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Abstract 

The Bayesian approach to Statistical inference enables making probability 
statements about parameter (s) of interest in any research work. This paper 
presents a study of multi-equation Econometric model estimation from the flat or 
locally uniform prior Bayesian approach. Using a two-equation model containing 
one just-identified and one over-identified equation, we present a Bayesian 
analysis of multi-equation econometric model as well as a Monte Carlo study on it, 
using WinBUGS (windows version of the software: Bayesian analysis Using 
Gibbs Sampling). In studies involving the use of flat or locally uniform prior, it is 
the usual practice to specify the prior distribution in such a way that the variance 
is large. However, the definition of this “large” variance could vary among 
researchers. This research work considered three different variances (10, 100 and 
1000) with particular focus on the Mean squared error of posterior estimates, 
looking for possible sensitivity to the prior variance specification. The result of the 
Monte Carlo study showed that a prior variance 10 gave the smallest Mean 
squared error out of the three stated prior variances. As reflected in the kernel 
density plots, the distribution of the Posterior estimates from the prior variance 10 
was the closest to the t distribution obtained theoretically. 
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1  Introduction  

The application of statistics in economic  modeling has brought about 
several research works on multi-equation models such as general linear models 
(GLM), vector autoregressive models (VAR), seemingly unrelated regression 
models (SURE), simultaneous equations models (SEM) among several others. 
Studies on these models have so far been mostly classical, that is, the conventional 
methods such as least squares, maximum likelihood, generalized method of 
moments, etc. The Bayesian approach has become more attractive now because  
of the availability of numerical intensive software and high speed computing 
technology that make the analysis easier to handle than the usual rigorous and at 
times, intractable mathematics involved.  

There are many approaches to Bayesian analysis; the most common ones are 
the objective, subjective, robust, frequentist-Bayes and quasi-Bayes approaches. 
Beginning with the first set of Bayesians, Thomas Bayes (1783) and Laplace 
(1812), who carried out Bayesian analysis using constant prior distribution for 
unknown parameters, Bayesian analysis has been taken as an objective theory. 
The use of uniform or flat prior, more generally known as noninformative, is a 
common objective Bayesian approach, Jeffrey’s prior as presented in Jeffrey 
(1961) is the most popular in this school of thought. Although these priors are 
often referred to as noninformative prior, they also reflect certain informative 
features of the system being analysed, in fact, some Bayesians have argued that it 
rather be referred to as “weakly informative” prior for example, German et. al 
(2008).    

This paper is focused on the objective Bayesian approach, being the most 
commonly used. Using a two-equation model, flat prior was stated for the 
regression coefficients while a Wishart distribution with zero degree of freedom 
was stated for the variance-covariance matrix of the residual terms of the model. 
The prior distributions were then combined with the likelihood function to have 
the posterior. A Monte Carlo study was then carried out to illustrate the use of 
WinBUGS for a multi-equation model such as the one considered in this paper. 
Specifically, the variance of the prior distribution of the regression coefficients 
was stated at three levels as; 10, 100, and 1000 which corresponds to precision 0.1, 
0.01 and 0.001. 

Section two contains theoretical background; section three contains 
methodology and design of the Monte Carlo experiment; results and 
interpretations are presented in section four, while the last section concludes the 
paper.  
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2  Preliminary Notes 
A two-equation model was considered as follows; 

1 2 11 1 1

2 21 1 22 2 23 3 2

t t t t

t t t t t

y y X u
y X X X u

γ β
β β β

= + +
= + + +

                                  (2.1) 

1ty  and 2ty are each ( x1)T vectors containing observations on the endogenous 
variables 

1 2 3, ,t t tX X X  are each ( x1)T  vectors of observations on the exogenous variables 
γ  is the scalar coefficient of the endogenous explanatory variable 

11 21 22 23, , ,β β β β  are the scalar coefficients of the predetermined explanatory 
variables. 

1 2 and t tu u  are each ( x1)T  random disturbance terms. 
We carried out the Bayesian analysis by working directly on the structural model 
(2.1) which we write in matrix form as; 
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We make the following assumptions about the model (2.2) 
(1) The assumption about the exogenous regressors or predetermined variable: it 
is assumed that the matrix of the exogenous regressors is of full rank, i.e., the 
number of independent columns of the matrix X , which in the case of model (2.2) 
is three. 
(2). The second assumption is the major one which is about the residual termU , 
the summary of this assumption is; 

U  ~ (0, )NIID ∑                                                 (2.3)   

      
                                                                                                          
2.1 Prior Probability density function 
 The flat or locally-uniform prior is assumed for the parameters of our 
models. The idea behind the use of this prior is to make inferences that are not 
greatly affected by external information or when external information is not 
available. Two rules were suggested by Jeffrey (1961) to serve as guide in 
choosing a prior distribution. The first one states as, “If the parameter may have 
any value in a finite range, or from  to +−∞ ∞ , its prior probability should be taken 
as uniformly distributed”. While the second is that if the parameter, by nature, can 
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take any value from 0 to ∞ , the prior probability of its logarithm should be taken 
as uniformly distributed.  
 For the purpose of this study, we assume that little is known, a priori, about 
the elements of the parameter δ , and the three distinct elements of Σ. As the prior 
pdf, we assume that the elements of δ and those of Σ are independently 
distributed; that is, 

( , ) ( ) ( )P P Pδ δΣ = Σ                                               (2.4)                                                                                                                   
( )P δ = constant                                                  (2.5)                                                    

( )
3

2P −∑ ∝ ∑                                                   (2.6) 

 By denoting 
'µµσ as the '( , )thµ µ  element of the inverse of Σ, and the 

Jacobian of transformation of the three variances, 11 12 22( , , )σ σ σ  to 
11 12 22( , , )σ σ σ  as  

( )
( )

311 12 22
11 12 22

, ,
, ,

J
σ σ σ
σ σ σ

∂
= = ∑
∂

                                        (2.7)                                                                                                

 The prior pdf in (2.6) implies the following prior pdf on the three distinct 
elements of Σ-1  

 
3
21 1( )P

−− −∑ ∝ ∑                                                 (2.8)                                                                                                             

 This could also be seen as taking an informative prior pdf on Σ-1 in the 
Wishart pdf form and allowing the “degrees of freedom” in the prior pdf to be 
zero. With zero degrees of freedom, there is a “spread out” Wishart pdf which 
then serve as a diffuse prior pdf since it is diffuse enough to be substantially 
modified by a small number of observations. The Wishart distribution is the 
conjugate for the multivariate normal distribution, which is the distribution of the 
variance-covariance matrix (Σ ). 
 Hence, our prior p.d.f‘s are (2.5), (2.6), and (2.8), as obtained also by 
Zellner (1971), Geisser (1965) and others for parameters of similar models as in 
(2.2). 

 
 
2.2 Likelihood Function 
 The likelihood function for δ  and Σ , which follows from the assumption 
that rows of U  in equation 2.2 are normally and independently distributed, each 
with zero mean vector and 2x2 covariance matrix Σ , is given as; 

' 12 1( , / , ) exp[ ( ) ( )2
n

L Y X tr Y X Y Xδ δ δ− −∑ ∝ ∑ − − − ∑                  (2.9)                                                       

This is the same as;                    
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1 12 ˆ ˆ1 1( , / , ) exp[ ( ) ' ' ( ) ]2 2
n

L Y X trS tr X Xδ δ δ δ δ− − −∑ ∝ ∑ − ∑ − − − ∑     (2.10)                           

where ˆ ˆ ˆ ˆ( ) '( ) ( ) '( ) ( ) ' ' ( )Y X Y X Y X Y X X Xδ δ δ δ δ δ δ δ− − = − − + − − , 
  ˆ ˆ( ) ' ' ( )S X Xδ δ δ δ= + − −  

ˆ ˆ( ) '( )S Y X Y Xδ δ= − −  and δ̂  is the estimate of δ .  
Thus, the likelihood function for the parameters is as given in (2.10). 

 
 
2.3 The Posterior Pdf 
 Combining the Prior pdf (2.5) and (2.8) with the likelihood function (2.10), 
we have the joint posterior distribution for δ  and Σ-1 given as; 

( ) ( ) ( )'31 12 ˆ ˆ1( , / , ) { ' ) }2
n

P Y X EXP tr S Z Zδ δ δ δ δ
+−− − ∑ ∝ ∑ − + − − ∑  

    (2.11)                         

Integrating (2.11) with respect to Σ-1, we have the marginal posterior pdf for δ  
given as: 

( ) [ ] 2)ˆ(')'ˆ(,/
T

ZZSXYP
−

−−+∝ δδδδδ                             (2.12)                                                                       

A pdf in the generalized student-t form. 

 
 
2.4 The Design and methodology of the experiment 
2.4.1 Generating data for the experiment 
 Monte Carlo simulation approach was used in this research work. The data 
was generated by arbitrarily fixing values for the parameters of the model and 
stating specific distributions for the predetermined variables and the error terms. 
We considered two runs, negatively correlated residual terms for the first run and 
positively correlated residual terms for the second run. Values stated for the 
parameters are as follows;  

11 21 22 233.0, 1.0, 2.0, 0.5, 1.5γ β β β β= = = = = .    
The two runs are stated as follows. 
RUN ONE: 

1 2 3 1 2 11 12 22

11 12 22

: (0,1), : (0,1), : (0,1), ( ) : (0,0; , , ),
1.0, 1.0, 4.0

t t t t tX NID X NID X NID u u NID σ σ σ
σ σ σ= = − =

 

RUN TWO: 
1 2 3 1 2 11 12 22

11 12 22

: (0,1), : (0,1), : (0,1), ( ) : (0,0; , , ),
1.0, 1.0, 4.0

t t t t tX NID X NID X NID u u NID σ σ σ
σ σ σ= = =
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 Also, three prior variances are stated as 10, 100 and 1000, which in the 
WinBUGS code is usually stated as precision; 0.1, 0.01 and 0.001 respectively. 
 In each of these runs, 5000N = samples of size 20,40,60,  and 100T =
were generated, that is, the number of replicates is 5000, making a total of 20,000 
samples in one run, and 40,000 samples altogether. We represent number of 
replicates with N and sample size with T . 

 
2.4.2 Analysis of the data 

WinBUGS was used for the analysis. As earlier mentioned, WinBUGS is 
windows version of the software referred to as Bayesian Analysis using Gibbs 
sampling. A sub-program is usually written by the researcher specifying the model 
and the prior distributions, and then WinBUGS uses Markov Chain Monte Carlo 
simulation to draw samples from the posterior distribution. Here, we first carried 
out 1000 iterations after which we observed sign of convergence, then a further 
5000 iterations were carried out and the first 1000 taken as ‘burn in’. See Gilks et. 
al.(1996), for detailed information on how to check convergence. 

 
2.4.3 Criteria for assessing the performance of the Estimators 
There is a number of comparison criteria used in literature, however, we made use 
of the bias and Mean Squared Error (MSE).  

There are 5000 replicates so estimated bias 
5000

1

1 ˆ
5000

N

i
i

θ θ
=

=

= −∑          

The mean squared error, for an estimator of a parameter θ, is given as;  
2ˆ ˆ( ) ( )MSE Eθ θ θ= − = Var(θ̂ ) + (Estimated bias)2 

where 2 2

1 1

1 1ˆ ˆ ˆ( ) ( )
r rN N

r r

Var
N N

θ θ θ= −∑ ∑  and Nr is number of replications. The 

kernel density of the estimates of the regression coefficients was also plotted and 
compared for the three prior variances with the density of the t distribution 
obtained theoretically. 

 
 
3  Main Results  

The Kernel of the Posterior mean was plotted for γ  with the three prior 
variance levels (10, 100, and 1000). The choice of γ  was because it is the only 
parameter mostly affected by the other equation of the model. The t distribution 
was then imposed on the plots to show how close they are to the t distribution 
obtained theoretically; these plots are presented in Figures 1 to 3.  

The results of the Monte Carlo experiment are presented in Tables 2 to 5 in 
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the appendix. Tables 2 and 3 contain the results from run 1 while the results for 
run 2 are contained in Tables 4 and 5.  However a summary of these results, in 
terms of the number of times each prior variance level produced the least bias and 
MSE, is as shown in Table 1. 
      

  
Figure 1:  Kernel density plot with prior variance 10 

 
 
From the three plots as shown in Figure 1, 2, 3, the Kernel density plot with 

prior variance 10 is the closest to the t distribution, this is a suggestion that the use 
of variance 10 might produce better posterior estimates than the other two higher 
variances (100 and 1000). 

 
 

Table 1: Summary on cases with least bias and MSE for each prior variance level 
 

 Variance 1000 Variance 100 Variance 10 
 RUN 1 RUN 2 RUN 1 RUN 2 RUN 1 RUN 2 

ABS BIAS 5 12 5 4 11 5 
MSE 0 2 1 1 17 14 
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Figure 2: Kernel density plot with prior variance 100 

 
 
 
In terms of bias, prior variance 10 produced the best result in run 1, having 

the highest number of cases (11) in which it gave the smallest bias out of the three 
prior variances. The result from run 2 however showed prior variance 1000 as the 
best in terms of bias, having 12 cases in which it produced the smallest bias. Run 1 
is the case of negatively correlated residual terms while run 2 is the case of 
positively correlated residual terms. Hence the results suggest that, when the 
residual terms of a multi-equation model are negatively correlated, a prior 
variance 10 is most likely to produce posterior estimates with the least bias while 
in the case of positively correlated residuals, prior variance 1000 is the most likely 
to produce posterior estimates with the least bias. However, if the two runs are not 
considered separately, there is an indication that the two prior variances have 
similar performance in terms of bias. Concerning the mean squared error (MSE) 
of estimates, unlike the bias, there is a consistent clear difference in the 
performance of these prior variances between the two runs of the experiment. As 
expected, Since the Bayesian approach can be seen as updating the prior 
information about a parameter of interest, the least prior variance gave the least 
MSE of the posterior estimates.  
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Figure 3: Kernel density plot with prior variance 1000 

 
 

The results as presented in Table 1 shows prior variance 10 as having the highest 
number of times (17 from run1 and 14 from run 2) with the least MSE in the 
whole experiment.  In most cases as can be seen in Tables 2 to 5, the MSE 
reduced with reduction in prior variance. Since there are cases in which prior 
variance 10 gave the least bias and other cases in which prior variance 1000 gave 
the least bias, the result from the MSE might be a better suggestion of which prior 
variance to be used among the three.  

 

 

5  Conclusion 
This research paper was focused on the Bayesian approach in 

Multi-equation models with some attention on the use of flat or locally-uniform 
prior. The Monte Carlo experiment carried out on three prior variance levels 10, 
100 and 1000 brought about suggestion on which prior variance will produce “best” 
posterior estimates. From the results, the definition of “best” is in terms of 
efficiency (using MSE) and closeness of the distribution to the t distribution 
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obtained theoretically. The Bayesian method with the prior variance 10 came up 
topmost having the highest number of times with the least MSE and also showing 
the closest kernel density plot to the t distribution. This result thus brings up more 
questions such as what the result will look like with the use of a prior variance less 
than 10 or greater than 1000. 

 
 
 
Appendix 

Table 2: Results from Run 1 sample size 20 and 40 

Parameter  Variance 1000 Variance 100 Variance 10 
T=20 T=40 T=20 T=40 T=20 T=40 

 Mean 3.0050 2.9925 3.0084 2.9955 3.0067 3.0034 
ABS Bias 0.0050 0.0075 0.0084 0.0045 0.0067 0.0034 
MSE 0.0522 0.0328 0.0339 0.0212 0.0269 0.0091 

 Mean 1.0042 1.1124 0.9805 1.0594 0.9908 0.9991 
ABS Bias 0.0042 0.1124 0.0195 0.0594 0.0092 0.0009 
MSE 0.5814 0.8094 0.2734 0.3035 0.2133 0.1240 

 Mean 2.0166 2.0037 2.0058 2.0009 1.9258 1.9807 
ABS Bias 0.0166 0.0037 0.0058 0.0009 0.0742 0.0193 
MSE 0.4698 0.1199 0.4641 0.1196 0.4267 0.1175 

 Mean 0.4550 0.4811 0.4594 0.4736 0.4917 0.4868 
ABS Bias 0.0450 0.0189 0.0406 0.0264 0.0083 0.0132 
MSE 0.1740 0.0661 0.1728 0.0689 0.1654 0.0642 

 Mean 1.3745 1.4521 1.3759 1.4434 1.3715 1.4541 
ABS Bias 0.1255 0.0479 0.1241 0.0566 0.1285 0.0459 
MSE 0.2598 0.1154 0.2521 0.1280 0.2213 0.0985 

 
 

Table 3: Results from Run 1 sample sizes 60 and 100 

Parameter  Variance 1000 Variance 100 Variance 10 
T=60 T=100 T=60 T=100 T=60 T=100 

 Mean 2.9882 3.0003 2.9918 3.0004  3.0017 3.0012 
ABS Bias 0.0118 0.0003 0.0082 0.0004 0.0017 0.0012 
MSE 0.0571 0.0036 0.0361 0.0036 0.0163 0.0036 

 Mean 1.1798  1.1036 1.1139 1.0903 1.0198 1.0405 
ABS Bias 0.1798 0.1036 0.1139 0.0903 0.0198 0.0405 
MSE 1.3421 0.7578 0.5870 0.5939 0.1306 0.1644 

 Mean 2.0051  2.0000 2.0031 1.9990 1.9899 1.9925 
ABS Bias 0.0051 0.0000 0.0031 0.0010 0.0101 0.0075 
MSE 0.0750 0.0379 0.0749 0.0380 0.0740 0.0380 

 Mean 0.4717 0.4847 0.4731  0.4847 0.4877 0.4874 
ABS Bias 0.0283 0.0153 0.0269 0.0153 0.0123 0.0126 
MSE 0.0479 0.0442 0.0470 0.0441 0.0406 0.0414 

 Mean 1.4238 1.4705 1.4264 1.4704 1.4437 1.4677 
ABS Bias 0.0762 0.0295 0.0736 0.0296 0.0563 0.0323 
MSE 0.1502 0.0445 0.1447 0.0443 0.1068 0.0445 

(3.0)γ

11(1.0)β

21(2.0)β

22 (0.5)β

23 (1.5)β

(3.0)γ

11(1.0)β

21(2.0)β

22 (0.5)β

23 (1.5)β
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Table 4: Results from Run 2 sample sizes 20 and 40 

Parameter 
 Variance 1000 Variance 100 Variance 10 

T=20 T=40 T=20 T=40 T=20 T=40 
 Mean 2.6942 2.9890 2.9841  2.9890 2.9781 2.9851 

ABS Bias 0.3058 0.0110 0.0159 0.0110 0.0219 0.0149 
MSE 0.1947 0.0141 0.0309 0.0133 0.0293 0.0134 

 Mean 0.9968 1.0210 1.0239  1.0178 1.0122 1.0129 
ABS Bias 0.0032 0.0210 0.0239 0.0178 0.0122 0.0129 
MSE 0.0884 0.1101 0.1884 0.0787 0.1623 0.0754 

 Mean 1.3654 1.9893 1.9845 1.9856 1.9264 1.9501 
ABS Bias 0.6346 0.0107 0.0155 0.0144 0.0736 0.0499 
MSE 0.5847 0.1565 0.2567 0.1562 0.2497 0.1542 

 Mean 0.3187 0.4869 0.4537 0.4867 0.4570 0.4905 
ABS Bias 0.1813 0.0131 0.0463 0.0133 0.0430 0.0095 
MSE 0.1510 0.0997 0.2604 0.0993 0.2503 0.0972 

 Mean 1.0059 1.4405 1.3859 1.4386 1.3720 1.4224 
ABS Bias 0.4941 0.0595 0.1141 0.0614 0.1280 0.0776 
MSE 0.3995 0.1423 0.2630 0.1416 0.2361 0.1370 

 
 
 

Table 5: Results from Run 2 sample sizes 60 and 100 

Parameter 
 Variance 1000 Variance 100 Variance 10 

T=60 T=100 T=60 T=100 T=60 T=100 
 Mean 2.9926 2.9942 2.9924 2.9940 2.9895 2.9925 

ABS Bias 0.0074 0.0058 0.0077 0.0060 0.0105 0.0075 
MSE 0.0081 0.0046 0.0081 0.0046 0.0082 0.0046 

 Mean 1.0130  1.0117 1.0129 1.0116 1.0111 1.0106 
ABS Bias 0.0130 0.0117 0.0129 0.0116 0.0111 0.0106 
MSE 0.0463 0.0286 0.0462 0.0285 0.0455 0.0283 

 Mean 1.9921   1.9997 1.9899 1.9985 1.9681 1.9871 
ABS Bias 0.0079 0.0003 0.0101 0.0015 0.0319 0.0129 
MSE 0.0967 0.0541 0.0966 0.0540 0.0958 0.0536 

 Mean 0.4882 0.4926 0.4875 0.4925 0.4833 0.4920 
ABS Bias 0.0118 0.0074 0.0125 0.0075 0.0167 0.0080 
MSE 0.0705 0.0329 0.0703 0.0329 0.0694 0.0327 

 Mean 1.4676  1.4767 1.4664 1.4760 1.4549 1.4700 
ABS Bias 0.0324 0.0233 0.0336 0.0240 0.0451 0.0300 
MSE 0.0646 0.0446 0.0645 0.0446 0.0645 0.0444 
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