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Abstract 
 

Researchers in a variety of fields work with sequential data, such as measurements made over 

time.  In some instances, one or more of the moments (e.g., mean, variance) of the series may 

change abruptly at some point in the sequence, yielding what is known as a change point.  There 

is a broad literature describing methods for change point detection.  Researchers working with 

multiple sequential series containing change points may be interested in comparing the locations 

of these changes.  Recently, a method for comparing the locations of 2 or more change points in 

2 or more series using a Bayesian estimator has been described in the literature.  The purpose of 

the current Monte Carlo simulation study was to extend this earlier work by assessing the 

performance of this approach with time series of between 20 and 200 measurements in length, 

for a normally distributed measurement process.  Results of the simulation revealed that the 

method always controlled the Type I error rate, and had power of 0.75 or higher for series of 50 

measurements or longer, when the variance in measurements was relatively low. 
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1  Introduction 
 

Across a variety of disciplines, researchers working with sequential data (referred to here as time 

series, although it is recognized that such data can come from other processes as well) are faced 

with the need to detect points within their data where one or more of the moments in the 

measured process changes.  For example, climatologists monitoring ocean water temperature 

may be interested in ascertaining the point(s) at which the mean temperature undergoes a 

relatively dramatic change.  Similarly, an economist may need to detect change points in a 

nation’s mean gross domestic product measured quarterly over a 20 year period.  Researchers in 
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other fields, including genomics [8], finance [13], computer science [15], and imaging [10] may 

also encounter situations in which they need to identify change points with respect to the mean, 

variance, or both aspects of a time series process. 

 In addition to detecting the location of change points, there may also be situations in 

which researchers need to compare change point locations for two or more independent series 

containing measures of the same entity.  For example, behavior analysts working with individual 

children frequently employ an approach involving the administration of a specific intervention, 

after a period of baseline data collection in which behavior prevalence is measured on a daily 

basis.  This intervention might be designed to reduce the prevalence of some problem behavior, 

and the baseline data collection period is designed to establish the level of the behavior prior to 

the introduction of the intervention. The behavior analyst would continue to monitor the behavior 

of the child daily over an extended period of time in order to determine whether behavior 

prevalence declined, presumably in response to the intervention.  With only one child, standard 

change point detection methods (to be discussed below) might be employed in order to determine 

where in the time series the prevalence of the behavior changed, if indeed it did.  If this 

intervention strategy were applied to a second child, we would have access to a second time 

series dataset to which the change point analysis could also be applied.  The behavior analysis 

may then be interested in determining whether the change points for the two children were at the 

same locations in the time series.  Standard approaches to change point detection do not lend 

themselves to such comparisons, as they do not provide the mechanism for formally testing the 

null hypothesis that two series have the same change point.  The focus of the current study is on 

a method described by [3] for making such comparisons using a Bayesian estimator.  The 

manuscript is organized as follows:  First, a brief discussion of change point detection methods is 

provided, followed by a description of the model for comparing change point location that is the 

focus of the current study.  Next, the details of a simulation study that assessed the performance 

of this model in detecting differences in change point locations for independent time series are 

outlined.  The goals and hypotheses of this study are then described, followed by a discussion of 

the Monte Carlo simulation methodology used to address these goals.  Finally, the results of the 

Monte Carlo study are presented, and discussed in the context of the prior work in this area. 

 

 

2  Literature Review 
 

2.1  Change point detection 

We can formally define a change point as follows.  The time series data is defined as 

 

𝑦1:𝑛 = (𝑦1, 𝑦2, … , 𝑦𝑛)                               (1)  

 

A change point is defined as occurring at point 𝑦𝑇 if one or more of the population moments 

(e.g., mean, variance) in the measurements for 𝑦1 through 𝑦𝑇 are different than those for 𝑦𝑇+1 

through 𝑦𝑛.  This definition applies to the case in which only a single change point is present.  

However, a series may have multiple change points, with the definition being expanded to 

incorporate the presence of multiple segments within the series, each having different population 

moments from those of the previous segment.  Change points are integers between 1 and n-1 

thereby creating multiple segments within the time series, and are differentiated by the different 
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population parameter values.  Figure 1 displays examples of time series with change points for 

the mean and variance, respectively. 

 

 

 

 
  

 
Figure 1:  Examples of time series with change points for the mean and variance 

Change point 

 

 

There exist several methods for detecting the number and location of change points within a 

given time series.  Given that the focus of this study is not on these various methods, they will 

only be reviewed briefly here.  For a more detailed discussion of these approaches, a number of 

useful sources are available [1; 4; 6; 14].  A set of approaches exist for change point detection 

based on maximum likelihood estimation.  Under the null hypothesis of no change point being 

present in the series, the likelihood function takes the form: 
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𝑀𝐿0 = 𝑙𝑛 (𝑝(𝑦1:𝑛|𝜃))         (2) 

Where 

𝑦1:𝑛 =Full series from time 1 to n 

𝜃=Parameter estimates based on full series 

For the alternative hypothesis that there is a change point at 𝑇1, the likelihood function is 

𝑀𝐿𝑇1 = 𝑙𝑛 (𝑝(𝑦1:𝑇1|𝜃1̂)) + 𝑙𝑛 (𝑝(𝑦𝑇1+1:𝑛|𝜃2̂))      (3) 

Where 

𝑦1:𝑇1 =Series from time 1 to 𝑇1 

𝑦𝑇1+1:𝑛 =Series from time 𝑦𝑇1+1:𝑛 to n 

𝜃1 =Parameter estimates based on segment of series from time 1 to 𝑇1 

𝜃2=Parameter estimates based on segment of series from time 𝑇1+1 to n 

Estimates of the parameters are then obtained so as to minimize the two likelihood functions, 

which are used in turn to construct a test of the null hypothesis of no change points being present 

in the time series based on the test statistic 

𝜆 = 2(𝑀𝐿𝑇1 −𝑀𝐿0)                     (4) 

 In order to identify the optimal set of change points for a given series, a search algorithm 

must be employed in conjunction with the likelihood functions described above.  This algorithm 

has an associated cost function that it seeks to minimize, and which is defined as  

∑[𝐶(𝑦(𝑇𝑖−1+1):𝑇𝑖)] + 𝛽𝑓(𝑚)                    (5) 

Where 

[𝐶(𝑦(𝑇𝑖−1+1):𝑇𝑖)] =Cost to the likelihood function for segmenting series at 𝑇𝑖 

𝛽𝑓(𝑚) =Penalty to guard against over fitting the data 

There exist several algorithms that utilize this cost function in searching for the optimal set of 

change points for a given dataset, including binary segmentation [5], segment neighborhood 

search [2], and pruned exact linear time [7].  Given that these are not the focus of the current 

paper, we refer the interested reader to the references listed above for further discussions 

regarding their use. 

 An alternative to the maximum likelihood approach to change point detection is based on 

the use of a Bayesian estimator.  Authors in [12] described a Bayesian approach for detecting 

multiple change points in a time series.  This Bayesian model involves the specification of the 

following components: 

1. Prior distribution for the number of segments (K) in the series, P(K) 

2. The conditional distribution of partition m, given K, 𝑃(𝑚|𝐾) 

3. Distribution of parameters (𝜃𝑘) unique to each segment, 𝑃(𝜃𝑘) 

4. Measured data with distribution (𝑦𝑡|𝑚, 𝑘 ∈ 𝑚, 𝜃𝑘, 𝑡 ∈ 𝑘)~ℊ(𝜃𝑘) 
Given these defining distributions, the probability distribution for the observed data within 

segment k can then be expressed as 

𝑃(𝑦𝑘|𝜃𝑘) = ∏ 𝑔(𝑦𝑡; 𝜃𝑘)𝑡∈𝑘                    (6) 

Where 

𝑔(𝑦𝑡; 𝜃𝑘) =Probability distribution function for ℊ. 

Given conjugate priors for 𝜃𝑘, constraints on the distribution of the segmentation process, and the 

factorability of the function, the Bayesian estimator will provide a posterior distribution for the location of 

the change points in the series.  An example of a constraint on the segmentation process is that its prior be 

the uniform distribution (Cleynen & Robin, 2016). 



W. Holmes Finch                                                                                                                                                  53 
 

 
 

2.2  A model for comparing change point locations 

Within the Bayesian modeling framework, an approach to comparing the change point locations 

for two or more independent time series has been proposed [3].  This model builds on the work 

by [12] with the Bayesian approach to determining the number of change points present in a time 

series.  In this context, it is assumed that there are two or more independent time series measured 

at the same number of points, with the same length, and the same number of segments.  For a 

problem involving two time series, this approach models the posterior distribution for the 

difference between the locations of two change points, which [3] refer to as the shift.  As an 

example consider the case where it is of interest to compare the location of change point k for 2 

time series.  The shift value (difference between the change point locations) is expressed as 

 
Δ𝑘 = 𝜏𝑘1 − 𝜏𝑘2                       (7) 

Where 
𝜏𝑘1 =Change point k for time series 1 

𝜏𝑘2 =Change point k for time series 2 

The posterior distribution for Δ𝑘 is 

𝑃(Δ𝑘 = d𝑘|𝑦1, 𝑦2, 𝑘1, 𝑘2) = ∑ 𝑝𝐾1(𝑡; 𝑦1; 𝑘1)𝑝𝐾2(𝑡 − d𝑘; 𝑦2; 𝑘2)𝑡                  (8) 

where terms are as defined above. 

 

The credibility interval (e.g., 95%) for Δ𝑘 can be used in order to determine whether the 

change points for 2 series are likely to differ in the population.  If 0 falls within the credibility 

interval, then we would conclude that it is unlikely for the change points to differ from one 

another in the population, whereas if 0 lies outside of the credibility interval, we would conclude 

that the change point locations do likely differ from one another.  The point estimate of the 

change point location can be estimated using the mean or median of the posterior distribution in 

equation (8).  Authors in [3] describe an extension to this Bayesian approach that can be used to 

ascertain whether there exists a set of common change points for more than 2 time series.  The 

interested reader is encouraged to examine their description of this extension. 

 

2.3  Prior research on the Bayesian change point comparison model  

The Bayesian estimator for comparing the locations of change points in time series was tested 

using a Monte Carlo simulation study by Cleynen and Robin (2016).  Specifically, their study 

examined a case with 3 independent time series containing 7 segments each.  Two of the series 

shared a common set of change points, whereas the third series had change points at different 

locations.  Each series was simulated to be 800 units long, and the data came from the negative 

binomial distribution, which was selected so as to mirror what is seen in gene transcription 

experiments.  A variety of differences in change point locations were simulated, including at 

points 0 (no change point), 2, 4, 8, 16, and 22.  The simulated odds ratios for the responses at the 

change points were 4, 8, and 16, and were simulated to be the same for each time series.  The 

dispersion parameters for the negative binomial distribution were also manipulated in the study, 

with a total of 8 different values used.   

 The authors reported that, as expected, power for detecting differences in change point 

locations was higher when the difference in change point location was greater.  In addition, they 

found that for higher levels of dispersion, the method had lower power values for detecting 

differences in change point locations.  In other words, the greater the variance in the measured 

variable, the lower the statistical power.  Cleynen and Robin (2016) also found that power for 

detecting a difference in the change point location was higher when the magnitude of the change 
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within each series, as expressed in the odds ratio, was also higher.  Finally, results of this study 

revealed that the Type I error rate (probability of finding a difference in the change point location 

when the location was the same) was well below 0.05.  Taken together, these results suggest that 

for time series involving measurements conforming to the negative binomial distribution, power 

was largest when the difference in change point location was 16 or greater, when the level of 

dispersion was relatively low, and when the change itself was large.   

 

2.4 Study goals and hypotheses 

The primary goal of this study was to investigate the performance of the Bayesian model for 

estimating the difference in change point location between two time series.  This study extends 

earlier work (Cleynen & Robin, 2016) by examining the accuracy of this approach with normally 

distributed time series of varying lengths, variances, change magnitudes, and change point 

location differences.  As noted above, prior research with this model focused on count data from 

the negative binomial distribution, with a length of 800 measurements.  Though this earlier 

simulation study was in keeping with conditions frequently encountered in gene transcription 

research, from which that work originated, it is not necessarily representative of what researchers 

in the social sciences and econometrics might expect to encounter.  For example, many economic 

indicators of interest are collected on a quarterly basis, meaning that time series with 40 years’ 

worth of data might be shorter than 200 units long.  In addition, quite frequently such 

measurements follow a continuous distribution, as the entities of interest are sales figures, gross 

domestic product, corporate profit, and so on.  Thus, the earlier work in this area may not be 

directly relevant to applications in fields outside of genomics.  The current study was designed to 

address this issue, by demonstrating the utility of the Bayesian model for comparing change 

point location with normally distributed measures in time series consisting of 200 or fewer 

measurements. 

 Based upon prior research (Cleynen & Robin, 2016), it was hypothesized that the method 

under examination here would yield more accurate estimates of change point location difference 

for longer time series, and when the magnitude of difference in the location was larger.  In 

addition, it was hypothesized here that larger variance in the time series will lead to less accurate 

detection of differences in change points, due to the increased model error associated with the 

greater variation in measurements.  Finally, it was hypothesized that a greater magnitude of 

change within each series would be associated with a higher degree of accuracy for detecting 

differences in change point location, because the change in each series would be more detectable 

by the Bayesian model.  

 
 

3   Simulation Methodology 
 

In order to address the research goals of this study, a Monte Carlo simulation design was used.  

For each combination of simulation conditions, which are described below, 1000 replications 

were generated and analyzed.  Data were generated using the R software system, version 3.3.1 

(R Development Core Team, 2017).  The EBS library was used to fit the Bayesian change point 

model, and to test for differences in change point location.  Across conditions, 2 time series were 

generated from the normal distribution, with one having a mean of 0, and the other having one of 

the values as described in section 3.4, below.  In addition, each series had variances as described 

in section 3.3.  The manipulated study factors are described below. 
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3.1  Length of time series 

The time series were generated to be of length 20, 50, 100, and 200.  In addition, simulations 

were attempted for series of length 10, but the MCMC algorithm did not converge, and thus 

these results are not included in this manuscript.  The simulated length conditions were selected 

to represent relatively short series (20), to long series for the social sciences (200), with 

intermediate values in between. 

 

3.2  Difference in time series shift location 

For each replication, the first time series was treated as the reference such that the location of the 

shift in the mean of the series was held constant as occurring at the 40% point.  Thus, for the 20 

unit time series the mean of the first time series shifted after the 8
th

 point (0.4X20), whereas for 

the 50
 
unit series the shift occurred after the 20

th
 point, after the 40

th
 point for the 100 unit series, 

and after the 80
th

 point for the 200 unit series.  The difference in shift location between the two 

time series were then simulated to be 0 times the change point for the first segment (i.e., no 

difference in change location), 1.5 times the first segment length, and 2 times the first segment 

length.  As an example, if the series was 20 units long, then the change for the first series 

occurred after point 8.  For the 1.5 times condition, the change for series 2 occurred after time 12 

(1.5X8), and for the 2 times condition the change for series 2 occurred after time 16. 

 

3.3  Variance of time series 

The time series were generated with variances of 0.01, 0.1, 0.5, and 1.  These values were 

selected to represent a range from very small (0.01) to large (1).  Both time series were generated 

to have the same variance.   

 

3.4  Change magnitude 

Both time series were simulated to experience the same degree of change in the mean:  0, 0.2, 

0.5, and 0.8 standardized units.  These values were selected because they correspond to no shift 

in the mean over time, and shifts that would be categorized as small (0.2), medium (0.5), and 

large (0.8), based on Cohen’s guidelines for interpreting effect sizes for the mean when the data 

are standard normal.  It should be noted that when the variances of the time series were not 

simulated to be 1, these magnitudes of change could no longer be interpreted by Cohen’s 

guidelines.  These conditions were kept at 0, 0.2, 0.5, and 0.8 regardless of the variance 

magnitude, in order that we could ascertain the impact of different variance conditions on the 

ability of the Bayesian approach to detect differences in change location for the same set of shift 

magnitudes. 

 

3.5  Simulation outcomes 

The outcomes of interest in this study were the Type I error (incorrectly identifying a difference 

in change point location when none was present in the population) and power (correctly 

identifying a difference in change point location when one was present in the population) rates 

for detecting a statistically significant difference in the location of the change points for the time 

series.  In addition, the accuracy of the difference between the locations of the change points in 

the two series was also a study outcome of interest.   

In order to identify the main effects and interactions of the manipulated study factors that 

were related to each outcome, analysis of variance (ANOVA) was used.  In addition, the partial 

𝜂2 effect size was also employed in order to characterize the magnitude of the impact on the 
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outcome variables of the statistically significant terms identified by the ANOVA.  For a main 

effect or interaction to be considered meaningful in the context of this study, it needed to be both 

statistically significant , and to have 𝜂𝑃𝑎𝑟𝑡𝑖𝑎𝑙
2  value of 0.1 or greater, indicating that it 

accounted for at least 10% of the variation in the study outcome. 

 

 

4  Main results 
 

4.1  No change point present 

When no change in either time series was simulated to be present, results from the ANOVA 

identified none of the main effects or interactions of them to be statistically significantly related 

to the Type I error rate.  Indeed, in none of the simulated conditions was the test statistic 

comparing location of the time series’ change points statistically significant when neither was 

simulated to have a change point.  Thus, it is possible to conclude that the methodology always 

correctly indicated that the change points were in the same location, across study conditions. 

 In terms of the difference in estimated location of the change point locations when no 

change point was simulated to be present for either series, the ANOVA found none of the 

manipulated terms to be statistically significant.  Table 1 includes the mean distance between the 

locations of the change points of the two series by series length and variance.  In no case was the 

mean larger than 0.5, or half of a time point, indicating that the Bayesian approach accurately 

located the two change points as being the same. 

 
Table 1:  Mean difference in change point location by length and variance of time series when no change 

was present 

Length Mean Difference in Change Point 

20 -0.02 

50 0.09 

100 0.01 

200 0.13 

Variance  

0.01 -0.15 

0.10 0.45 

0.50 -0.26 

1.00 0.05 

 

4.2  Identical change point location for both time series 

The second condition of interest in this study was when a change point was present in each time 

series, and was located at the same location for both.  The results of the ANOVA showed that 

none of the main effects or interactions of the manipulated factors were statistically significantly 

related to the Type I error rate for a difference in change point location.  The overall Type I error 

rate was 0.0004, which illustrates that it was very unlikely for a statistically significant difference 

in change point location for the two series to be identified by the Bayesian approach, when no 

such difference was present in the population. 

 With regard to the difference in the change point location, only the interaction between 

series variance and length was found to be statistically significant (𝐹9,18 = 3.023, 𝑝 =
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0.022, 𝜂𝑃𝑎𝑟𝑡𝑖𝑎𝑙
2 = 0.602).  Table 2 contains the mean difference in change point location for the 

two time series by series length and variance. 

 
Table 2:  Mean difference in change point location by length and variance of time series when change 

points were the same for both series 

Length Variance Mean Difference in Change 

Point Location Estimate 

20  0.01 0.001 

 0.10 0.05 

 0.50 0.05 

 1.00 0.08 

50  0.01 0.00 

 0.10 0.02 

 0.50 0.07 

 1.00 0.10 

100  0.01 0.004 

 0.10 0.03 

 0.50 0.09 

 1.00 0.14 

200  0.01 0.003 

 0.10 0.03 

 0.50 0.57 

 1.00 0.86 

 

The results in Table 2 suggest that when no difference in change point location was simulated, 

the estimated difference in change point location between the time series was larger when the 

variances were also larger.  In addition, the magnitude of the estimated difference in change 

points was larger for the large variance condition in conjunction with longer time series.  For 

example, the estimated difference in change point location for a series of length 20 was 0.05 and 

0.08, respectively, for variances of 0.50 and 1.00.  In contrast, for a series of length 200, the 

estimated difference in change point location was 0.57 and 0.86, respectively, for variances of 

0.5 and 1.00.  It is important to note, however, that the largest such difference was less than 1, 

indicating that regardless of the simulated conditions, the estimated differences in the change 

points was very small.  

 

4.3  Different change point locations for time series 

When differences in change point location were simulated to be present, the ANOVA identified 

the interactions of time series length by variance by difference in change point location (𝐹9,18 =

5.623, 𝑝 = 0.001, 𝜂𝑃𝑎𝑟𝑡𝑖𝑎𝑙
2 = 0.738), and the magnitude of change by difference in change point 

location (𝐹2,18 = 15.099, 𝑝 < 0.001, 𝜂𝑃𝑎𝑟𝑡𝑖𝑎𝑙
2 = 0.647) as statistically significantly related to 

the power for detecting a difference in the change point locations.  Figure 2 displays the power of 

the method for detecting a difference in change point location by time series length, variance, 

and the difference in the change point location.   

 



58                    A Monte Carlo Simulation Study Assessing the Performance of a Bayesian Approach for… 
 

 
 

Figure 2: Power for detecting difference in change point location by time series length, time series 

variance, and difference in change point location 

 

When the variance was 0.01, the power for detecting differences in change point location was 

1.00 for lengths of 50, 100, and 200, regardless of the simulated difference.  For a time series 

length of 20, power was very low for the 1.5 times difference in location, but 1.00 for the 2 times 

difference. As the time series variance increased in value, power declined, with power remaining 

larger for longer series and a greater difference in the change point location for the two series. 

 The power for detecting a difference in the change point by the magnitude of change and 

the difference in change point location appears in Figure 3.   
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Figure 3: Power for detecting difference in change point location by the magnitude of the change and 

difference in change point location for the two series. 

 

These results reveal that power for detecting a difference in change point location was higher for 

a larger magnitude of change in the time series.  Furthermore, across the magnitude of change, 

power was uniformly higher when the difference in the change point was greater, and this effect 

was larger for greater magnitudes of change. 

 In regards to the estimate of the difference in change point location, the ANOVA results 

indicated that the interactions of time series variance by length by difference in change point 

location (𝐹9,18 = 21.795, 𝑝 < 0.001, 𝜂𝑃𝑎𝑟𝑡𝑖𝑎𝑙
2 = 0.923) and the magnitude of change by length 

by difference in location (𝐹6,18 = 5.786, 𝑝 = 0.002, 𝜂𝑃𝑎𝑟𝑡𝑖𝑎𝑙
2 = 0.659) were statistically 

significant.  The estimated difference in change point location by time series variance, length, 

and difference in change point location appears in Table 3. 
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Table 3:  Mean estimated difference in change point location (actual difference in change point location) 

between the two series by time series variance, length, and difference in change point location 

Length Variance 1.5 times estimated 

(actual) difference 

2 times estimated 

(actual) difference 

20 0.01 1.89 (2) 3.83 (4) 

 0.10 1.85 (2) 3.77 (4) 

 0.50 0.92 (2) 2.11 (4) 

 1.00 0.53 (2) 0.72 (4) 

50 0.01 5 (5) 10 (10) 

 0.10 4.87 (5) 9.91 (10) 

 0.50 2.97 (5) 8.56 (10) 

 1.00 1.88 (5) 6.29 (10) 

100 0.01 10 (10) 20 (20) 

 0.10 9.96 (10) 19.98 (20) 

 0.50 8.75 (10) 18.31 (20) 

 1.00 6.19 (10) 16.51 (20) 

200 0.01 20 (20) 40 (40) 

 0.10 20 (20) 39.99 (40) 

 0.50 18.46 (20) 37.62 (40) 

 1.00 16.75 (20) 35.43 (40) 

 

The results in Table 3 demonstrate that across degrees of difference in change point location and 

time series lengths, accuracy of the estimated difference in the change point location for the two 

series decreased concomitantly with increases in time series variance.  In addition, estimation 

accuracy of the difference in location was greater for longer series.  Finally, the deleterious 

impact of increased variance on estimation accuracy was more pronounced for shorter time 

series.  For example, the estimated difference in change point location was nearly perfect for the 

combination of a time series of length 200 and variances of 0.01 and 0.1, whereas for time series 

of length 20, the estimated difference was never perfectly accurate, even for the smallest 

variance condition. 

 Table 4 contains the estimated difference in change point location by time series length, 

magnitude of the change, and actual difference in change point location. 

 
 

Table 4: Mean estimated difference in change point location (actual difference in change point location) 

between the two series by time series length, magnitude of change, and difference in change point 

location 

Length Magnitude of change 1.5 times estimated 

(actual) difference 

2 times estimated 

(actual) difference 

20 0.2 0.89 (2) 1.86 (4) 

 0.5 1.46 (2) 2.74 (4) 

 0.8 1.55 (2) 3.22 (4) 

50 0.2 2.64 (5) 5.63 (10) 

 0.5 3.98 (5) 7.66 (10) 

 0.8 4.43 (5) 9.03 (10) 

100 0.2 7.57 (10) 14.58 (20) 

 0.5 8.73 (10) 17.57 (20) 
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 0.8 9.62 (10) 19.11 (20) 

200 0.2 16.05 (20) 33.65 (40) 

 0.5 17.94 (20) 37.83 (40) 

 0.8 19.91 (20) 39.81 (40) 

 

The results in Table 4 reveal that across time series lengths and simulated differences in change 

point locations, the estimated change point difference was more accurate when the magnitude of 

change was greater.  This effect was particularly pronounced for the shorter time series 

conditions. 

 
 

5  Conclusion 
 

The overall goal of this study was to examine the performance of a Bayesian estimation 

approach to modeling differences in change points for two or more time series.  Researchers in 

fields such as econometrics, climatology, geology, genomics, and health care may be faced with  

situations in which measurements of two or more time series have been made, change points are 

clearly present in each, and it is of interest to ascertain whether these change points occurred at 

different locations.  For example, economists may be interested in comparing the impact that a 

regulatory change might have on the net profits for multiple firms in a given industry.  This 

change may impact each firm in a different way, leading to differences in the point at which net 

profits change.  The model examined here would allow such researchers to formally test the null 

hypothesis that the change in net profit occurred at the same point in time.  Without such a 

hypothesis test, economists could only use descriptive approaches based on graphs or point 

estimates of change location, without the ability to make more definitive statements regarding 

the equality of these locations. 

 The results of this study revealed that the methodology described by Cleynen and Robin 

(2016) was able to accurately detect differences in change point location under many conditions 

simulated here.  Specifically, when there was no difference in the location of the time point, the 

model was very accurate in identifying this to be the case, regardless of series length, variance in 

the measurements, or the magnitude of change in each series.  The Type I error rate in such cases 

never exceeded 0.01, and the estimated difference in change point location was never greater 

than 1 time point.  Thus, in the worst case the estimated difference in change point when there 

was no difference in the population was less than 1 time point apart.  This result is very similar to 

the findings from Cleynen and Robin for data simulated from the negative binomial distribution. 

 When the change point was simulated to differ between the two series, power for 

detecting this difference was higher when the difference in location was greater, which is in 

keeping with the hypotheses expressed above, and prior results (Cleynen & Robin, 2016).  In 

other words, the further apart were the change point locations, the higher the power for 

identifying a difference in change point location, and the greater the accuracy in estimating that 

difference.  In addition, results of the simulation study demonstrated that, as was hypothesized, 

when the time series had greater variance, the ability of the model to correctly identify 

differences in change point location, and to estimate the difference was compromised.   

 Taken together, the results of this simulation study indicate that the model for detecting 

differences in change points, as fit using the Bayesian estimator, is a promising tool for 

researchers in a variety of fields in which the time series consists of 200 or fewer measurements.  

This effectiveness will be greater for researchers who have longer time series.  Those working 
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with series of 20 or fewer measurements may have difficulty identifying differences in change 

points, even when the change point for one series is twice as far down the series as is the one for 

the other series.  However, for series of 50 measurements or longer, and with relatively low 

variances in the scores, the model featured here will have power of 0.75 or greater, for 

differences in change point location of 1.5 times.  For time series of 100 points or longer, power 

for detecting differences in the change point locations for two series will be in excess of 0.9 for 

medium to small variances.  With large variances, this model has difficulty detecting differences 

in change point locations, even when one occurs twice as far down the series as does the other. 

 

5.1 Directions for future research 

The current study provides researchers with some initial guidance for when the Bayesian model 

might be useful for detecting differences in change point locations for two series of 200 or fewer 

measurements.  In this regard, it builds upon earlier work (Cleynen & Robin, 2016), in particular 

by focusing on shorter time series, and continuous measurements.  Future work should further 

extend this study by including more than two time series combined with relatively short time 

series, and normally distributed measurements.  For example, economists may be interested in 

comparing the change point locations for net profit from multiple firms after a new regulation is 

put in place.  In addition, future research should also include differences in change values for the 

different time series.  In this study, the amount of change was the same for each series (e.g., if 

one experienced a mean increase of 0.2, so did the other).  However, in actuality such consistent 

change across time series may not be present.  A third direction for future research would be to 

include more than 2 time segments.  As noted above, the purpose of the current study was to 

investigate how well the Bayesian model can identify differences in change points for two series 

after a single precipitating event.  In some applications, though, there may be multiple such 

events (e.g., changes in regulatory framework at several points in time), leading to more than one 

change time point for each series.  Finally, future work should also consider a wider array of 

time series lengths, and differences in change point locations.  The current study provides a 

framework within which researchers can expand, particularly in terms of time series lengths 

between 100 and 200 measurement occasions long. 
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