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Abstract 
 

In this thesis we apply some methods of the similarity to compute the matrix exponential 

functions. Finally, new results of computation of the matrix exponential by using the 

similarity are obtained. 
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1  Introduction 
 

The exponential function of matrices is a very important subclass of functions of matrices 

that has been studied extensively in the last 50 years.  

The matrix exponential is a function on square matrices analogous to the ordinary 

exponential function. Let nA M , The exponential of A denoted by 

exp( )Ae or A , is then n matrix given by  the power series  
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The above series always converges, so the exponential ofA  is well-defined. Note that 

ifA  is  1 1   matrix, the matrix exponential of A corresponds with the ordinary 

exponential ofA  thought of as a number. 
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The numerical evaluation of the exponential of a matrix is of some importance because of 

its occurrence in many physical, engineering, and economics applications.   

In this paper we obtained new results of computation of the matrix exponential by using 

the similarity.  
 

 

2  New Results 

Theorem 2.1 

Let , nA B M  and 
1B Q AQ , where 1( ,..., )nQ diag r r  s.t 

ir   1,...,i n  . And the exponential function of A is given by Hamilton 

method as follows  
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Proof :  

Let ,ij nA a M    , 1,...,i j n . And it is given that 
1B Q AQ , 

where 1( ,..., )nQ diag r r  s.t ir   1,...,i n
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Its clear that B is similar to A , so  the eigenvalues of  B are the same eigenvalues of  

A  Say 1 2, ,..., .n  

Since the  matrix exponential is a simply one case of an analytic function as described in 

the Cayley-Hamilton method to determine the analytic functions of a matrix ,then  
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Where 
i
‘s are described from the equation gives by the eigenvalues of  B  . 
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Example  Let 
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Find  
Bte   s.t   

1B Q AQ .  

Solution :  
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The characteristic equation is 
2 3 2 0s s  , and the eigenvalues are 

1 1 ,  
2 2 .  
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Or 
2(2 )t te e  and 

2

1 ( )t te e . Then  

2 2(2 ) ( )Bt t t t te e e I e e B  
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Corollary  If we let 
1 1r  , 

2 1r . With applying equation (5) , then  

0 2

1 3
B . 
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And hence, 
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Corollary   If we let 
1 2r r r . With applying equation (4.2.1) , then  
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Theorem 2.2  

Let nA M  diagonalizable matrix and f  analytic function on a domain that contains 

the eigenvalues of A . Then  

1( ) ( )f A Xf B X .Where 
1A XBX  and  f  is defined by the Newton‘s 

divided difference interpolations  

Proof :  We have  

1 1( ) ( ) ( )j j jA I XBX I X B I X  

Hence,
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1( ) ( )f A Xf B X . 

Example  .Let 
5 1 4 0 1 1

, ,
2 2 0 3 1 2

A B X  and 

( ) xf x e  .Find 
Ae . 

Solution : 

Since 
1A XBX , we can find 

Ae by above theorem . The eigenvalues of B  are 

4,3  

4(4)f e  and  
3(3) .f e  

let  
4( , ( ) (4, )f e  and  

3

1 1( , ( ) (3, )f e   

Then by definition of the Newton‘s divided difference interpolations  

We have , 1( ) ( ) ( , )( )f B f I f B I  
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Theorem 2.3  

If  , nA B M  such that 
1A XBX  , where X  is a nonsingular matrix , then 

1A Be Xe X . 

Proof : We know that lim( )A n

n

A
e I

n
 and  

1A XBX , where X  is a 

nonsingular matrix .  

So, we have  
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We can evaluate the previous example by using the definition of 
Ae which defined as a 

limit of power 

lim( )A n
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as the following example .  
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Example  

Let 
5 1 4 0 1 1

, ,
2 2 0 3 1 2

A B X  and ( ) xf x e  

Find 
Ae . 

Solution : 

Since 
1A XBX , we can find 

Ae by above theorem .  

The eigenvalues of B  are 4,3  

Hence, 
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