cosine transforms. Through the substitution of eqs. (10.a), (10.b), 
and (10.c) into eqs. (1.a), (1.b), and (1.c) and employing the initial condition, eq. (9), one 
obtains a system of ordinary differential equations for ,, LCLS vu  and LCσ . The 
solution to this system is: 
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The unknown function )6,...,1(),,( =isAi α  are to be determined from the boundary 

conditions. eqs. (2-7). For the smooth base, sAi
,  are the solutions of the linear system 

,FAC =                                                             (13) 
 
Where: 
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and C is a )66( ×  square matrix:  
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For the rough base, the last row of the square matrix, eq. (16), should be replaced 
by: 

 
( ).,,,,, pHpHHHHH eeHeeHee −−− αααα                                       (17) 

 
Through the use of the constitutive equations for porous media 
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the relevant stress components take the forms: 
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At time ∞=t , the pore pressure becomes zero, thus, the solution is reduced to the 
elastostatic solution which reads: 
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where ( ) ( )4,...,1, =iBi α  are to be determined from the appropriate boundary 
conditions and vv,43−=χ being the Poisson ratio. The corresponding stress 
components can be obtained from Hooke's law. 

 
 
3  Solutions and some Numerical Results 
The stress, displacement and the pore pressure distributions are obtained through eqs. 
(10.a), (10.b), and (10.c) and eqs. (19.a), (19.b), (19.c), and (19.d) by employing 
numerical inversion techniques for both Fourier and Laplace transforms. For time 

∞=t  since there is no time dependency, only the use of Fourier inversion 
technique in eqs. (20.a), and (20.b) and the resulting stress expressions are sufficient. To 
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evaluate the infinite integrals appearing in Fourier inversion expressions, the 
numerical integration quadrature given by Filon [6] is used. For the numerical inversion 
of the Laplace transform, a method proposed by Krylov. V. I. and Skoblya, N. S. [7] 
is utilized. This method is now reviewed very briefly. The Laplace transform ( )sf L  of a 
function ( )tf  is defined by: 
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having the inversion relation: 
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We assume the form of ( )sf L  to be expressed as: 
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thus the integral relation, eq. (22), becomes: 
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By approximating ( )sϕ  by an thn  order polynomial at ( )1+n  equally spaced 
points ( )nkksk ,...,0,1 =+=  eq. (23) takes the form 
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where the values of kja  are tabulated in [7]. 
In Figures. (2-7) the variations of the vertical displacements, the pore pressure and 
some stress components at various times are displayed for a layer supported by a smooth 
base. For a rough base, the same quantities are plotted in Figs. (8-13). The 
non-dimensional time t  which appears in the figures is defined by the relation: 
 

t
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2µ
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As it is seen in Figs. (2) and (8), for both types of foundations the final settlement is 
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approximately reached at 1=t  and the settlement at the point ( )0,0 == yx  is larger 
in the case of smooth base. It should be observed that the lifting of the soil on the top 
surface for the rough base appears to be greater than that of the smooth base.  

 

 
 

Figure 2: Variation of the vertical displacement with x at the top surface for the 
smooth foundation 

 

 
Figure 3: Variation of the vertical displacement with depth at 0=x  for the smooth 

foundation 
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Figure 4: Variation of the pore pressure with x  at the base for the smooth 

foundation 
 

 
Figure 5: Variation of the pore pressure with depth at 0=x for the smooth foundation 
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Figure 6: Variation of the normal stress with x at the base for the smooth foundation 

 

 
Figure 7: Variation of the shear stress with depth at ax =  for the smooth base 
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Figure 8: Variation of the vertical displacement with x  at the top surface for the 

rough foundation 
 

 
Figure 9: Variation of the vertical displacement with depth at 0=x for the rough 

foundation 
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Figure 10: Variation of the pore pressure with x  at the base for the rough foundation 
 

 
Figure 11: Variation of the pore pressure with depth at 0=x  for the rough 

foundation  
 

 
Figure 12: Variation of the normal stress with x  at the base for the rough foundation 
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Figure 13: Variation of the shear stress with x  at the base for the rough foundation 

 

 
Figure 14: Sketch of the region for no slipping 

 
For both smooth and rough base cases, the pore pressure seems to have a parabolic 
distribution with depth [see Figs. (5) and (11)] and from Figs. (4) and (10) one can 
conclude that when the base becomes rough the pore pressure increases. We also 
note that as the layer is consolidated, the pore pressure gets smaller. The normal stress 
distribution appears to be independent of time [Figs. (6) and (12)] while the shear stress 
distributions vary with time [see Figs. (7) and (13)]. 
For the case of a rough base, it was assumed that no-slipping occurs between the layer 
and the foundation. This condition is valid provided that the ratio of the shear stress to the 
total normal pressure, which is the sum of the uniform normal pressure due to the 
weight of the layer and ( )Hxyy ,τ , is less than the coefficient of friction, that is 
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where f  is the coefficient of friction, ρ  is the mass density and g is the acceleration 
of gravity. The condition, eq. (26), can be re-written as: 
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From a study of  Fig. (12) and (13) it follows that the critical range and for ax / and the 
critical time at which slipping occurs are-, respectively, 
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When the condition, eq. (27), is examined in view of the normal and the shear stress 
distributions [Figs. (12) and (13)], we find that the base can be assumed to be a rough 

base without slipping if the point 
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 plane is in the 

shaded region shown in Fig. (14). For a given value of 
0p

gHρ
, we can and determine 

from Fig. (14) a critical value for the coefficient of friction, cf , so that if f  is larger 
than cf , slipping will not occur.  It should emphasize that difficult types of boundary 
conditions for the layer can be handled by just making appropriate changes in eq. (13). 
This is one of the advantages of the numerical method used in this study.  

 
 
4  Conclusions 
In this paper the stress, displacement and the pore pressure distributions are obtained by 
using numerical inversion techniques for both Fourier and Laplace transforms at 
different locations of a layer subjected to a strip loading and resting on either a smooth 
or a rough impermeable base. For the case of rough base, non-slipping condition is 
examined in view of Coulomb's law of friction. It is observed that the lifting of the soil 
on the top surface for the rough base is greater than the smooth base. For both 
smooth and rough base cases, the pore pressure seems to have a parabolic distribution 
with depth but when the base becomes rough the pore water pressure increases. 
Furthermore, as the layer is consolidated, the pore pressure gets smaller as well as the 
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normal stress distribution appears to be independent of time but the shear stress 
distributions vary with time.  
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