On Diagonal Case for Matrix Exponential

Mohammad Al-Hawari' and Suhaib Aloqlah ${ }^{2}$

Abstract

In this article, we present special cases by using similar matrices of computing the matrix exponential with some examples.

Keywords: Similar matrices, the matrix exponential

1. Introduction

In this case of 2×2 real matrices we have a simplistic way of computing the matrix exponential. The eigenvalues of matrix A are the roots of the characteristic polynomial $\lambda^{2}-\operatorname{tr}(A) \lambda+\operatorname{det}(A)=0$. The discriminant will be used to differentiate between the three cases which are used to compute the matrix exponential of a 2×2 matrix.

Case 1: $D>0$
The matrix A has real distinct eigenvalues λ_{1}, λ_{2} with eigenvectors v_{1}, v_{2};

$$
e^{A t}=\left[v_{1} v_{2}\right]\left(\begin{array}{cc}
e^{\lambda_{1} t} & 0 \\
0 & e^{\lambda_{2} t}
\end{array}\right)\left[v_{1} v_{2}\right]^{-1}
$$

[^0]
Case 2:

$$
D=\operatorname{tr}(A)^{2}-4 \operatorname{det} B=0
$$

The matrix A has a real double eigenvalue λ. If $A=\lambda I$
Then $e^{A t}=e^{\lambda t} I$
Otherwise

$$
e^{A t}=\left[\begin{array}{ll}
v & w
\end{array}\right] e^{\lambda t}\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right)\left[\begin{array}{ll}
v & w
\end{array}\right]^{-1}
$$

Where v an eigenvector of A and w satisfies $(A-\lambda I) w=v$

Case 3:

$$
D=\operatorname{tr}(A)^{2}-4 \operatorname{det} A<0
$$

The matrix B has conjugate eigenvalues $\lambda, \bar{\lambda}$ with eigenvectors u, \bar{u}.

$$
e^{A t}=\left[\begin{array}{ll}
u & \bar{u}
\end{array}\right]\left(\begin{array}{cc}
e^{\lambda t} & 0 \\
0 & e^{\bar{\lambda} t}
\end{array}\right)\left[\begin{array}{ll}
u & \bar{u}
\end{array}\right]^{-1}
$$

Or writing $\lambda=\sigma+i w, u=v+i w$,

$$
e^{A t}=\left[\begin{array}{ll}
v & w
\end{array}\right] e^{\sigma t}\left(\begin{array}{cc}
\cos w t & -\sin w t \\
\sin w t & \cos w t
\end{array}\right)\left[\begin{array}{ll}
v & w
\end{array}\right]^{-1}
$$

Let $B=P^{-1} A P$,
Where

$$
P=\operatorname{diag}\left(r_{1}, \ldots, r_{n}\right) \text { s.t } r_{i} \in \mathbb{R}^{+} \forall i=1, \ldots, n
$$

Then

$$
B=P^{-1} A P=\left[\begin{array}{ccc}
\frac{1}{r_{1}} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \frac{1}{r_{n}}
\end{array}\right]\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right]\left[\begin{array}{ccc}
r_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & r_{n}
\end{array}\right]
$$

In this article we compute the matrix exponential for any matrix B.

2. New Results

2.1 Definition 1

Let $\quad A, B \quad$ be two similar matrices and $A=\left[a_{i j}\right] \in M_{n}, \forall i, j=1, \ldots, n$, and let $\quad B=P^{-1} A P$,
where $\quad P=\operatorname{diag}\left(r_{1}, \ldots, r_{n}\right)$ s.t $r_{i} \in \mathbb{R}^{+} \forall i=1, \ldots, n$.
Then $\quad B=P^{-1} A P=\left[\begin{array}{ccc}\frac{1}{r_{1}} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \frac{1}{r_{n}}\end{array}\right]\left[\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & \ddots & \vdots \\ a_{n 1} & \cdots & a_{n n}\end{array}\right]\left[\begin{array}{ccc}r_{1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & r_{n}\end{array}\right]$
So, we have the following results.

2.2 Diagonal case 2

Suppose that A is a $n \times n$ real or complex matrix, and that A is diagonalizable over \mathbb{C}, that is, that there exists an invertible complex matrix P such that $A=P^{-1} D P$,
with

$$
D=\left(\begin{array}{lll}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{n}
\end{array}\right)
$$

Observe that e^{D} is the diagonal matrix with eigenvalues $e^{\lambda_{1}}, \ldots, e^{\lambda_{n}}$,
we have

$$
e^{A}=P^{-1}\left(\begin{array}{ccc}
e^{\lambda_{1}} & & 0 \\
& \ddots & \\
0 & & e^{\lambda_{n}}
\end{array}\right) P
$$

We can consider the matrix B as the following $=P^{-1} A P$;
where A is any matrix and $P=\operatorname{diag}\left(r_{1}, \ldots, r_{n}\right)$ for $r_{i}>0$ with $1 \leq i \leq n$.

2.3 Example. 1

Let

$$
A=\left(\begin{array}{cc}
5 & 1 \\
-2 & 2
\end{array}\right)
$$

Then we can evaluate

$$
e^{B} \text { s.t } B=P^{-1} A P, P=\operatorname{diag}\left(r_{1}, \ldots, r_{n}\right) \text { s.t } r_{i} \in \mathbb{R}^{+} \forall i=1, \ldots, n,
$$

as following

Now

$$
\begin{gathered}
B=\left[\begin{array}{cc}
\frac{1}{r_{1}} & 0 \\
0 & \frac{1}{r_{2}}
\end{array}\right]\left[\begin{array}{cc}
5 & 1 \\
-2 & 2
\end{array}\right]\left[\begin{array}{cc}
r_{1} & 0 \\
0 & r_{2}
\end{array}\right] \\
B=\left[\begin{array}{cc}
5 & \frac{r_{2}}{r_{1}}(1) \\
\frac{r_{1}}{r_{2}}(-2) & 2
\end{array}\right]
\end{gathered}
$$

The characteristic equation is $P(\lambda)=|B-\lambda I|=0$ and it yields the eigenvalues $\lambda_{1}=4, \lambda_{2}=3$,

$$
\begin{gathered}
e^{B}=\alpha_{0} I+\alpha_{1} B \\
e^{3}=\alpha_{0}+3 \alpha_{1} \\
e^{4}=\alpha_{0}+4 \alpha_{1}
\end{gathered}
$$

Or $\alpha_{0}=4 e^{3}-3 e^{4}$
and $\alpha_{1}=e^{4}-e^{3}$

So that,

$$
\begin{gathered}
e^{B}=\left(4 e^{3}-3 e^{4}\right) I+\left(e^{4}-e^{3}\right) B \\
e^{B}=\left(4 e^{3}-3 e^{4}\right) I+\left(e^{4}-e^{3}\right)\left[\begin{array}{cc}
5 & \frac{r_{2}}{r_{1}}(1) \\
\frac{r_{1}}{r_{2}}(-2) & 2
\end{array}\right] \\
e^{B}=\left(\begin{array}{cc}
2 e^{4}-e^{3} & \left(e^{4}-e^{3}\right) \frac{r_{2}}{r_{1}} \\
\left(2 e^{3}-2 e^{4}\right) \frac{r_{1}}{r_{2}} & 2 e^{3}-e^{4}
\end{array}\right)
\end{gathered}
$$

3. Corollary

3.1 Corollary 1

If we let

$$
r_{1}=r_{2}=1
$$

then

$$
B=\left[\begin{array}{cc}
5 & 1 \\
-2 & 2
\end{array}\right]
$$

And hence,

$$
\begin{aligned}
e^{B} & =\left(\begin{array}{cc}
2 e^{4}-e^{3} & \left(e^{4}-e^{3}\right) \\
\left(2 e^{3}-2 e^{4}\right) & 2 e^{3}-e^{4}
\end{array}\right) \\
e^{B} & =\left(\begin{array}{cc}
89.1108 & 34.5126 \\
-69.0252 & -14.4271
\end{array}\right)=e^{A}
\end{aligned}
$$

3.2 Corollary 2

If we let $r_{j}=r^{j} \forall j=1, \ldots, n$ and $r>0$,
then we have $\quad B=\left(\begin{array}{cc}5 & \frac{r^{2}}{r^{1}}(1) \\ \frac{r^{1}}{r^{2}}(-2) & 2\end{array}\right)$

So we have $\quad e^{B}=\left(\begin{array}{cc}2 e^{4}-e^{3} & \left(e^{4}-e^{3}\right) r \\ \left(2 e^{3}-2 e^{4}\right) \frac{1}{r} & 2 e^{3}-e^{4}\end{array}\right)$
Put

$$
r=2 \text { in }(*) ;
$$

we obtain the following

$$
B=\left(\begin{array}{cc}
5 & 2 \\
-1 & 2
\end{array}\right)
$$

And hence,

$$
\begin{aligned}
e^{B} & =\left(\begin{array}{cc}
2 e^{4}-e^{3} & 2\left(e^{4}-e^{3}\right) \\
e^{3}-e^{4} & 2 e^{3}-e^{4}
\end{array}\right) \\
e^{B} & =\left(\begin{array}{cc}
89.1108 & 69.0252 \\
-34.5126 & -14.4271
\end{array}\right)
\end{aligned}
$$

Lemma 1

Let $\mathrm{A}, \mathrm{B} \in M_{n}$, if B is similar to A . Then A and B have the same characteristic polynomial.

Proof.

Compute

$$
\begin{aligned}
& P_{B}(t)=\operatorname{det}(t I-B) \\
& =\operatorname{det}\left(t S^{-1} S-S^{-1} A S\right) \\
& =\operatorname{det}\left(S^{-1}(t I-A) S\right) \\
& =\operatorname{det} S^{-1} \operatorname{det}(t I-A) \operatorname{det} S \\
& =(\operatorname{det} S)^{-1}(\operatorname{det} S) \operatorname{det}(t I-A) \\
& \quad=\operatorname{det}(t I-A) \\
& \quad=P_{A}(t)
\end{aligned}
$$

Theorem 1

Let A and B be two similar matrices and A, B is an upper or lower triangular matrix. Then the eigenvalues of A and the eigenvalues of B are its diagonal entries.

Proof.

Case 1: Let

$$
A=\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{22} & a_{23} \\
0 & 0 & a_{33}
\end{array}\right)
$$

Then characteristic polynomial is

$$
f(\lambda)=\operatorname{det}\left(A-\lambda I_{3}\right)=\operatorname{det}\left(\begin{array}{ccc}
a_{11}-\lambda & a_{12} & a_{13} \\
0 & a_{22}-\lambda & a_{23} \\
0 & 0 & a_{33}-\lambda
\end{array}\right)
$$

This is also an upper-triangular matrix, so that the determinant is the product of its diagonal entries:

$$
f(\lambda)=\left(a_{11}-\lambda\right)\left(a_{22}-\lambda\right)\left(a_{33}-\lambda\right)
$$

And hence the zeros of this polynomial are exactly a_{11}, a_{22}, a_{33}

Case 2: Let

$$
B=\left(\begin{array}{ccc}
a_{11} & \frac{r_{2}}{r_{1}} a_{12} & \frac{r_{3}}{r_{1}} a_{13} \\
0 & a_{22} & \frac{r_{3}}{r_{2}} a_{23} \\
0 & 0 & a_{33}
\end{array}\right)
$$

Then characteristic polynomial is

$$
f(\lambda)=\operatorname{det}\left(B-\lambda I_{3}\right)=\operatorname{det}\left(\begin{array}{ccc}
a_{11}-\lambda & \frac{r_{2}}{r_{1}} a_{12} & \frac{r_{3}}{r_{1}} a_{13} \\
0 & a_{22}-\lambda & \frac{r_{3}}{r_{1}} a_{23} \\
0 & 0 & a_{33}-\lambda
\end{array}\right)
$$

This is also an upper-triangular matrix, so the determinant is the product of its diagonal entries:

$$
f(\lambda)=\left(a_{11}-\lambda\right)\left(a_{22}-\lambda\right)\left(a_{33}-\lambda\right)
$$

And hence, the zeros of this polynomial are exactly a_{11}, a_{22}, a_{33}.
We can consider the eigenvalue of A are the eigenvalue B and equal its diagonal entries for a matrix A or B .

4. Using similar matrices by using 2×2 case

In this case of 2×2 real matrices we have a simplistic way of computing the matrix exponential. The eigenvalues of matrix A and matrix B are the roots of the characteristic polynomial of $\mathrm{A} \lambda^{2}-\operatorname{tr}(A) \lambda+\operatorname{det}(A)=0$ or the roots of the characteristic polynomial of $B \quad \lambda^{2}-\operatorname{tr}(B) \lambda+\operatorname{det}(B)=0$.The discriminant will be used to differentiate between the three cases which are used to compute the matrix exponential of a 2×2 matrix.

Case 1:

$$
D=\operatorname{tr}(B)^{2}-4 \operatorname{det} B>0
$$

The matrix B has real distinct eigenvalues λ_{1}, λ_{2} with eigenvectors v_{1}, v_{2};

$$
e^{B t}=\left[v_{1} v_{2}\right]\left(\begin{array}{cc}
e^{\lambda_{1} t} & 0 \\
0 & e^{\lambda_{2} t}
\end{array}\right)\left[v_{1} v_{2}\right]^{-1}
$$

Example 2

$$
A=\left(\begin{array}{cc}
4 & -2 \\
1 & 1
\end{array}\right)
$$

Consider $e^{B t}$ where $\quad B=\left(\begin{array}{cc}4 & \frac{r_{2}}{r_{1}}(-2) \\ \frac{r_{1}}{r_{2}}(1) & 1\end{array}\right)$
Here $\operatorname{det}(B)=6$ and $\operatorname{tr}(B)=5$, which means $D=1$. The characteristic equation is

$$
\lambda^{2}-5 \lambda+6=0
$$

The eigenvalues are 2 and 3 , and the eigenvectors are $\left[\begin{array}{ll}1 & 1\end{array}\right]^{T}$ and $\left[\begin{array}{ll}2 & 1\end{array}\right]^{T}$, respectively. Therefor

$$
\begin{aligned}
e^{B}= & \left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
e^{2} & 0 \\
0 & e^{3}
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right)^{-1} \\
& =\left(\begin{array}{cc}
-e^{2}+2 e^{3} & 2 e^{2}-2 e^{3} \\
-e^{2}+e^{3} & 2 e^{2}-e^{3}
\end{array}\right) \\
& =\left(\begin{array}{cc}
32.7820 & -25.3930 \\
12.6965 & -5.3074
\end{array}\right)
\end{aligned}
$$

Case 2:

$$
D=\operatorname{tr}(B)^{2}-4 \operatorname{det} B=0
$$

The matrix B has a real double eigenvalue λ. If $B=\lambda I$,
Then

$$
e^{B t}=e^{\lambda t} I
$$

Otherwise

$$
e^{B t}=\left[\begin{array}{ll}
v & w
\end{array}\right] e^{\lambda t}\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right)\left[\begin{array}{ll}
v & w
\end{array}\right]^{-1}
$$

Where v an eigenvector of B and w satisfies $(B-\lambda I) w=v$.

Example 3

Let

$$
A=\left(\begin{array}{cc}
6 & -1 \\
4 & 2
\end{array}\right) \quad, B=\left(\begin{array}{cc}
6 & \frac{r_{2}}{r_{1}}(-1) \\
\frac{r_{1}}{r_{2}}(4) & 2
\end{array}\right)
$$

Here $\operatorname{det}(B)=16$ and $\operatorname{tr}(B)=8$, therefor $D=0$. The characteristic equation is

$$
\lambda^{2}-8 \lambda+16=0
$$

Thus $\lambda=4$. The eigenvector associated with the eigenvalue 4 is

$$
v=\left[\begin{array}{ll}
1 & 2
\end{array}\right]^{T}
$$

Solving $\quad\left(\left(\begin{array}{cc}6 & \frac{r_{2}}{r_{1}}(-1) \\ \frac{r_{1}}{r_{2}}(4) & 2\end{array}\right)-\left(\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right)\right) w=\binom{1}{2}$
We obtain $w=\left[\begin{array}{ll}1 & 1\end{array}\right]^{T}$. Using the method for 2×2 matrices with a double eigenvalue, we have found

$$
\begin{gathered}
e^{B}=\left(\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right) e^{4}\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right)^{-1} \\
=e^{4}\left(\begin{array}{ll}
3 & -1 \\
4 & -1
\end{array}\right) \\
=\left(\begin{array}{ll}
3 e^{4} & -e^{4} \\
4 e^{4} & -e^{4}
\end{array}\right) \\
\end{gathered}
$$

Case 3:

$$
D=\operatorname{tr}(B)^{2}-4 \operatorname{det} B<0
$$

The matrix B has conjugate eigenvalues $\lambda, \bar{\lambda}$ with eigenvectors u, \bar{u}.

Or writing

$$
e^{B t}=\left[\begin{array}{ll}
u & \bar{u}
\end{array}\right]\left(\begin{array}{cc}
e^{\lambda t} & 0 \\
0 & e^{\bar{\lambda} t}
\end{array}\right)\left[\begin{array}{ll}
u & \bar{u}
\end{array}\right]^{-1}
$$

$$
e^{B t}=\left[\begin{array}{ll}
v & w
\end{array}\right] e^{\sigma t}\left(\begin{array}{cc}
\cos w t & -\sin w t \\
\sin w t & \cos w t
\end{array}\right)\left[\begin{array}{ll}
v & w
\end{array}\right]^{-1}
$$

Example 4

Let

$$
A=\left(\begin{array}{cc}
3 & -2 \\
1 & 1
\end{array}\right), \quad B=\left(\begin{array}{cc}
3 & \frac{r_{2}}{r_{1}}(-2) \\
\frac{r_{1}}{r_{2}}(1) & 1
\end{array}\right)
$$

Since $\operatorname{det}(B)=5$ and $\operatorname{tr}(B)=4, D=-4$ the characteristic equation is

$$
\lambda^{2}-4 \lambda+5=0
$$

And $\lambda=2 \pm i$. The eigenvector $u=\left[\begin{array}{lll}2 & 1 & -i\end{array}\right]^{T}$. Therefore $\sigma=2, w=$ $1, v=\left[\begin{array}{ll}2 & 1\end{array}\right]^{T}$ and $w=\left[\begin{array}{ll}0 & -1\end{array}\right]^{T}$.

So

$$
\begin{gathered}
e^{B}=\left(\begin{array}{cc}
2 & 0 \\
1 & -1
\end{array}\right) e^{2}\left(\begin{array}{cc}
\cos 1 & -\sin 1 \\
\sin 1 & \cos 1
\end{array}\right)\left(\begin{array}{cc}
2 & 0 \\
1 & -1
\end{array}\right)^{-1} \\
=e^{2}\left(\begin{array}{cc}
\cos 1-\sin 1 & -2 \sin 1 \\
-\sin 1 & \sin 1+\cos 1
\end{array}\right) \\
=\left(\begin{array}{cc}
-2.2254 & -12.4354 \\
6.2117 & 10.21
\end{array}\right)
\end{gathered}
$$

References

[1] Smalls, N. N. (2007). The Exponential Function of Matrices.
[2] Shukla, A. and Przebinda,T., (2013). Lie theory.
[3] Ghufran, S.M., (2009). The computation of matrix functions in particular, the matric exponential.
[4] Dan. M., \& Joseph. R. (2018). Interactive Linear Algebra , November 16

[^0]: ${ }^{1}$ Irbid National University, Jordan, Irbid
 ${ }^{2}$ Irbid National University, Jordan, Irbid

