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A note of the induced topological pressure
for topological systems

Zhitao Xing!

Abstract

In this paper, we give an equivalent definition of the induced topo-
logical pressure [8]. We also set up a relation for two induced topological
pressures with a factor map by using a method which is different from
that of [9].
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1 Introduction and statement of main result

Throughout this paper, a topological dynamical system (for short TDS)
means a pair (X, f), where f is a continuous map from a compact metric
space (X, d) to itself. For n € N, the n-th Bowen metric d,, on X is defined by

dp(z,y) = max{d(f'(z), f'(y)) : i =0,1,...,n — 1}.
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16 A note of the induced topological pressure

Recall that C'(X,R) is the Banach algebra of real-valued continuous functions
of X equipped with the supremum norm. For ¢ € C(X,R), let (S,p)(z) ==
n—1 )
2, #f'x).
~ The notion of the topological entropy plays an important role in topological
dynamics and dimension theory [1, 2, 6]. In 1971, Bowen [4] considered a factor
map 7 : (X, f) — (Y, g), and showed that

h(f) < hlg) +sup h(f, 7~ (y)), (1)

yey

where h(f, K) denotes the entropy of a compact subset K C X with respect
to f.

Topological pressure is a generalization to topological entropy for dynam-
ical systems. It was first introduced by Ruelle [5] for expansive dynamical
systems, and later by Walters [3, 6] for the general case. Recently, the the-
ory for dynamical systems with different time-scalings has been developed.
Jaerisch, Kessebohmer, and Lamei [7] studied the induced topological pres-
sure of a countable state Markov shift. In [8], the authors defined the induced
topological pressure for a topological dynamical system, and established a vari-
ational principle for it. In this paper, we give an equivalent definition of the
induced topological pressure. We also set up a relation for two induced topo-
logical pressures with a factor map by using a method which is different from
that of [9].

Let (X, f) bea TDS and ¢ € C(X,R) with ¢ > 0. Forz € X, T > 0,¢ > 0,
define

n(z,T) =inf{n e N: S ¢(x) > T}

and

BT($,€,f) = {y € X: dn(z,T)(xvy) < 6};§T<x>€a f) = {y € X: dn(w,T)(l'ay) <

Let K be a compact set of X. A subset Fr C X is called a (¢, T, €)-spanning set
of K with respect to f, if for any y € K, there exists v € Fp with d,,,7)(2,y) <
e. Let rr(f, K, €) denotes the smallest cardinality of any (¢, T €)-spanning set
of K. Obviously rr(f, K, €) < co. Define

1
r(f, K,e) = limsupflogr;p(f, Ke).

T—o0

Clearly if 0 < €1 < €3, then r¢(f, K,€1) > rr(f, K, €3).
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Definition 1. We define the v-induced topological entropy of K (with re-
spect to f ) by
1
hy(f, K) zlimlimsupflong(f, K,e) (2)

T—o00

Remarks.
hi(f, X) = h(f), where h(f) denotes the topological entropy of f [3, 6].

Definition 2. Let (X, f) be a TDS, and let K be a compact set of X,
0, € C(X,R) with ¢ > 0. For T > 0,e > 0, put

Qw,T(fa K7 P, 6)
=inf{ Z exp(Snr¥) (@) : Fris a (¢, T, €)-spanning set of K}.

$€FT

We define the -induced topological pressure of ¢ (with respect to f and K )
by
- 1
Py(f, K, ) = lim h;n sup - log Qur(f, K, ¢, €) (3)

Remarks.
(1) If 0 < €1 < €2, then Qur(f, K, ¢, €1) > Qur(f, K, ¢, €3), which implies the
existence of the P, (f, K, ¢) in (3).
(17) Pi(f,X,p) = P(p), where P(p) denotes the topological pressure of ¢
3, 6].
(i17) It is easy to see Py(f, X, p) = Py(y), where Py(y) denotes the ¢-induced
topological pressure of ¢ [8].

By using a method which is different from that of [9], we obtain the result

of this paper, as follows.

Theorem 1.1. Let (X, d), (Y, p) be compact metric spaces, and let f : X —
X,9:Y =Y be continuous maps, w: X — Y a factor map, i.e., a continuous
surjective map with mo f = gom, ¢, € C(Y,R) with ¢ > 0. Then

Pyon(pom) < Py(p) + Sup hoor (f, 77 (1) (4)
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2 Some lemmas

In this section, we give some lemmas, which will be needed for the proof of
Theorem 1.1.

Lemma 2.1. Let (Y,g) be a TDS, and let p be a compatible metric on 'Y,
Y € C(Y,R) with 1 > 0,m = min{y(z) : x € Y}. For each y € Br(z,0,g), we

have H
L el
m

In(a, 7) = nfy, 7| < T var(w, )

where var(y, 6) := sup{|¢(z) — ¥ (y)| : p(z,y) < 0}

Proof Clearly n(z,T) < % + 1 for any x € Y. Notice for each y €
ET(I,(S, 9)7

mln(z,T) = n(y, T)| = n(z, T)var (4, 6) < |Sn@mr(x) = Snem¥(y)| < ¥

Then

ML) s, )+ L0 < TR 0,5y 4 12
m m m m

n(z,T) = nly, T)| <

O

Lemma 2.2. Let (Y, g) be a TDS, and let p be a compatible metric on Y,
0, € C(Y,R) with ¢ > 0,m = min{+)(x) : x € Y'}. For each y € Br(x,6,9),

we have

(y) < elmHivar(ed+ i lplvar(p.0)+ el

exp Sn(y,T)go exp Sn(z,T)SD(x);

where var(, 8) := sup{|1:(x) — b (y)| : plr,y) < 3},

3 The proof of Theorem 1.1

Now we give the proof of Theorem 1.1. Let m = min{¢(z) : x € Y'}. To

show the inequality, for any € > 0, we choose ; > 0 small enough so that

d(u,v) < 46, = d (u,v) <€, (5)

2+
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where [i] denotes the integer part of W’” . Clearly, we may assume

a = sup hyor (f, 7 (y)) < 0.
yey

Fix 6, > 0 and 7 > 0. For any y € Y, we choose T}, > 0 such that there exist
a (v om,T,,061)-spanning set E, of 7~ !(y) with minimal cardinality such that
|Ey’ = TTy(f’ W_l(y)7 51) and

IOg TTy<f7 71—_l(y>7 61) S (hU)OW(.ﬁ ﬂ-_l(y)) + T)Ty S (CL + T)Ty'

Denote Uy, = {u € X : 3z € E, s.t dy.1)(u, 2) < 241}, then U, is an open
neighborhood of 771(y) and

(X\U)N (7 (B, () =0,

where B,(y) = {# € Y : p(y,2) < v}. By the finite intersection property of
compact sets, there is a W, = B, (y), (v, > 0) for which #=(W,) C U,. Since
Y is compact, there exists W, ,W,, ... W, cover Y. Let o2 > 0 be a Lebesgue
number for Y for this open cover. For T' > 0, we choose 0 < § < %(52 SO
that TH2var(y, 0) + % <2+ [%] Let Fr be a (¢, T,0)-spanning set of
Y. For each y € Fr,0 < j < n(y,T), pick Ay(j) € {y1,92...y-} such that
Bs(¢i(y)) C Wa,(j)- Define recursively

to(y) = 0;
t1(y; 20) = n(20, Ta,0)), 20 € En,0);
t2(y§ 20, Zl) = tl(ﬁUQ ZO) + n(zla TAy(tl(y;zo)))7 z1 € Eﬂy(h(y;Zo));

tor1(Ys 20,215 - - 5 25) = ts(Ys 20, 21, - - - Zom1) + 126, T, (Es(y5 20, 215 - - -, Z6-1))),
Zs € Eny(ta(ysz0,21,025-1)) (6)

until one gets a t,11(y; 20, 21...24) > n(y,T). Clearly the number of ¢ de-
pends on the choice of zy, z; ... z4-1. Set q(y; 20, 21 - . . 24-1) = q, we yet denote

q(y; 20, 21 - . . Zg—1) by ¢ for convenience. For y € Fr and

20 € Eﬁy(o)’ Z1 € EAy(tl(y;ZO))’ s %q € EAy(tq(y;20721,~.,zq71))7
define

V(y; 20,21, - - -, 2g) = {u € X ¢ d(fiH=Weozmzm) () £4(2)) < 26,
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for all 0 <t < n(zs, Ta, (ts(y; 20, 215 - - -5 25-1))), 0 < s < g}

It is not hard to see that

U V(Y 20,21, .., 2) D7 '(Br(y.d,9)).

ZOEEAy(O)vzl EEAy(tl(y;zO)) 7777 ZQEEAy(tq(y;zo,zl,.4.,zq_1))
(7)

In fact, for any u € 771 (Br(y, 6, g)), we have
p(g’(y), g (ru)) <6, VO <j <n(y,T).
Then
(I (w) = ¢’ (mu) € Bs(g'(y)) C Wa, i), Y0 <j<n(y,T).
This implies that
Fu) e n (Way) € Usy), Y0 <5 <n(y,T), (8)

and hence, there exists zy € Ea (o) with dy ) (20, 1) < 201 I n(2o, Ta,0) >

n(y,T), let t1(y; 20) = n(20, Ta,(0)), we have u € V(y; Z) and finish the proof.

20,Tp4(0)

Otherwise, it follows from (8) that there exists 21 € Ea, (1, (y;5)) such that

dn(ﬁ’TAy(tl(y;%)))(zl’ fn(%yTAy(O))(u)) < 261

By this means, we get the minimal ¢(y; 2o, 21 . . . 2,—1) With t,11(y; 20, 21 . . . 2Z4) >
n(y,T). This implies that v € V(y;2p,21,...,2,). Since w is arbitrary, this
shows (7).

Notice for each x € X,

n(x, T) =inf{n: (Syppom)(x) > T}
= inf{n : Z¢ om(fi(z) > T}
—infn: Y plg'n(e) = T)
=n(m(z),T). (9)
If V(y; 20, 21, - -, 2¢) N 7 Y(Br(y,6,9)) # 0, pick any

U(yu 20y %1y« v - 7Zq) € V(y; 20y R1y e - 7Zq) N ﬂ-il(ET@% 57 g)) % (Dv
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we have
FT(U(% 20,215+ -5 2¢), € f) D V(Y35 20,21, - -, Zg)-

In fact, for any v € V(y; 20, 21, . . ., 24), we have for all

0<t<n(z,Th,(ts(y: 20, 21,1 25-1)))

and 0 S S S q,
d(ft“"ts(y;zo’zl"“’257l)(U),ft(zs)) < 251

Since v(y; 20, 21, - - -» 2¢) € V(Y; 20, 21, - - -, 24), We get
d(ft+t5(y7z0’zl7723_1)(7_}(3/; Z07 Z].’ R ,Zq)), ft(zs)> < 251'
Hence

d(f]('U(y, 205 Ry - - '7Zq))7fj(v)) < 4517 0 S j S tq—i—l(y; 205 R1y e - 7Zq)-

By Lemma 2.1, we have

n(v(Y; 20, 21, - - -5 2¢), LT') = n(mw(v(y; 20, 21, - - ., 2), T)
T ar,0) + 121
m

m2
<n(y. 1) +2+ (1)

<n(y,T)+

Now that n(y,T") < tg+1(y; 20, 21, - - - » 24), it follows from (5) that

dn(nyHzH%]('u(y; 20,2155 %), V) < €.

Therefore
dn(v(y;Zle,---,ZqLT)(U(y; 205 215 - - - 72(1)7 U) <e.

That is, we show (10). Combing (7) and (10), we obtain

U ET(v(y;zo,zl,...,zq),e,f)

20€E A, (0) 1€ E A (11 (4320)) 20 S By (tq (432071 11 2g—1))

Dﬂ-_l (ET(yv 57 g))
Let

ET = {U(y, 205 %1y - - - 7Zq) HNVAS FT7 20 € EAy(O)J z1 € EAy(tl(y;ZQ))a
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o 2q € Enytyizn,erze)) )

Clearly Er is a (¢ o w,T,€)-spanning set of X. For y € Fr, there exists a
permissible (zy, 2, . . . , z;) such that the number of permissible (2, 21, ..., %)
is at most

q
Ny - H rTAy(ts(y;zé,zll,...,zgil))(f’ W_l(Ay(ts(y; 205”150 zs—l)))’ 51)’ (11)
s=0

where to(y; 2 ;) = 0.

To show (11), we give some notions which will be needed in next proof. Fol-
lowing (6), we suppose q(y; 2o, 21 . . . Zg—1) > 1. Foreach 1 < s < q(y; 20, 21 - - - 24-1),
) and

lf Zs—1 € EAy(ts—l(y§Z0:Zla~~~7Zs—2))7 we Ca‘ll Zs—1 dZ’r@CtS EAy(ts(ZJ;ZOzle'»ZS—l

En,(te_1(yi20,21,25_2)) 18 @& corresponding set  of Ea (i, (yizo,21,..,2e-1))- We say a
permissible (zg, 21, ...,2,) is a ¢ + 1-string, and z, is a terminal point of the
permissible (2o, 21, ..., 24). For each z € Ea(t,(y:z0,21,....24_1))» if 2 is a terminal
point of a g + 1-string, we also say Ea, (t,(y:20,21,.024-1)) 1S @ terminal set of
q + 1-step.

Now we show (11). Let

p = max{q(y; 20, 21, - - ., Zg—1) * 20 € En,0), 21 € En,(t1(y:20))

s 2q € EAy(tq(%ZO:Zl7~--’Zq—1))}7

and

£:={E, E,,....E,}.
If p=0, it is clear that (11) holds.

If p = 1, there exists terminal sets of 2-step. We assume Eyy, ..., Ey,, €
E,(1 < p1 < |Ea,0)]) are all terminal sets of 2-step and |Epy;| = max{|Ey]| :
1 <4 < pi}. Then the sum of the number of all 1-strings and the number
of all 2-strings is at most |En o)||Eo1|. Let zy € Ea, (o) directs Egi. Then the
permissible (z,) such that (11) holds.

If p = 2, there exists terminal sets of 3-step. We assume
E0l117 ey EOZ181; E0121, e ,E01252; ceey EOltl e EOltsm (1 S t S p1>

are all terminal sets of 3-step and satisfy the following:
(i) For each 1 < i <t,1 <j <s;, Ey, is a corresponding set of Ey,;, where
1 <s; <|Euo].
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(ii) For each 1 < i <, |Ey,1| = max{|Ey,;| : 1 < j < s;}.
There exists 1 < k < ¢ with

| Eou, || Eot1 | =

(1 <i <t}

Considering that the possibility of the existent terminal set of 2-step, if
| Eou, || Eota| > | Eorl,

we obtain that the number of permissible (2, 21, ..., 2,) is at most
|Eny 1 Eo || Eorya -

Choose z(/] € B, ) with zé directs Ey, , z’l € Ey, with 2/1 directs Ey, 1. Then
the permissible (2, z;) such that (11) holds. If |Egi| > |Eq,||Ex1|, we have the
number of permissible (2o, z1,...,2,) is at most |Ex (o) ||Eo1| and permissible
(o) with z, directs Eg; such that (11) holds.

Proceeding in this way, if p > 2, for each 1 < ¢ < t, we assume there exists a
permissible (zf), o zéi)) such that the number of permissible (zy, ..., z,) with

21 € By, is at most

q

r[ rTAy (ts(y; Z(()) z(z) ,291))(]‘?, 7T_1( (t (yv Z(g )7 ZY)? SRR Zél—)l)))v 51)’
where zf) € Ey, and z(()i) directs Ey;, q := q(z((]i), zy), e 2 ).
There exists 1 < k < ¢ with

q

k k k
HTTAy(tS(yZ((Jk>’ gk) : gk) <f T ( ( <y’ z((J )’ 5 )’ te 7Z§f)1>))761)

s=1

q
= max{l_[l TTAy(ts(y;z(ﬁ”,zii)v-»z@l))(f’ YA by z(g ) 29 zﬁ’_)l))), 6) 1 <i <t}

If

q
H 00w (F (D (1 t(y: 26", 24", 2 00)),60) > B,

yees®g

then the number of permissible (zo, 21, .. ., z,) is at most

H TAy (y; Zé) Z(l) B gljl))(fa W_l(A (t (y, Z(g ), Z%Z), ey Zglzl)))7 51)
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This implies (z(() ), zgk), . (k)) such that (11) holds.
It

q

_ k k
L7 et s, (£ (B (bl 2™, 21 20)))60) < [ Bl

s=1

we have the number of permissible (2o, 21,. .., 2,) is at most |Ea )|/ Eo1| and
permissible (z,) with z, directs Ey; such that (11)holds and finish the proof of
(11).

Let

veV(y:zg 2y, - ,z;),N =max{n(z,T,,) :z € E,,,i=1,2...1}.

Then

IOgN ZlongA (s (yzo 21 z (f T ( (ts(ya Z(/]7Z/17"'7 Rg— 1))) 51)

s=0

<@+ DT + Tayategn T+ Doy ttgtwish )

< (@t TS a0 ¥ 0 T(20) + -+ St ez z,))

’
q Ay(fq(y ZO 21,

<(a+7)[(n(y, T) + N)Var(y om, 201) + Snr)+n © W(U)]. (12)
It follows from (9) and Lemma 2.1 that

Il
m

n(y, T) <n(v,T)+2+| ]

and

(a+7)[(n(y,T)+ N)Var(y om,201) + Spyr)+nt o T(v)]

W20y 4 vy

]+ NIl
(13)

<(a+7)[(n(y, T) + N)Var(pom, 201) + Spwmry¥ om(v) + (2 + |

<(a+ D+ 14 N)Var(om,26) + T+ [ + 2+ [12)

where Var(y om,d) = sup{|v o w(z) — ¢ om(y)| : d(z,y) < d,z,y € X}. Let
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v = v(y; 20, 21, - - - , Zg). Combining (13) and Lemma 2.2, we have
Z exp(Sh(w,r) © T(V))
veEET
<Y > exp(Sy(op © T(v))
YEFT veV (y;20,21,--,2¢) 1T~ 1 (Br (y,6,9))
< Z Z exXp(|Sn(w)P © T(V) = Sniyr)P(Y)| + Sniyr P (y))

yeFr VEV (Y;20,215,2¢)T (B (y,6,9))

<Y exp Sugney)

yelr
Z exp[n(y, T)var(p, ) + |n(v,T) — n(y, T)||l¢l]
VEV (320,21 ,---,2¢)T (B (,6,9))
<expllat (L 41+ NVartpom,20) + T+ ] + 2+ L myjopy
ol + Duar(p. ) expl(@ + D)]lgl] 3 expSymey) (10

yEFT

Now that 6 — 0 as T' — o0, it is easy to see

1 1
limsup T IOg Q,LpomT(f, Yo, 6) < (a + T)(EV(IT’("(# o, 251) + 1) + Pw(@),

T—o00

where

Qd}OW,T(f) poT, 6)
= inf{ Z exp(Su(w,m@)(v) : Er is a (¢ om, T, €)-spanning set of X}.

veEETD

Notice Var(y om,2d§;) — 0 as 9 — 0. Since ; — 0 as € — 0, we have
Pyor(pom) < Py(p) +a+T.
As 7 — 0, we obtain

Pyon(ip o) < Py() +5Up hyor (f,77 (1)).
ye
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