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Abstract

In this paper, an implementation of an efficient numerical method
of linear fractional integro-differential equations (LFIDEs) by least
squares method with aid of shifted Chebyshev polynomials of the third
kind method. The fractional derivative is described in the Caputo sense.
The method is based upon shifted Chebyshev polynomials of the third
kind approximations is introduced. Some numerical examples are pre-
sented to illustrate the theoretical results and compared with the results
obtained by other numerical methods. We have computed the numerical
results using Mathematica 9 programming.
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1 Introduction

Fractional derivatives have recently played a significant role in many areas

of sciences, engineering, fluid mechanics, biology, physics and economies ([4],

[15], [19]). Many real-world physical systems display fractional order dynam-

ics, that is their behavior is governed by fractional order differential equations.

Consequently, considerable attention has been given to the solutions of frac-

tional differential equations (FDEs) and integral equations of physical interest

([1], [2], [10], [20], [22], [27] , [30]). Most non-linear FDEs do not have ex-

act analytic solutions, so approximate and numerical techniques ([25]-[28])

must be used. Many mathematical problems in science and engineering are

set in unbounded domains. There is a need to consider practical design and

implementation issues in scientific computing for reliable and efficient solu-

tions of these problems. Several numerical methods to solve the FDEs have

been given such as variational iteration method [10], homotopy perturbation

method ([22], [25]), Adomian’s decomposition method ([11], [14]), homotopy

analysis method [9] and collocation method ([12], [20], [30]).

Representation of a function in terms of a series expansion using orthogonal

polynomials is a fundamental concept in approximation theory and forms the

basis of spectral methods of solution of differential equations ([5], [8], [13]).

In [12], Khader introduced an efficient numerical method for solving the frac-

tional diffusion equation using the shifted Chebyshev polynomials. In [28] and

et. al introduced an efficient numerical method for solving the fractional dif-

fusion equation using the shifted Chebyshev polynomials of the third kind.

Spectral collocation methods are efficient and highly accurate techniques for

numerical solution of non-linear differential equations. The basic idea of the

spectral collocation method is to assume that the unknown solution v(x) can be

approximated by a linear combination of some basis functions, called the trial

functions, such as orthogonal polynomials. The orthogonal polynomials can
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be chosen according to their special properties, which make them particularly

suitable for a problem under consideration ([13], [24]).

Our fundamental goal of this work is to develop a suitable way to ap-

proximate the fractional integro-differential equations using the shifted Cheby-

shev polynomials of the third kind with finite difference method together with

Chebyshev collocation method [28].

In this paper, least squares method with aid of shifted Chebyshev polynomi-

als of the third kind method is applied to solving fractional integro-differential

equations [17]. Least squares method has been studied in ([3], [7], [16]-[18],

[23], [31]).

In this paper, we are concerned with the numerical solution of the following

linear fractional Integro-differential equation [16]:

Dνϕ(x) = f(x) +

∫ 1

0

K(x, t)ϕ(t)dt, 0 ≤ x, t ≤ 1, (1)

with the following supplementary conditions:

ϕ(i)(0) = δi, n− 1 < ν ≤ n, n ∈ N, (2)

where Dνϕ(x) indicates the νth Caputo fractional derivative of ϕ(x), f(x),

K(x, t) are given functions, x and t are real variables varying in the interval

[0, 1] and ϕ(x) is the unknown function to be determined.

The structure of this paper is arranged in the following way: In section

2, we introduce some basic definitions about Caputo fractional derivatives.

In section 3, we give some properties of Chebyshev polynomials of the third

kind which are of fundamental importance in what follows and we derive an

approximate formula for fractional derivatives using Chebyshev polynomials

of the third kind expansion. In section 4, the procedure of solution of linear

fractional integro-differential equation. In section 5, numerical example is given

to solve the LFIDEs and show the accuracy of the presented method. Finally,

in section 6, the report ends with a brief conclusion and some remarks.

2 Preliminary and notations

In this section, we present some necessary definitions and mathematical

preliminaries of the fractional calculus theory required for our subsequent de-

velopment.
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2.1 The Caputo fractional derivative

Definition 2.1. The Caputo fractional derivative operator Dν of order ν is

defined in the following form:

Dνf(x) =
1

Γ(m− ν)

∫ x

0

f (m)(t)

(x− t)ν−m+1
dt, ν > 0,

where m− 1 < ν ≤ m, m ∈ N, x > 0.

Similar to integer-order differentiation, Caputo fractional derivative oper-

ator is a linear operation:

Dν (λ f(x) + µ g(x)) = λ Dν f(x) + µ Dν g(x),

where λ and µ are constants. For the Caputo’s derivative we have

Dν C = 0, C is a constant, (3)

Dν xn =

{
0, for n ∈ N0 and n < dνe;

Γ(n+1)
Γ(n+1−ν)

xn−ν , for n ∈ N0 and n ≥ dνe.
(4)

We use the ceiling function dνe to denote the smallest integer greater than or

equal to ν, and N0 = {0, 1, 2, ...}. Recall that for ν ∈ N, the Caputo differential

operator coincides with the usual differential operator of integer order.

For more details on fractional derivatives definitions and its properties see ([6,

15, 19, 21]).

3 Some properties of Chebyshev polynomials

of the third kind

3.1 Chebyshev polynomials of the third kind

The Chebyshev polynomials Vn(x) of the third kind ([13], [28]) are orthog-

onal polynomials of degree n in x defined on the [−1, 1]

Vn =
cos(n + 1

2
)Θ

cos(Θ
2
)

,
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where x = cosΘ and Θ ∈ [0, π].

They can be obtained explicitly using the Jacobi polynomials P
(α,β)
k (x), for

the special case β = −α = 1/2.

These are given by:

Vk(x) =
22kP

(−1/2,1/2)
k (x)(Γ(k + 1))2

Γ(2k + 1)
. (5)

Also, these polynomials Vn(x) are orthogonal on [−1, 1] with respect to the

inner product:

< Vn(x), Vm(x) >=

∫ 1

−1

√
1 + x

1− x
Vn(x)Vm(x)dx =

{
π, for n = m;

0, for n 6= m;
.

(6)

where
√

1+x
1−x

is weight function corresponding to Vn(x).

The polynomials Vn(x) may be generated by using the recurrence relations

Vn+1(x) = 2xVn(x)− Vn−1(x), V0(x) = 1, V1(x) = 2x− 1, n = 1, 2, ... .

The analytical form of the Chebyshev polynomials of the third kind Vn(x) of

degree n, using Eq. (5) and properties of Jacobi polynomials to obtain they

are given as:

Vn(x) =

[ 2n+1
2

]∑
k=0

(−1)k (2)n−k (2n + 1)Γ(2n− k + 1)

Γ(k + 1) Γ(2n− 2k + 2)
(x + 1)n−k, n ∈ Z+,

(7)

where [2n+1
2

] denotes the integer part of (2n + 1)/2.

3.2 The shifted Chebyshev polynomials of the third kind

In order to use these polynomials on the interval [0, 1], we define the so

called shifted Chebyshev polynomials of the third kind [28] by introducing the

change of variable s = 2x− 1. The shifted Chebyshev polynomials of the third

kind are defined as V ∗
n (x) = Vn(2x− 1).

These polynomials are orthogonal on the support interval [0, 1] as the following

inner product:

< V ∗
n (x), V ∗

m(x) >=

∫ 1

0

√
x

1− x
V ∗

n (x)V ∗
m(x)dx =

{
π
2
, for n = m;

0, for n 6= m;
.

(8)
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where
√

x
1−x

is weight function corresponding to V ∗
n (x). and normalized by the

requirement that V ∗
n (1) = 1.

The polynomials V ∗
n (x) may be generated by using the recurrence relations

V ∗
n+1(x) = 2(2x−1)V ∗

n (x)−V ∗
n−1(x), V ∗

0 (x) = 1, V ∗
1 (x) = 4x−3, n = 1, 2, ... .

The analytical form of the shifted Chebyshev polynomials of the third kind

V ∗
n (x) of degree n in x given by:

V ∗
n (x) =

n∑
k=0

(−1)k (2)2n−2k (2n + 1)Γ(2n− k + 1)

Γ(k + 1) Γ(2n− 2k + 2)
(x)n−k, n ∈ Z+, (9)

In a spectral method, in contrast, the function g(x), square integrable in [0, 1],

is represented by an infinite expansion of the shifted Chebyshev polynomials

of the third kind as follows:

g(x) =
∞∑
i=0

bi V
∗
i (x), (10)

where bi is a chosen sequence of prescribed basis functions. One then pro-

ceeds some how to estimate as many as possible of the coefficients bi, thus

approximating g(x) by a finite sum of (m + 1)-terms such as:

gm(x) =
m∑

i=0

bi V
∗
i (x), (11)

where the coefficients bi, i = 0, 1, ... are given by

bi =
1

π

∫ 1

−1

g(
x + 1

2
) Vi(x)

√
1 + x

1− x
dx, (12)

where the coefficients bi, i = 0, 1, ... are given by

bi =
2

π

∫ 1

0

g(x) V ∗
i (x)

√
x

1− x
dx, (13)

Theorem 3.1. (Chebyshev truncation theorem) ([13], [24]) The error in

approximating g(x) by the sum of its first m terms is bounded by the sum of

the absolute values of all the neglected coefficients. If

gm(x) =
m∑

i=0

bi Vi(x), (14)
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then

ET (m) ≡ |g(x)− gm(x)| ≤
∞∑

k=m+1

|bi|, (15)

for all g(x), all m, and all x ∈ [−1, 1].

The main approximate formula of the fractional derivative of gm(x) is given

in the following theorem.

Theorem 3.2. Let g(x) be approximated by shifted Chebyshev polynomials

of the third kind as (11) and also suppose α > 0, then

Dα(gm(x)) =
m∑

i=dαe

i−dαe∑
k=0

bi N
(α)
i, k xi−k−α, (16)

where N
(α)
i, k is given by

N
(α)
i, k = (−1)k 22i−2k (2n + 1)Γ(2i− k + 1)Γ(i− k + 1)

Γ(k + 1)Γ(2i− 2k + 2)Γ(i− k + 1− α)
. (17)

Proof. ([28]).

4 Procedure solution using shifted Chebyshev

polynomials of the third kind collocation method

In this section, the least squares method with aid of shifted Chebyshev

polynomials of the third kind collocation method is applied to study the nu-

merical solution of the linear fractional Integro-differential equation (1).

The procedure of the implementation is given by the following steps:

1. Substitute by Eq.(11) into Eq.(1) we obtain [16]:

Dν

(
m∑

i=0

ciV
∗
i (x)

)
= f(x) +

∫ 1

0

K(x, t)

(
m∑

i=0

ciV
∗
i (x)

)
dt. (18)

2. Hence the residual equation is defined as

R(x, c0, c1, ..., cn) =
m∑

i=0

ciD
νV ∗

i (x)−f(x)−
∫ 1

0

K(x, t)

(
m∑

i=0

ciV
∗
i (x)

)
dt.

(19)
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3. Let

S(c0, c1, ..., cn) =

∫ 1

0

(R(x, c0, c1, ..., cn))2 · ω(x)dx. (20)

where ω(x) is the positive weight function defined on the interval [0, 1].

In this work we take ω(x) =
√

x
1−x

.

4. Thus

S(c0, c1, ..., cn) =

=

∫ 1

0

(
m∑

i=0

ciD
νV ∗

i (x)− f(x)−
∫ 1

0

K(x, t)

(
m∑

i=0

ciV
∗
i (x)

)
dt

)2

ω(x)dx. (21)

5. So, finding the values of ci, i = 0, 1, ..., n, which minimize S is equivalent

to finding the best approximation for the solution of the LFIDEs (1).

6. The minimum value of S is obtained by setting

∂S

∂ci

= 0 i = 0, 1, ...,m. (22)

7. Applying (22) to (21) we obtain∫ 1

0

(
m∑

i=0

ciD
νV ∗

i (x)− f(x)−
∫ 1

0

K(x, t)

(
m∑

i=0

ciV
∗
i (x)

)
dt

)
×

×
(

DνV ∗
i −

∫ 1

0

K(x, t)V ∗
i (x)

)
ω(x)dx. (23)

By evaluating the above equation for i = 0, 1, ..., n we can obtain a system

of (m + 1) linear equations with (m + 1) unknown coefficients ci. This

system can be formed by using matrices form as follows:

A =


∫ 1

0
R(x, c0)h0dx

∫ 1

0
R(x, c1)h0dx ...

∫ 1

0
R(x, cm)h0dx∫ 1

0
R(x, c0)h1dx

∫ 1

0
R(x, c1)h1dx ...

∫ 1

0
R(x, cm)h1dx

... ... ... ...∫ 1

0
R(x, c0)hmdx

∫ 1

0
R(x, c1)hmdx ...

∫ 1

0
R(x, cm)hmdx

 ,

(24)

B =


∫ 1

0
f(x)h0dx∫ 1

0
f(x)h1dx

...∫ 1

0
f(x)hmdx

 , (25)
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where

hi = DνV ∗
i (x)−

∫ 1

0

K(x, t)
m∑

i=0

ciV
∗
i (x)ω(x)dt, i = 1, 2, ...,m,

R(x, t) =
m∑

i=0

ciD
νV ∗

i (x)−
∫ 1

0

K(x, t)

(
m∑

i=0

ciV
∗
i (x)

)
dt, i = 0, 1, ...,m

By solving the above system we obtain the values of the unknown coef-

ficients and the approximate solution of 1.

5 Applications and numerical results

In this section, we numerical examples of linear fractional integro-differential

equation are presented to illustrate the above results. All results are obtained

by using Mathematica 9 programming.

Example 1:

Consider the following linear fractional integro-differential equation [16]

D1/2ϕ(x) =
(8/3)x3/2 − 2x1/2

√
π

+
x

12
+

∫ 1

0

xtϕ(t)dt, 0 ≤ x, t ≤ 1, (26)

subject to ϕ(0) = 0 with the exact solution ϕ(x) = x2 − x.

Figure 1: Comparison between the numerical solution and exact solution.
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Applying the least squares method with aid of shifted Chebyshev polyno-

mials collocation of third kind V ∗
i (x), i = 0, 1, ...,m at m = 5, to the linear

fractional integro-differential equation (26), we obtain a system of (24) linear

equations with (25) unknown coefficients ci, i = 0, 1, ..., 5.

The solution obtained using the suggested method is in excellent agreement

with the already exact solution and show that this approach can be solved the

problem effectively. It is evident that the overall errors can be made smaller

by adding new terms from the series (11). Comparisons are made between

approximate solutions and exact solutions to illustrate the validity and the

great potential of the proposed technique. Also, from our numerical results we

can see that these solutions are in more accuracy of those obtained in [16].

Example 2:

Consider the following linear fractional integro-differential equation [16]

D5/6ϕ(x) = f(x) +

∫ 1

0

xetϕ(t)dt, 0 ≤ x, t ≤ 1, (27)

where f(x) = −3x1/6Γ(5/6)(−91+216x2)
91π

+ (2 − 2e)x, subject to ϕ(0) = 0 with the

exact solution ϕ(x) = x− x3.

Figure 2: Comparison between the numerical solution and exact solution.

Similarly as in Example 1 applying the least squares method with aid of

shifted Chebyshev polynomials collocation of third kind V ∗
i (x), i = 0, 1, ...,m

at m = 5, to the fractional integro-differential equation (27) the numerical
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results are shown in Figure 2 and we obtain the approximate solution which

is the same as the exact solution.

Example 3:

Consider the following fractional integro-differential equation [16]

D5/3ϕ(x) = f(x) +

∫ 1

0

(xt + x2t2)ϕ(t)dt, 0 ≤ x, t ≤ 1, (28)

where f(x) = 3
√

3Γ(2/3)x1/3

π
− x2/5 − x/4, subject to ϕ(0) = 0 with the exact

solution ϕ(x) = x2.

Similarly as in Examples 1 and 2 applying the least squares method with

aid of shifted Chebyshev polynomials collocation of third kind V ∗
i (x), i =

0, 1, ...,m at m = 5, to the fractional integro-differential equation (28) the

numerical results are shown in Figure 3 and we obtain the approximate solution

which is the same as the exact solution.

Figure 3: Comparison between the numerical solution and exact solution.

6 Conclusion

In this article, we introduced an accurate numerical technique for solving

linear fractional integro-differential equation. We have introduced an approx-

imate formula for the Caputo fractional derivative of the shifted Chebyshev
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polynomials of the third kind method in terms of classical shifted Chebyshev

polynomials of the third kind method. The results show that the algorithm

converges as the number of m terms is increased. The solution is expressed

as a truncated shifted Chebyshev polynomials series and so it can be easily

evaluated for arbitrary values of time using any computer program without

any computational effort. Some numerical examples are presented to illustrate

the theoretical results and compared with the results obtained by other nu-

merical methods. We have computed the numerical results using Mathematica

9 programming.
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