Theoretical Mathematics & Applications, vol.3, no.4, 2013, 55-59 ISSN: 1792-9687 (print), 1792-9709 (online) Scienpress Ltd, 2013

A Generalization of Van der Pol Equation of degree five

Ana M. Marin¹, Rubén D. Ortiz² and Joel A. Rodríguez³

Abstract

In this paper we make an analysis of a generalization of van der Pol equation of degree five without periodic orbits in a domain on the plane. We use a Gasull's result and Dulac's theorem.

Mathematics Subject Classification: 34A34

Keywords: Dulac functions; Quasilinear partial differential equations; Bendixon - Dulac theorem

1 Introduction

It is important to make in differential equations the study of periodic orbits

¹ Grupo de Ondas, Universidad de Cartagena, Facultad de Ciencias Exactas y Naturales, Programa de Matemáticas, Sede Piedra de Bolivar, Cartagena de Indias, Bolivar, Colombia. E-mail: amarinr@unicartagena.edu.co

² Grupo de Ondas, Universidad de Cartagena, Facultad de Ciencias Exactas y Naturales, Programa de Matemáticas, Sede Piedra de Bolivar, Cartagena de Indias, Bolivar, Colombia. E-mail: rortizo@unicartagena.edu.co

³ Instituto Tecnológico de Morelia, Departamento de Ciencias Básicas. Edif. AD Morelia Michoacán, México. E-mail: joel@ifm.umich.mx

Article Info: *Received* : October 4, 2013. *Revised* : November 20, 2013. *Published online* : December 16, 2013.

in the plane. Certain systems do not have limit cycles. It should be considered: Bendixson's theorem and critical points. (See [4, 5]). In this paper we are interested in studying a generalization of a van der Pol equation of degree five that has a periodic orbit but in a circular domain of radius one and center in the origin there is no this limit cycle (See [1]). We use the theorem of Bendixson–Dulac (See [3]) and paper of Gasull (See [1]).

2 Preliminary Notes

Theorem 2.1. (Bendixson-Dulac theorem)([3]) Let $f_1(x_1, x_2)$, $f_2(x_1, x_2)$ and $h(x_1, x_2)$ be functions C^1 in a simply connected domain $D \subset \mathbb{R}^2$ such that $\frac{\partial(f_1h)}{\partial x_1} + \frac{\partial(f_2h)}{\partial x_2}$ does not change sign in D and vanishes at most on a set of measure zero. Then the system

$$\begin{cases} \dot{x}_1 = f_1(x_1, x_2), \\ \dot{x}_2 = f_2(x_1, x_2), & (x_1, x_2) \in D, \end{cases}$$
(1)

does not have periodic orbits in D.

According to this theorem, to rule out the existence of periodic orbits of the system (1) in a simply connected region D, we need to find a function $h(x_1, x_2)$ that satisfies conditions of Bendixson–Dulac theorem, such function h is called a Dulac function.

Our goal is the study of a dynamical system on the plane that does not have periodic orbits in a circular domain of radius one.

3 Method to Obtain Dulac functions

A Dulac function for the system (1) satisfies the equation

$$f_1 \frac{\partial h}{\partial x_1} + f_2 \frac{\partial h}{\partial x_2} = h\left(c(x_1, x_2) - \left(\frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2}\right)\right)$$
(2)

Theorem 3.1. (See [3]) For the system of differential equations (1), if (2) (for some function c which does not change of sign and it vanishes only on a subset of measure zero) has a solution h on D such that h does not change sign and vanishes only on a subset of measure zero, then h is a Dulac function for (1) on D.

Theorem 3.2. (See [1]) Assume that there exist a real number s and an analytic function h in \mathbb{R}^2 such that

$$f_1 \frac{\partial h}{\partial x_1} + f_2 \frac{\partial h}{\partial x_2} = h\left(c(x_1, x_2) - s\left(\frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2}\right)\right)$$
(3)

does not change sign in an open region $W \subset R^2$ with regular boundary and vanishes only in a null measure Lebesgue set. Then the limit cycles of system (1) are either totally contained in $\mathfrak{h}_0 := \{h = 0\}$, or do not intersect \mathfrak{h}_0 . Moreover the number N of limit cycles that do not intersect \mathfrak{h}_0 satisfies N =0 if s = 0.

4 Main Results

These are the main results of the paper.

Theorem 4.1. Let $f(x_1, x_2), g(x_1)$ be functions C^1 in a simply connected domain $D = \{h \leq 0\} \subset \mathbb{R}^2$ where $h(x_1, x_2) = \psi(x_1) + ax_2^2 + bx_2 + c$ and $\psi(x_1)$ is a function C^1 in \mathbb{R} , $a, b, c \in \mathbb{R}$ with the following conditions $x_2\psi'(x_1) - (g(x_1) + f(x_1, x_2)x_2)(2ax_2 + b)$ which does not change sign and it vanishes only in a null measure Lebesgue subset and $b^2 - 4a(\psi(x_1) + c) \geq 0$. Then the system

$$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = -g(x_1) - f(x_1, x_2)x_2, \end{cases}$$
(4)

does not have periodic orbits on D.

Proof. Applying Theorem 3.2 to (4) (this system has critical point on $x_2 = g(x_1) = 0$). From (3) we see function $f(x_1, x_2)$ and values of s satisfy the

equation

$$x_2h_{x_1} - (g(x_1) + fx_2)h_{x_2} = h(c(x_1, x_2) + s(\frac{\partial f}{\partial x_2}(x_1, x_2)x_2 + f))$$
(5)

for some $h, c(x_1, x_2)$ with hc does not change of sign (except in a set of measure 0). Obviously h is a Dulac function in certain cases. We propose (instead of try to solve equation (5)) the function $h = \psi(x_1) + ax_2^2 + bx_2 + c$ for adequate ψ such that h has a closed curve of level 0. When h = 0, we have $x_2 = \frac{-b\pm\sqrt{b^2-4a(\psi(x_1)+c)}}{2a}$. Then $b^2 - 4a(\psi(x_1)+c) \ge 0$. We try to find the domain for which the system does not have periodic orbits. We have $h_{x_1} = \psi'(x_1)$, $h_{x_2} = 2ax_2 + b$. So we have

$$x_2\psi'(x_1) - (g(x_1) + fx_2)(2ax_2 + b) - sh(\frac{\partial f}{\partial x_2}(x_1, x_2)x_2 + f(x_1, x_2))$$

which does not change sign and it vanishes only in a null measure Lebesgue subset. Making s = 0 (this system would not have periodic orbits inside the domain with boundary h = 0) we get that $x_2\psi'(x_1) - (g(x_1) + f(x_1, x_2)x_2)(2ax_2 + b)$ which does not change sign and it vanishes only in a null measure Lebesgue subset.

Example 4.2. Consider the system

$$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = -x_1 + (d^2 - x_1^2)(1 + x_2^2)x_2, \quad d \ge 1. \end{cases}$$
(6)

Taking $h(x_1, x_2) = x_1^2 + x_2^2 - 1$ we obtain that the associated equation given in (3) with s = 0 is $hc(x_1, x_2) = 2x_2^2(d^2 - x_1^2)(1 + x_2^2)$. So, this function does not change sign and it is zero only at $x_2 = 0, x_1 = \pm d$. The system does not contain periodic orbits on $D = \{x_1^2 + x_2^2 \le 1\}$. By (6), we have $\ddot{x}_1 + (x_1^2 - d^2)(\dot{x}_1^2 + 1)\dot{x}_1 + x_1 = 0$. This equation is generalized by $\ddot{x}_1 + f(x_1, \dot{x}_1)\dot{x}_1 + g(x_1) = 0$. The last equation was studied in [2].

Acknowledgements. The authors express their deep gratitude to CONACYT-México, Programa de Mejoramiento del Profesorado (PROMEP) - México and Universidad de Cartagena for financial support.

References

- [1] A. Gasull, and H. Giacomini, Some applications of the extended Bendixson-Dulac theorem, (2013). arxiv.org/abs/1305.3402
- [2] J. Jiang, X. Wang and P. Yan, Analysis of global bifurcation for a class of systems of degree five, J. Math. Anal. Appl., 222, (1998), 305-318.
- [3] O. Osuna and G. Villaseñor, On the Dulac Functions, Qual. Theory Dyn. Syst., 10, (2011), 43–49.
- [4] L. Perko, *Differential Equations And Dynamical Systems*, Springer, Berlin, 2006.
- [5] L. Stephen, *Dynamical systems with applications using MAPLE*, Birkhäuser, Boston, 2001.