Complexity Results for Flow-shop Scheduling Problems with Transportation Delays
 and a Single Robot

Shi Ling ${ }^{1}$ and Cheng Xue-guang ${ }^{2, *}$

Abstract

The paper considers the problem of scheduling n jobs in a two-machine flow-shop to minimize the makespan. Between the completion of an operation and the beginning of the next operation of the same job, there is a time lag, which we refer to it as the transportation delays. All transportation delays have to be done by a single robot, which can perform at most one transportation at a time. New complexity results are derived for special case.

Mathematics Subject Classification : 90B35
Keywords: Flow-shop Scheduling problem, Complexity Results, Transportation Delay, Single Robot

[^0]
1 Introduction

A flow-shop scheduling problem with transportation delays and a single robot can be formulated as follows. We are given m machines $M_{1}, M_{2}, \ldots, M_{m}$ and n jobs $J_{1}, J_{2}, \ldots, J_{n}$.

Each job J_{j} consists of m operations $Q_{i, j}(i=1,2, \ldots, m ; j=1,2, \ldots, n)$, which have to be processed in the order $Q_{1, j} \rightarrow Q_{2, j} \rightarrow \ldots \rightarrow Q_{m, j}$.

Operation $Q_{i, j}$ has to be processed on machines M_{i} without preemption for $p_{i, j}$ time units. Each machine can only processed one operation at a time. In this paper, we assume that there is a known time lag between the completion of an operation and the beginning of the next operation of the same job. We refer to this lag as the transportation delays $t_{j, k}$. All transportation is done by a single robot R, which can only handle one job at a time. Thus, conflicts between transportation may arise and a job may have to wait for the robot before its transportation. All values $p_{i, j}$ and $t_{j, k}$ are supposed to be non-negative integers.

The objective are to determine a feasible schedule, which minimizes the makespan $C_{\max }=\max _{j=1}^{n} C_{j}$, where C_{j} is the finishing time of the last operation $Q_{m, j}$ of job J_{j}. Using the three-field notation scheme for scheduling problem introduced in [4], we denote this problem by $F m, R 1\left|p_{i, j} ; t_{j, k}\right| C_{\text {max }}$. If we have only $m=2$ machines, the robot always transports from M_{1} to M_{2}. Therefore, the index k in the notation $t_{j, k}$ is dropped and the transportation delays are denoted by t_{j}. If two operations $Q_{1, j}$ and $Q_{2, j}$ have equal processing times $p_{1, j}=p_{2, j}=p_{j}$, we denote
this problem by $F 2, R 1\left|p_{1, j}=p_{2, j}=p_{j} ; t_{j}\right| C_{\max }$. If the transportation delays may take only two values $T_{1}, T_{2} \quad\left(T_{1}<T_{2}\right)$, we have the $F 2, R 1\left|p_{1, j}=p_{2, j}=p_{j} ; t_{j} \in\left\{T_{1}, T_{2}\right\}\right| C_{\max }$ problem.

The $F 2\left|p_{1, j}=p_{2, j}=p_{j} ; t_{j} \in\left\{T_{1}, T_{2}\right\}\right| C_{\max }$ problem is $N P$-hard in the strong sense, [5]. J.Hurink and S.Knust discussed the complexity results for the two-machine flow-shop scheduling problem with transportation delays and a single robot and proved the $F 2, R 1\left|p_{i, j}=p ; t_{j} \in\left\{T_{1}, T_{2}\right\}\right| C_{\text {max }}$ problem have maximal polynomial solvable, [3]. In this paper, we proof the $F 2, R 1\left|p_{1, j}=p_{2, j}=p_{j} ; t_{j} \in\left\{T_{1}, T_{2}\right\}\right| C_{\max }$ problem is NP -hard in the strong sense.

2 Complexity of the $F 2, R 1 \mid p_{1, j}=p_{2, j}=p_{j} ; t_{j} \in\left\{T_{1}, T_{2}\right\} C_{\text {max }}$ problem

In this section, we consider problem in which we have two machines M_{1}, M_{2}, one robot R, and n jobs J_{j} with processing times $p_{1, j}$ and $p_{2, j}$ on machine M_{1} and M_{2}.

We may restrict the search for an optimal solution to permutation plans, since for problem $F 3 \mid C_{\text {max }}$ has an optimal permutation plan always exists, [1].

We now derive an expression for the makespan when the sequences σ and τ in which the jobs are executed by M_{1} and M_{2} are given. Let $C(\sigma, \tau)$ denote the minimal makespan of such a schedule for the

$$
F 2, R 1\left|p_{1, j}=p_{2, j}=p_{j} ; t_{j} \in\left\{T_{1}, T_{2}\right\}\right| C_{\max }
$$

problem.

Lemma 2.1 [5] Consider the $F 2, R 1\left|p_{1, j}=p_{2, j}=p_{j} ; t_{j} \in\left\{T_{1}, T_{2}\right\}\right| C_{\text {max }}$ problem with processing times $p_{i, j}$ and transportation delays t_{j}, where $i=1,2$ and $j=1,2, \ldots, n$. Then

$$
\begin{equation*}
C(\sigma, \tau)=\max _{1 \leq k \leq n}\left\{\sum_{j \leq \sigma^{-1}(k)} p_{1, \sigma(j)}+t_{k}+\sum_{j \geq \tau^{-1}(k)} p_{2, \tau(j)}\right\} \tag{2.1}
\end{equation*}
$$

where $\sigma^{-1}(k)$ and $\tau^{-1}(k)$ denote the positions of job k in sequence σ and τ, respectively.

Theorem 2.1 The $F 2, R 1\left|p_{1, j}=p_{2, j}=p_{j} ; t_{j} \in\left\{T_{1}, T_{2}\right\}\right| C_{\text {max }}$ problem is $N P$-hard in the strong sense.

Proof We prove the $F 2, R 1\left|p_{1, j}=p_{2, j}=p_{j} ; t_{j} \in\left\{T_{1}, T_{2}\right\}\right| C_{\text {max }}$ problem is $N P$ -hard in the strong sense through a reduction from the 3 - Partition problem, which is known to be $N P$-hard in the strong sense, [2]. The 3 -Partition problem is then stated as:

3- Partition: Given a set of positive integers $X=\left\{x_{1}, x_{2}, \ldots, x_{3 m}\right\}$, and a positive integer b with:

$$
\begin{equation*}
\sum_{j=1}^{3 m} x_{j}=m b, b / 4<x_{j}<b / 2, \forall j=1,2, \ldots, 3 m \tag{2.2}
\end{equation*}
$$

Decide whether there exists a partition of X into m disjoint 3-element subset $\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}$ such that

$$
\begin{equation*}
\sum_{x_{j} \in X_{i}} x_{j}=b \quad(i=1,2, \ldots, m) \tag{2.3}
\end{equation*}
$$

Given any instance of the 3 -Partition problem, we define the following instance of the $F 2, R 1\left|p_{1, j}=p_{2, j}=p_{j} ; t_{j} \in\left\{T_{1}, T_{2}\right\}\right| C_{\max }$ problem with two types of jobs:
(1) $3 m$ Partition jobs, or P-jobs with:

$$
p_{1, j}=x_{j}, \quad t_{j}=0 ; \quad p_{2, j}=x_{j} \quad(j=1,2, \ldots, 3 m)
$$

(2) m Large jobs, or L-jobs with;

$$
p_{1, j}=2 b, \quad t_{j}=2 b ; \quad p_{2, j}=2 b \quad(j=3 m+1,3 m+2, \ldots, 4 m)
$$

The threshold $y=3 m b+3 b$ and the corresponding decision problem is: Is there a schedule S with makespan $C(S)$ not greater than $y=3 m b+3 b$?

Assume that the answer to 3 -Partition is "yes", Let $\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}$ be a partition satisfying (2.3), where $X_{i}=\left(x_{\xi(i)}, x_{\eta(i)}, x_{\zeta(i)}\right\}(i=1,2, \ldots, m)$.

We construct for each j consisting of jobs $\xi(j), \eta(j), \varsigma(j)$ and jobs $3 m+j$ in the order
$((3 m+1) ; \xi(1), \eta(1), \varsigma(1) ;(3 m+2) ; \xi(2), \eta(2), \varsigma(2) ; \ldots ;(4 m-1) ; \xi(m), \eta(m), \varsigma(m) ; 4 m)$ as indicated in Figure 1.

Figure 1: Gantt chart for the $F 2, R 1\left|p_{1, j}=p_{2, j}=p_{j} ; t_{j} \in\left\{T_{1}, T_{2}\right\}\right| C_{\max }$ problem

Then we define a permutation σ shown in Figure 1. Obviously, this permutation σ fulfills $C(\sigma) \leq y$.Conversely, assume that the flow-shop scheduling problem has a solution σ with $C(\sigma) \leq y$. By setting $k=1, i=n, t_{j}=0$ in (2.1), we get for all
permutation $\sigma: C(\sigma) \geq p_{1, \sigma_{\lambda}}+\sum_{\lambda=1}^{n} p_{2, \sigma_{\lambda}}=3 b+3 m b=y$.
Thus, for a permutation σ with $C(\sigma)=y$. We may conclude that:
(1) job $(3 m+1)$ is processed at the first position, since $p_{1, j}>0$ for $j \neq 0$;
(2) job $4 m m$ is processed at the last position, since $p_{2, j}>0$ for $j \neq m$;
(3) machine M_{1} processed jobs in the interval [$0,3 \mathrm{mb}$], without idle times;
(4) machine M_{2} processed jobs in the interval $[3 b, 3 m b+3 b]$, without idle times;
(5) robot R transport jobs in the interval $[(3 i+2) b,(3 i+4) b]$ $(i=0,1, \ldots,(m-1))$, without idle times.

Without loss of generality, we can assume that the jobs in $\{1,2, \ldots, m-1, m\}$ are processed w.r.t. increasing numbers. Let $X_{1}=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ be the set of jobs scheduled between job $(3 m+1)$ and job $(3 m+2)$, showing in Figure 2.

Figure 2: Subscheduling for the $F 2, R 1\left|p_{1, j}=p_{2, j}=p_{j} ; t_{j} \in\left\{T_{1}, T_{2}\right\}\right| C_{\text {max }}$ problem.

We have $X_{1} \neq \Phi$, since otherwise there would be an idle period on the job $(3 m+1)$ and job $(3 m+2)$, which contradicts (3) ~ (5).

In the following we will show that $k=3$, and $\sum_{x_{i} \in X_{1}} x_{i}=b$ hold. We use the variable $C_{i, j}^{\sigma}$ denoting the completion time of job j on machine M_{i} in the permutation σ. The values of the variable for the jobs on the set X_{1} are gives by: $C_{1, i_{\lambda}}^{\sigma}=2 b+\sum_{\lambda=1}^{\mu} p_{1, i_{\lambda}}<2 b+2 b(\mu+1)(\mu=1,2, \ldots, k)$

If $k \leq 2$ holds, we have: $\sum_{\lambda=1}^{k} p_{1, i_{\lambda}}<k \cdot 2 b \leq 2 k b+(2-k) 2 b=4 b$
Then $C_{1,1}^{\sigma}=2 b+\sum_{\lambda=1}^{k} p_{1, i_{\lambda}}<3 b$, and the robot finishes the transportation of job $(3 m+1)$ at time $2 b$. Thus, machine M_{2} has an idle time period between jobs $(3 m+1)$ and job $(3 m+2)$, which contradicts (5);

If $k \geq 4$ holds, we have: $\sum_{\lambda=1}^{k} p_{2, i_{\lambda}}<k \cdot 2 b \leq 2 b k+(k-4) 2 b=4 b(k-2)$.
On the other hand, job $(3 m+2)$ cannot start on machine M_{2} earlier than time $2 b+k b$, since job $(3 m+1)$ have to be transport before. Thus, the time period between the completion time $C_{2,1}^{\sigma}=6 b$ for job $(3 m+1)$ on machine M_{2} and the starting time of job $(3 m+2)$ on machine M_{1} is not completely filled with jobs from X_{1}, which contradicts (4); Thus, we must have $k=3$. This implies that job $(3 m+1)$ and job $(3 m+2)$ transported by robot in the interval $[2 b, 3 b]$ and $[3 b, 4 b]$, respectively. Therefore, $2 b+\sum_{i \in X_{1}} p_{1, i_{i}} \leq 3 b$, that is:

$$
\begin{equation*}
\sum_{i \in X_{1}} p_{1, i_{i}} \leq b \tag{2.4}
\end{equation*}
$$

On the other hand, job $(3 m+1)$ completes on machine M_{2} not after $6 b$.Since we have no idle time on machine M_{2} in interval [4b,6b], we must have $2 b+\sum_{i \in X_{1}} p_{1, i_{\lambda}}+\sum_{i \in X_{1}} p_{2, i_{\lambda}} \geq 4 b$. Since $p_{1, j}=p_{2, j}=x_{j}$, therefore

$$
\begin{equation*}
\sum_{i \in X_{1}} p_{2, i_{i}} \geq b \tag{2.5}
\end{equation*}
$$

Combining (2.4) and (2.5), we have $\sum_{j \in X_{1}} x_{j}=b$.
Analogously, we show that the remaining sets $X_{2}, X_{3}, \ldots, X_{m}$ separated by the jobs $1,2, \ldots, m$ contain 3 -element and fulfill $\sum_{j \in X_{j}} x_{j}=b$ for $j=1,2, \ldots, m$.Thus, $X_{1}, X_{2}, \ldots, X_{m}$ define a solution of 3-Partition.

Reference

[1] M.Garey, D.S. Johnson, R. Sethi, The complexity of flow-shop and job-shop scheduling, Mathematics of Operation Research, 1, (1976), 117-129.
[2] M.R. Garey, D.S. Johnson, Computer and Intractability: A Guide to the theory of NP-Completeness, Freeman, San Francisco, 1979.
[3] J. Hurink, S. Knust, Flow-shop problems with transportation times and a single robot. Discrete Applied Mathematics, 112(1-3), (2001), 199-216.
[4] E.L. Lawer, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys, Sequencing and Scheduling: Algorithms and Complexity, in: S.C.Gtaves, A.H.G.Rinnooy Kan, P.H.Zipkin(Eds.), Handbooks in Operation Research and Management Science, v. 4, Logistics of Production and Inventory, North_hollland, Amsterrdem, 445-522, 1993.
[5] W.C. Yu, The two-machine flow shop problem with delays and the one machine total tardiness problem, Technische Universiteit Eindhoven, 1996.

[^0]: ${ }^{1}$ Department of Mathematics, Hubei University for Nationalities, Enshi 445000, China, e-mail: Shiling59@126.com
 ${ }^{2}$ School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China, e-mail: chengxueguang6011@msn.com

 * Corresponding author.

