L-Q-Fuzzy Quotient ζ - Group

Mourad Oqla Massa'deh¹ and Hazem''Moh'd said'' Hatamleh²

Abstract

In this paper, we define a new algebraic structure of L-Q-fuzzy sub ζ -groups and L -Q-fuzzy quotient ζ -groups and discussed some properties. We also defined ζ -Q-homomorphism over L-Q-fuzzy quotient ζ -groups. Some related results have been derived.

Mathematics Subject Classifications: 04A72; 03E72; 03F55; 20N25

Keywords: L-fuzzy subset; L-Q-fuzzy subset; ζ-Q-homomorphism; L-Q-fuzzy Sub ζ- groups; L-Q-fuzzy quotient ζ-groups

1 Introduction

Zadeh [12] introduced the notion of a fuzzy subset of a set X as a function from X into [0, 1]. Goguen in [5] replaced the lattice [0, 1] by a complete lattice L and studied L-fuzzy subsets. Rosenfeld [1] used this concept and developed some

¹Department of Applied Science, Ajloun College, Al – Balqa' Applied University – Jordan. E-mail: mourad.oqla@bau.edu.jo

²Department of Applied Science, Ajloun College, Al – Balqa' Applied University – Jordan. E-mail: hazim-hh@bau.edu.jo

Article Info: *Received:* September 17, 2016. *Revised:* November 2, 2016. *Published online* : March 15, 2017.

results in fuzzy group theory. Solairaju and Nagarajan [2, 3] introduced and defined a new algebraic structure of Q – fuzzy groups. Saibaba [4] introduced the concept of L – fuzzy sub ζ – groups and L – fuzzy ζ – ideal of ζ – groups. Sundrerrajan et al [11] studied the concepts of anti Q – L–fuzzy ζ – group, we invite the reader to consult the cited work [6, 7, 8, 9, 10] a non gathers. Here in this paper we introduce the notion of L – Q–fuzzy quotient ζ – group and there define ζ – Q – homomorphism over L – Q–fuzzy quotient ζ – groups.

2 Preliminary Notes

2.1 Definition:[5] A post (L, \leq) is called a lattice if supremum of a, b and infimum of a, b exist for all a, b \in L.

2.2 Definition: A lattice ordered group $(\zeta - \text{group})$ is a system $G = (G, +, \leq)$ where

1. (G, +) is a group

2. (G, \leq) is a lattice

3. The inclusion is invariant under all translations $x \le y \Rightarrow a + x + b \le a + y + b$ for all $a, b \in G$.

2.3 Definition:[5] Let X be a non empty set $L = (L, \leq)$ be a lattice with least element 0 and greatest element 1.

An L – fuzzy subset μ of X is a function $\mu : X \rightarrow L$.

2.4 Definition: Let X be a non empty set $L = (L, \leq)$ be a lattice with least element 0 and greatest element 1 and Q be a non empty set . A L - Q – fuzzy subset μ of X is a function $\mu : X \times Q \rightarrow L$.

2.5 Definition: An L – Q – fuzzy subset μ of G is said to be an L – Q – fuzzy sub ζ – group (LQFSζG) of G if for any x, y ∈ G.
1. μ (xy, q) ≥ min{ μ(x, q), μ(y, q)}
2. μ(x⁻¹, q) = μ(x, q)
3. μ (x ∨ y, q) ≥ min{ μ(x, q), μ(y, q)}
4. μ (x ∧ y, q) ≥ min{ μ(x, q), μ(y, q)}.

2.6 Theorem: If μ is an L - Q – fuzzy sub ζ – group of G, then $\mu(x, q) \le \mu(e, q)$ for $x \in G$ and e is the identity element in G.

2.7 Theorem: Let μ be an L – Q – fuzzy sub ζ – group of G, then H = {x \in G, q \in Q; $\mu(x, q) = \mu(e, q)$ } is either empty or a sub ζ – group of G.

Proof: If no element satisfies this condition, then H is empty. If x, y satisfy this condition, then μ (xy ⁻¹, q) \geq min{ $\mu(x, q), \mu(y^{-1}, q)$ } = min{ $\mu(e, q), \mu(e, q)$ } = $\mu(e, q)$ and $\mu(e, q) \geq \mu$ (xy ⁻¹, q), since μ is an L – Q – fuzzy sub ζ – group of G hence $\mu(e, q) = \mu$ (xy ⁻¹, q) thus xy ⁻¹ \in H, let x, y \in H then $\mu(x, q) = \mu(e, q)$ and $\mu(y, q) = \mu(e, q)$. μ (x \vee y, q) \geq min{ $\mu(x, q), \mu(y, q)$ } \geq min{ $\mu(e, q), \mu(e, q)$ } = $\mu(e, q)$ then μ (x \vee y, q) = $\mu(e, q)$ hence x \vee y \in H, also μ (x \wedge y, q) \geq min{ $\mu(x, q), \mu(y, q)$ } \geq min{ $\mu(x, q), \mu(y, q)$ } \geq min{ $\mu(x, q), \mu(y, q)$ } = $\mu(e, q)$ hence x \wedge y \in H, therefore H is sub ζ – group of an ζ – group G.

2.8 Definition: An L – Q – fuzzy sub ζ – group μ of G is called an L – Q – fuzzy normal sub ζ – group (LQFNS ζ G) of G if for any x, y \in G μ (xyx ⁻¹, q) $\geq \mu$ (y, q).

2.9 Theorem: Let G be an ζ – group and μ be an L – Q – fuzzy sub ζ – group of G then the following conditions are equivalent.

1. μ is an L – Q – fuzzy normal sub ζ – group of G

2. μ (xyx ⁻¹, q) = μ (y, q) for all x, y \in G.

3. μ (xy, q) = μ (yx, q) for all x, y \in G.

2.10 Corollary: Let μ be an L – Q – fuzzy normal sub ζ – group of G, then H = $\{x \in G, q \in Q; \mu(x, q) = \mu(e, q)\}$ is either empty or a normal sub ζ – group of G. **Proof:** By Theorem 2.7 H is a sub ζ – group of G, then for any $x \in G$ and $y \in H$

 μ (xyx⁻¹, q) = μ (y, q) = μ (e, q)

since μ is an L – Q – fuzzy normal sub ζ – group of G and y \in H hence xyx ⁻¹ \in H thus H is a normal sub ζ – group of G, therefore H is either empty or a normal sub ζ – group of G.

2.11 Lemma: Let μ be an L - Q – fuzzy sub ζ – group of G. Then $x\mu = y\mu$ if and only if $\mu(x^{-1}y, q) = \mu(y^{-1}x, q) = \mu(e, q)$ for all $x, y \in G$ and $q \in Q$. **Proof:** Straightforward.

2.12 Definition: Let G_1 , G_2 be any two ζ – groups. Then the function Ψ : $G_1 \rightarrow G_2$ is said to be $\zeta - Q$ – homomorphism if for all x, $y \in G_1$

1. Ψ (xy, q) = Ψ (x, q) Ψ (y, q) 2. Ψ (x \lor y, q) = max{ Ψ (x, q), Ψ (y, q)} 3. Ψ (x \land y, q) = min{ Ψ (x, q), Ψ (y, q)}.

2.13 Definition: An L – Q – fuzzy subset μ of X is said to bare sup property if, for any subset A of X, if there exist $a_0 \in A$ such that $\mu(a_0, q) = \bigvee_{a \in A} \mu(a, q)$.

2.14 Definition: Let Φ be a function from a set X into a set Y. An L – Q – fuzzy subset μ of X is called Φ - invariant if $\Phi(x, q) = \Phi(y,q)$ then $\mu(x,q) = \mu(y,q)$ where x, y \in X and q \in Q.

2.15 Definition: Let G_1 , G_2 be any two ζ – groups. Then the function Ψ : $G_1 \rightarrow G_2$ is said to be $\zeta - Q$ – isomorphism if for all $x, y \in G_1$

- 1. $\Psi(xy, q) = \Psi(x, q) \Psi(y, q)$
- 2. Ψ is bijection.

3 Main Results

3.1 Theorem: Let μ be an L-Q – fuzzy sub ζ – group of G with identity e. Let H

 $= \{x \in G, q \in Q; \mu(x, q) = \mu(e, q)\}.$ Consider the map $\mu^* : G / H \rightarrow L$ defined by

 $\mu^{*}\left(xh,q\right)=\lor\mu(xh,q)$ for all $h\in H$, $x\in G$ and $q\in Q.$ Then

- 1. H is a normal sub ζ group of G.
- 2. The map μ^* is well defined.

3. μ^* is an L – Q – fuzzy sub ζ – group of G/ H.

Proof: Since μ is an L - Q – fuzzy normal sub ζ – group of G.

1. H = {x \in G, q \in Q; $\mu(x, q) = \mu(e, q)$ }let y \in H , x \in G and q \in Q then $\mu(y, q) = \mu(e, q)$, now $\mu(xyx^{-1}, q) = \mu(y, q) = \mu(e, q)$, since μ is an L – Q – fuzzy normal sub ζ – group of G, Hence $xyx^{-1} \in$ H.

Let x, y \in H then $\mu(x, q) = \mu(e, q) = \mu(y, q)$

 $\mu (x \lor y, q) \ge \min\{ \mu(x, q), \mu(y, q)\} = \min\mu(e, q), \mu(e, q)\} = \mu(e, q)$ hence $\mu (x \lor y, q) \ge \mu(e, q)$, then $\mu (x \lor y, q) \mu(e, q)$ thus $x \lor y \in H$.

and μ (x \wedge y, q) \geq min{ $\mu(x, q), \mu(y, q)$ }= min $\mu(e, q), \mu(e, q)$ } = $\mu(e, q)$ hence μ (x \wedge y, q) \geq $\mu(e, q)$, then μ (x \wedge y, q) $\mu(e, q)$ thus x \wedge y \in H.

Therefore H is a normal sub ζ – group of G.

2. Consider the map μ^* : G / H \rightarrow L defined by μ^* (xh, q) = $\vee \mu$ (xh, q) for all h \in H , x \in G and q \in Q then xy⁻¹ \in k that is, μ (xy⁻¹, q) = μ (e, q) thus μ (xh, q) = μ (yh, q) and hence μ^* (xh, q) = μ^* (yh, q) therefore, the map μ^* is well – defined.

3. (i) μ^* (xh yk , q) = μ^* (xyh, q) = $\vee \mu$ (xyh, q) for all h \in H , x, y \in G and $q \in Q$. $\geq \vee \min\{\mu(xh_1,q) \text{ , } \mu(yh_2,q)\}; h_1,h_2 \in H$ $\geq \min\{ \lor \mu(xh_1, q), \lor \mu(yh_2, q) \}; h_1, h_2 \in H$ $\geq \min\{\mu^*(xh,q),\mu^*(yh,q)\}$ (ii) μ^* ((xh)⁻¹, q) = μ^* (x ⁻¹h, q) = $\vee \mu$ (x ⁻¹h, q) for all h \in H , x \in G and $q \in Q$. $= \lor \mu(x h, q) = \mu^* (x h, q)$. (iii) μ^* (xh \vee yk , q) = μ^* ((x \vee y)h, q) = \vee μ ((x \vee y)h, q) for all h \in H , x, $y \in G$ and $q \in Q$. $\geq \bigvee \min{\{\mu(xh_1, q), \mu(yh_2, q)\}}; h_1, h_2 \in H$ $\geq \min\{ \lor \mu(xh_1, q), \lor \mu(yh_2, q) \}; h_1, h_2 \in H$ $\geq \min\{\mu^*(xh,q),\mu^*(yh,q)\}$ $(iv)\mu^* (xh \land yk , q) = \mu^* ((x \land y)h, q) = \lor \mu((x \land y)h, q)$ for all $h \in H$, x, $y \in G$ and $q \in Q$. $\geq \bigvee \min\{\mu(xh_1, q), \mu(yh_2, q)\}; h_1, h_2 \in H$ $\geq \min\{ \lor \mu(xh_1, q), \lor \mu(yh_2, q) \}; h_1, h_2 \in H$ $\geq \min\{\mu^*(xh,q),\mu^*(yh,q)\}$ Hence μ^* is an L – Q – fuzzy sub ζ – group of G/H.

3.2 Definition: Let μ be an L - Q – fuzzy sub ζ – group of G with identity e. Let $H = \{x \in G, q \in Q; \mu(x, q) = \mu(e, q)\}$. Consider the map $\mu^* : G / H \rightarrow L$ defined by

 $\mu^*(xh, q) = \lor \mu(xh, q)$ for all $h \in H$, $x \in G$ and $q \in Q$.

Then, the L – Q – fuzzy sub ζ – group μ^* of G is called an L – Q – fuzzy quotient ζ – group of μ by H.

3.3 Remark:

(1) μ^* is not L – Q – fuzzy normal quotient ζ – group of G/ H.

(2) Consider the map $\mu^* : G / H \to L$ defined by $\mu^* (xh, q) = \lor \mu(xh, q)$ for all $h \in H$, $x \in G$ and $q \in Q$. Then, μ^* is an L - Q – fuzzy normal quotient ζ – group of G/H.

3.4 Theorem: If μ^* is an L – Q – fuzzy quotient ζ – group of G/ H, then $\mu^*(xh, q) \leq \mu^*(eh, q)$.

Proof: Let $x \in G$, $\mu^{*}(eh, q) = \mu^{*}(xx^{-1}h, q)$ $\geq \min\{\mu^{*}(xh, q), \mu^{*}(x^{-1}h, q)\}$ $= \mu^{*}(xh, q)$

3.5 Theorem: μ^* is an L- Q-fuzzy quotient ζ -group of G/ H iff for all $x, y \in G$

1. $\mu^{*}(xhy^{-1}h, q) \ge \min\{\mu^{*}(xh, q), \mu^{*}(yh, q)\}$ 2. $\mu^{*}(xk \lor yk, q) \ge \min\{\mu^{*}(xh, q), \mu^{*}(yh, q)\}$ 3. $\mu^{*}(xk \land yk, q) \ge \min\{\mu^{*}(xh, q), \mu^{*}(yh, q)\}.$

Proof:

 $(\implies) \mu^{*}(xhy^{-1}h, q) \ge \min\{ \mu^{*}(xh, q), \mu^{*}(y^{-1}h, q) \}$ $\ge \min\{ \mu^{*}(xh, q), \mu^{*}(yh, q) \}$

As, μ^* is an L – Q – fuzzy quotient ζ – group of G/ H, then (2), (3) are hold (\Leftarrow) If (1) hold then $\mu^*(x^{-1}h, q) = \mu^*(e x^{-1}h, q) \ge \min\{ \mu^*(eh, q), \mu^*(x^{-1}h, q) \}$ = min{ $\mu^*(eh, q), \mu^*(x h, q) = \mu^*(x h, q)$, therefore $\mu^*(x^{-1}h, q) \ge \mu^*(xh, q)$ for all $x \in G$. Hence $\mu^*((x^{-1})^{-1}h, q) \ge \mu^*(x^{-1}h, q)$ and $\mu^*(x^{-1}h, q) \le \mu^*(xh, q)$ thus $\mu^*(x^{-1}h, q) = \mu^*(xh, q)$ for all $x \in G$.

Now, by (1) replace y by y⁻¹ then $\mu^{*}(xy h, q) = \mu^{*}(x(y^{-1})^{-1} h, q)$ $\geq \min\{\mu^{*}(xh, q), \mu^{*}(y^{-1}h, q)\}$

 $min\{ \mu^{*}(xh, q), \mu^{*}(yh, q)\} \text{ for all } x, y \in G.$

Also $\mu^*(xk \lor yk, q) \ge \min\{ \mu^*(xh, q), \mu^*(yh, q) \}$ and $\mu^*(xk \land yk, q) \ge$

min{ $\mu^*(xh, q), \mu^*(yh, q)$ }. Therefore μ^* is an L - Q – fuzzy quotient ζ – group of G/ H.

3.6 Theorem: If μ^* , λ^* are two L – Q – fuzzy quotient ζ – group of G/ H then their intersection is an L – Q – fuzzy quotient ζ – group of G/ H.

3.7 Corollary: The intersection of any collection of L - Q – fuzzy quotient ζ – group of G/ H is an L - Q – fuzzy quotient ζ – group of G/ H.

3.8 Theorem: Let G_1 , G_2 be any two ζ – groups, $\Psi : G_1 \to G_2$ be an $\zeta - Q$ epimorphism and $\mu^* : G_1 / H \to L$ be an L - Q – fuzzy quotient ζ – group of G_1 / H . Then $\Psi(\mu^*)$ is an L - Q – fuzzy quotient ζ – group of G_2 / H , if μ^* has a sup property and μ^* is Ψ - invariant and $\Psi(\mu^*) = (\Psi(\mu))^*$.

Proof:

```
1.\Psi(\mu^{*})(\Psi(x)\Psi(y)h, q) = \Psi(\mu^{*})(\Psi(xy)h, q)
= \mu^{*}(xyh, q)
\geq \min\{\mu^{*}(xh, q), \mu^{*}(yh, q)\}
\geq \min\{\Psi(\mu^{*})(\Psi(x)h, q), \Psi(\mu^{*})(\Psi(y)h, q)\}
2.\Psi(\mu^{*})((\Psi(x))^{-1}h, q) = \Psi(\mu^{*})(\Psi(x^{-1})h, q)
= \mu^{*}(x^{-1}h, q)
= \mu^{*}(xh, q)
= \Psi(\mu^{*})(\Psi(x)h, q)
3.\Psi(\mu^{*})(\Psi(x) \vee \Psi(y)h, q) = \Psi(\mu^{*})(\Psi(x \vee y)h, q)
= \mu^{*}((x \vee y)h, q)
\geq \min\{\mu^{*}(xh, q), \mu^{*}(yh, q)\}
\geq \min\{\Psi(\mu^{*})(\Psi(x)h, q), \Psi(\mu^{*})(\Psi(y)h, q)\}
4.\Psi(\mu^{*})(\Psi(x) \wedge \Psi(y)h, q) = \Psi(\mu^{*})(\Psi(x \wedge y)h, q)
= \mu^{*}((x \wedge y)h, q)
```

$$\geq \min\{ \mu^{*}(xh, q), \mu^{*}(yh, q) \}$$

$$\geq \min\{ \Psi(\mu^{*}) (\Psi(x)h, q), \Psi(\mu^{*}) (\Psi(y)h, q) \}$$

Hence $\Psi(\mu^{*})$ is an $L - Q$ – fuzzy quotient ζ – group of G ₂/ H.
 $(\Psi(\mu))^{*} (yh, q) = \lor \Psi(\mu)(yh, q) \forall h \in H, y \in G_{2}$ and $q \in Q$.
 $= \lor \Psi(\mu)(\Psi(x)h, q) \forall h \in H, x \in G_{1}$ and $q \in Q$.
 $= \lor \mu(xh, q)$
 $= \mu^{*}(xh, q)$
 $= \Psi(\mu^{*}) (\Psi(x)h, q)$

3.9 Theorem: Let G_1 , G_2 be any two ζ – groups, $\Psi : G_1 \to G_2$ be an $\zeta - Q$ homomorphism and $\lambda^* : G_2 / H \to L$ be an L - Q – fuzzy quotient ζ – group of G_2/H . Then $\Psi^{-1}(\lambda^*)$ is an L - Q – fuzzy quotient ζ – group of G_1/H and $\Psi^{-1}(\lambda^*) = (\Psi^{-1}(\lambda))^*$.

Proof:

$$1.\Psi^{-1}(\lambda^{*})(xyh, q) = \lambda^{*} (\Psi(xy)h, q)$$

$$= \lambda^{*}(\Psi(x) \Psi(y) h, q)$$

$$\geq \min\{ \lambda^{*}(\Psi(x)h, q), \lambda^{*}(\Psi(y)h, q) \}$$

$$\geq \min\{ \Psi^{-1}(\lambda^{*}) (xh, q), \Psi^{-1}(\lambda^{*}) (yh, q) \}$$

$$2.\Psi^{-1}(\lambda^{*})(x^{-1}h, q) = \lambda^{*} (\Psi(x^{-1})h, q)$$

$$= \lambda^{*}((\Psi(x))^{-1} h, q)$$

$$= \lambda^{*}((\Psi(x) h, q)$$

$$= \Psi^{-1}(\lambda^{*}) (xh, q).$$

$$3.\Psi^{-1}(\lambda^{*})((x \lor y)h, q) = \lambda^{*}(\Psi(x \lor y)h, q)$$

$$= \lambda^{*}((\Psi(x) \lor \Psi(y)) h, q)$$

$$\geq \min\{ \lambda^{*}(\Psi(x)h, q), \lambda^{*}(\Psi(y)h, q) \}$$

$$\begin{split} & 4.\Psi^{-1}(\lambda^*)((x \wedge y)h,q) = \lambda^*(\Psi(x \wedge y)h,q) \\ &= \lambda^*((\Psi(x) \wedge \Psi(y)) h, q) \\ &\geq \min\{ \ \lambda^*(\Psi(x)h, q), \lambda \ ^*(\Psi(y)h, q) \} \\ &\geq \min\{ \ \Psi^{-1}(\lambda^*) \ (xh, q), \Psi^{-1}(\lambda^*) \ (yh, q) \} \\ & \text{Hence } \Psi^{-1}(\lambda^*) \ is \ an \ L - Q - fuzzy \ quotient \ \zeta - group \ of \ G_1/ \ H. \\ & (\Psi^{-1}(\lambda)) \ ^* \ (xh, q) = \lor \Psi^{-1}(\lambda)(xh, q) \ \forall \ h \in H \ , \ x \in G_1 \ and \ q \in Q. \\ &= \lor \lambda \ (\Psi(x)h, q) \ \forall \ h \in H \ , \ x \in G_1 \ and \ q \in Q. \\ &= \lambda^*(\Psi(x)h, q) \\ &= \Psi^{-1}(\lambda^*) \ (xh, q) \end{split}$$

3.10 Theorem: Let G_1 , G_2 be any two ζ – groups, $\Psi : G_1 \to G_2$ be an $\zeta - Q$ homomorphism and λ be an L - Q fuzzy normal sub ζ – group of G_2 such that $\mu = \Psi^{-1}(\lambda)$, then $\Phi: G_1 / \mu \to G_2 / \lambda$ such that $\Phi(x\mu, q) = \Psi(x, q)\lambda$ for every $x \in G_1$ and $q \in Q$ is an $\zeta - Q$ - isomorphism.

Proof:

Clearly Φ is onto as Ψ is onto

Let
$$x\mu$$
, $y\mu \in G_1 / \mu$, $\Phi(x\mu, q) = \Phi(y\mu, q)$ then $\Psi(x, q)\lambda = \Psi(y, q)\lambda$ and

$$\lambda(\Phi^{-1}(x)\Phi(y), q) = \lambda(\Phi^{-1}(y)\Phi(x), q) = \lambda(\Phi(e), q)$$

hence

$$\lambda(\Phi (x^{-1}y), q) = \lambda(\Phi (y^{-1}x), q) = \lambda(\Phi(e), q)$$

then $x\mu = y\mu$ by 2.11 Lemma, therefore Φ is one-one.

$$\Phi((x\mu)(y\mu), q) = \Psi((xy)\mu, q) = \Psi(xy, q)\lambda = (\Psi(x, q), \Psi(x, q))\lambda$$

=
$$(\Psi(\mathbf{x}, \mathbf{q})\lambda)$$
. $(\Psi(\mathbf{x}, \mathbf{q})\lambda) = \Phi(\mathbf{x}\mu, \mathbf{q}) \Phi(\mathbf{y}\mu, \mathbf{q})$.

Now

$$\Phi((x\mu \lor y\mu), q) = \Psi((x \lor y)\mu, q) = \Psi(x \lor y, q)\lambda = (\Psi(x, q) \lor \Psi(x, q))\lambda$$
$$= (\Psi(x, q)\lambda) \lor (\Psi(x, q) \lambda) = \Phi(x\mu, q) \lor \Phi(y\mu, q).$$

And

$$\Phi((x\mu \land y\mu), q) = \Psi((x \land y)\mu, q) = \Psi(x \land y, q)\lambda = (\Psi(x, q) \land \Psi(x, q))\lambda$$

$$= (\Psi(\mathbf{x}, \mathbf{q})\lambda) \land (\Psi(\mathbf{x}, \mathbf{q})\lambda) = \Phi(\mathbf{x}\mu, \mathbf{q}) \land \Phi(\mathbf{y}\mu, \mathbf{q})$$

Clearly Φ is an ζ – Q- homomorphism and hence Φ is an ζ – Q- isomorphism.

4 Conclusions

Further work is in progress in order to develop the L-Q-intuitionistic fuzzy quotient ζ - groups and L-Q-intuitionistic anti fuzzy quotient ζ -groups.

ACKNOWLEDGEMENTS. The author, express their thanks to the referee for his Valuable help concern and suggestions for improving the paper.

References

- [1] A. Rosenfeld., Fuzzy Groups, J. Math. Anal. Appl, 35, (1971), 512-517.
- [2] A. Solairaju and R. Nagarajan, A New Structure and Construction of Q Fuzzy Groups, *Advances In Fuzzy Mathematics*, 4, (2009), 23-29.
- [3] A. Solairaju and R. Nagarajan., Q–Fuzzy Left R–Subgroups of Near Rings w.r.t T Norm, *Antarctica Journal of Mathematics*, **5**, (2008), 59-63.
- [4] G.S.V. Saty A Saibaba, Fuzzy Lattice Ordered Groups, Southeast Asian Bulletin of Mathematics, 32, (2008), 749-766.
- [5] J. A. Goguen, L Fuzzy Sets, J. Math. Anal. Appl, 18, (1967), 145-174.
- [6] K. Sunderrajan, A. Senthilkumar, Anti L–Fuzzy Sub ζ-Group and its Level Sub ζ–Groups, *International Journal of Engineering and Science Invention*, 2, (2013), 21-26.
- [7] K. Sunderrajan, A. Senthilkumar, Generalized product of L Fuzzy Sub ζ Group, *Antarctica Journal of Mathematics*, **10**, (2013), 183-189.

- [8] K. Sunderrajan, A. Senthilkumar, L–Fuzzy ζ–Cosets of ζ–Groups, International Journal of Engineering Associates, 3, (2014), 46-59.
- [9] K. Sunderrajan, A. Senthilkumar, Properties of L Fuzzy Normal Sub ζ–Groups, General Mathematical Notes, 22, (2014), 93-99.
- [10] K. Sunderrajan, A. Senthilkumar, Anti L Fuzzy Sub ζ Group and its Lower Level Sub ζ Groups, *SSRG International Journal of Mathematics Trends and Technology*, **10**, (2014), 25-27.
- [11] K. Sunderrajan, R. Muthuraj, M.S. Mathuraman and M. Sridharan, Some Characterization of Anti Q–L–Fuzzy ζ – Group, *International Journal* of Computer Applications, 6, (2010), 35-47.
- [12] L. A. Zadeh, Fuzzy Sets, Information and Control, 8, (1965), 338-363.