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Abstract

In this work we extend the concept of admitting center map to Lip-
schitz admitting g-center map and obtain Banach contraction principle
for the class of such an map. Also we prove some common fixed point
theorems for Banach operator pair. At the end we obtain some appli-
cations of the results.
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1 Introduction

The technique of employing the asymptotic centers in fixed point theory

was first considered by Edelstein [1], and the compactness assumption given

on asymptotic centers was introduced by Kirk and Massa [2]. In 2007, Garćia

et al. introduced admitting center mappings in Banach space [3]. The study

of the existence of fixed points for those mappings is very useful in solving the

problems of equations in science and applied science. Our aim here is to study

the class of all Banach operator pair mappings contraction admitting a center.

Let C be a subset of a Banach space X. We call y0 ∈ X a center for the

mapping T : C → X if

‖Tx− y0‖ ≤ ‖x− y0‖, (1)

for any x ∈ C. The mapping T : C → X is called J-type, whenever it is

continuous and it has a center y0 ∈ X. In this case, by Z(T ) we denote the set

of all centers of T, that is,

Z(T ) := {y0 ∈ X : ‖Tx− y0‖ ≤ ‖x− y0‖, for all x ∈ C}.

The inequality (1) may be satisfied even for a nonexpansive fixed point free

mapping. Now, we extend the concept of center to g-center, where g is a map

on C into X.

Definition 1.1. Let C be a subset of a metric space (X, d) and f , g be two

maps from C into X. The map f is said to satisfy Lipschitz admitting g-center

condition on C, if there exists a constant L > 0 and exists y0 ∈ X, such that

for all x ∈ C, we have

d(f(x), y0) ≤ Ld(g(x), y0). (2)

If g is an identity map then f is said to be Lipschitzian admitting center map.

The smallest L for which (2) holds is called the Lipschitz admitting g-center

constant. In this case, we say that f is an L-Lipschitz admitting g-center map

or simply a Lipschitzian admitting g-center map with Lipschitz constant L.

Otherwise, it is called non-Lipschitzian admit g-center map. The L-Lipschitz

admit g-center map f is said to be contraction admitting g-center, if (2) is

satisfied for all x ∈ C, which g(x) 6= f(x) and L < 1. The mapping f is called

admitting g-center if L = 1. The mapping f is said to be strictly admitting
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g-center if for all x ∈ C that g(x) 6= f(x), we have

d(f(x), y0) < d(g(x), y0),

and the point y0 ∈ X is said to be a center for the pair (f, g).

Example 1.2. Let C = X = [0, 1] with euclidean metric. Let f, g : [0, 1] →
[0, 1] be given function defined by f(x) = x2

1+x2 and g(x) = x
1+x2 . Set y0 = 0.

Clearly f, g satisfy (2) with L = 1, and so f is admitting g-center.

Proposition 1.3. Let C be a subset of a metric space (X, d) and f, g : C →
X be given maps. Let L be a positive real constant. Then the set of all centers

of pair (f, g), that is

Zg(f) = {y0 ∈ X : d(f(x), y0) ≤ Ld (g(x), y0) , for all x ∈ C}.

is closed.

Proof. If Zg(f) = ∅, the result is obvious. So, suppose that Zg(f) 6= ∅. Let

z ∈ Z(f) . Then there exists a sequence zn ∈ Z(f) such that zn → z as

n →∞. Consider

d(f(x), z) = d(f(x), lim zn) = lim d(f(x), zn) ≤ lim Ld(g(x), zn)

= Ld(g(x), lim zn)

= Ld(g(x), z).

for all x ∈ C. Consequently, z ∈ Zg(f) and so Zg(f) is closed.

2 Extension of Banach Contraction Principle

The Banach contraction principle is one of the earliest and most important

results in fixed point theory. Because of its application in many field such as

physics, computer sciences, chemistry, biology, and many branches of mathe-

matics, a lot of authors have improved, generalized and extended this classical

result in nonlinear analysis; see, e.g., [4, 5, 6, 7, 8, 9, 10, 11, 12] and the refer-

ences therein. Let (X, d) be a complete metric space. The map T : X → X, is

said to be a contraction mapping, if for all x, y ∈ X,

d(Tx, Ty) ≤ kd(x, y), where 0 < k < 1. (3)
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According to Banach contraction principle, any map T satisfying (3) has a

unique fixed point.

Generalisation of the above principle has been a heavily investigated branch of

research. In [4], Boyd and Wong proved that the constant k in (3) can be re-

placed by the use of an upper semicontinuous function. In [13, 14], generalized

Banach contraction conjecture has been established. In [5], Suzuki has proved

a generalization of Banach contraction principle which characterizes metric

completeness. The Banach contraction principle has also been extended to

probabilistic metric spaces [15].

Theorem 2.1. Let (X, d) be a complete metric space and let K be a closed

subset of X, F : K → K be a continuous contraction L-Lipschitz admitting

center. Let y0 ∈ X be a center of F . Then F has a fixed point u ∈ K. Also,

for each x ∈ K we have lim
n→∞

F n(x) = u, with

d(F n(x), u) ≤ Ln−1

1− L
d(y0, F (x)).

Proof. Let x ∈ X. We first show that F n(x) is a Cauchy sequence. For n ∈
N ∪ {0} and y0 ∈ X, we have

d(F n(x), y0) ≤ Ld(F n−1(x), y0) ≤ · · · ≤ Ln−1d(F (x), y0)

Thus for m > n where n ∈ {0, 1, . . .},

d(F n(x), Fm(x))

≤ d(F n(x), F n+1(x)) + d(F n+1(x), F n+2(x)) + · · ·+ d(Fm−1(x), Fm(x))

≤ d(F n(x), y0) + d(F n+1, y0) + · · ·+ d(Fm−1(x), y0) + d(Fm(x), y0)

≤ Ln−1d(y0, F (x)) + · · ·+ Lm−1d(y0, F (x))

≤ Ln−1d(y0, F (x))[1 + L + L2 + · · · ]

=
Ln−1

1− L
d(y0, F (x))

Hence for m > n, n ∈ {0, 1, . . .}, we have

d(F n(x), Fm(x)) ≤ Ln−1

1− L
d(y0, F (x)). (4)

This shows that {F n(x)} is a Cauchy sequence in K. Since K is complete

there exists u ∈ K with lim
n→∞

F n(x) = u. As F is continuous, we have u =
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lim
n→∞

F n+1(x) = lim
n→∞

F (F n(x)) = F (u). So u is a fixed point of F. Now, let m

tends to infinity, (4) implies

d(F n(x), u) ≤ Ln−1

1− L
d(y0, F (x)).

3 Common fixed-points for Banach operator

pair

For two self-maps f and g of the metric space (X, d), we denote by F (f)

the set of all fixed points of f, by C(f, g) the set of all coincidence points of f

and g, and by F (f, g) the set of all common fixed points of f and g.

The notion of Banach operator pair have been studied by many authors and

applied to various problems.

Definition 3.1. The ordered pair (f, g) of two self-maps f and g of a metric

space (X, d) is called a Banach operator pair, if the set F (g) of all fixed points

of g is f -invariant, namely f(F (g)) ⊆ F (g).

Theorem 3.2. Suppose f and g are two self-maps of a closed subset C of

the metric space (X, d), such that (f, g) is a Banach operator pair on C and f

is a continuous admitting g-center on C, i.e. there exists y0 ∈ X, such that

d(f(x), y0) ≤ kd(g(x), y0), (5)

for all x ∈ C, for some k ∈ (0, 1). If g is continuous, F (g) is nonempty and

cl(f(C)) is complete, then F (f, g) 6= ∅.
Proof. The sets F (g) and F (f, g) are considered as subsets of C. We apply

Theorem 2.1 to f on F (g). By assumptions, f(F (g)) ⊆ F (g), F (g) is nonempty

closed subset of C and cl(f(F (g))) ⊆ cl(f(C)) is complete. The inequality (5)

follows that

d(f(x), y0) ≤ kd(g(x), y0) = kd(x, y0), for all x ∈ F (g)

Then Theorem 2.1 implies that there is a fixed point x0 ∈ F (g) of f and

consequently F (f, g) 6= ∅.



80 Contraction admitting g-center map

We need the concepts of q-starshaped and demiclosed at zero in the next

theorem.

Definition 3.3. Let D be a subset of a normed space E.The set D is said

to be q-starshaped if there exists q ∈ D such that kx + (1 − k)q ∈ D for all

x ∈ D and k ∈ [0, 1].

Also a map J : D → E is said to be demiclosed at zero if, whenever {xn} is a

sequence in D such that xn
w−→ z ∈ D and Jxn

s−→ 0, then Jz = 0.

Theorem 3.4. Let S be a weakly compact subset of a normed space X which

is starshaped with respect to p ∈ S, and let f and g are two self-maps of S such

that (f, g) is a Banach operator pair on S, f is admitting g-center on S, with

center p and p ∈ F (g). If g is both weakly continuous and strongly continuous

on S, F (g) is starshaped with respect to p, cl(f(S)) is complete, and if g − f

is demiclosed on S, then F (f, g) 6= ∅.

Proof. Let {kn} be a sequence of real numbers such that 0 < kn < 1 and

kn → 1 as n → ∞. Define a sequence {fn} of self-maps on S by putting

fn(x) = knf(x) + (1− kn)p, for all x ∈ S. Then the following facts are easy to

be verified:

(a) for each n, the map fn : S → S, since S is starshaped with respect to

p ∈ S;

(b) since f is admitting g-center on S, it follows that for each n and x ∈ S

and y0 = p,

‖fn(x)− y0‖ = ‖knf(x) + (1− kn)p− y0‖
= ‖kn(f(x)− y0) + (kn − 1)y0 + (1− kn)p‖
= kn‖f(x)− y0‖
≤ kn‖g(x)− y0‖,

i.e., each fn is contraction admitting g-center on S;

(c) for each n, (fn, g) is a Banach operator pair on S; indeed, since (f, g) is

a Banach operator pair, for x ∈ F (g) we have f(x) ∈ F (g), and hence

fn(x) = knf(x) + (1 − kn)p ∈ F (g) by the fact that F (g) is starshaped

with respect to p ∈ F (g);
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(d) the completeness of cl(f(S)) implies the completeness of each cl(fn(S)),

and the weak compactness of S implies that S is closed.

Now by Theorem 3.2, for each n, there exists a point xn ∈ S such that xn ∈
F (fn, g). Since the weak compactness of S and the weak continuity of g imply

the weak compactness of F (g) ⊆ S, there exists a subsequence {xni
} which

converges weakly to some x0 ∈ F (g). In what follows, we shall show that

there is also x0 ∈ C(f, g). First it is noted that the weak compactness of S

implies that S is weakly bounded, and thus strongly (norm) bounded; therefore

{f(xni
)} ⊆ S is bounded. Since

(g − f)(xni
) = (kni

f(xni
) + (1− kni

)p)− f(xni
) = (1− kni

) (p− f(xni
)) .

We have ‖(g − f)(xni
)‖ ≤ (1− kni

)(‖p‖+ ‖f(xni
)‖), and hence by kni

→ 1, it

follows that

‖(g − f)(xni
)‖ → 0 as i →∞. (6)

If g − f is demiclosed on S, then from (6) and that {xni
} converges weakly to

x0 we have (g − f)(x0) = 0, i.e. g(x0) = f(x0), and thus x0 ∈ F (f, g).

Theorem 3.5. Let S be a closed subset of a normed space X, which is

starshaped with respect to p ∈ S, and let f and g be two self-maps of S such

that (f, g) is a Banach operator pair on S, f is admitting g-center on S, with

center p and p ∈ F (g). If f, g are (strongly) continuous on S, the set F (g) is

starshaped with respect to p and cl(f(S)) is compact, then F (f, g) 6= ∅.
Proof. We define the sequence {fn} of maps on S as in the proof of Theorem

3.4, and the assertions from (a) to (d) still hold, with the observation that the

compactness of cl(f(S)) implies its completeness, and also the completeness

of each cl(fn(S)). As before, by Theorem 3.2, there exists a point xn ∈ S for

each n such that xn ∈ F (fn, g). Also in view of the compactness of cl(f(S)),

there exists a subsequence {xni
} such that {f(xni

)} converges in norm to some

x0 ∈ cl(f(S)). Since

xni
= fni

(xni
) = kni

f(xni
) + (1− kni

)p → x0,

and g(xni
) = xni

, the continuity of f and g implies that g(x0) = x0, and

f(xni
) → f(x0), i.e. f(x0) = x0. Therefore x0 ∈ F (f, g).
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4 Applications

Let C be a subset of the normed space (X, ‖.‖). For x0 ∈ X, we denote by

PC(x0) the set of all best C-approximants to x0, i.e.

PC(x0) = {y ∈ C : d(x0, C) = ‖y − x0‖},

where d(x0, C) = inf
z∈C

‖z − x0‖.

Theorem 4.1. Let f and g be self-maps of the normed space (X, ‖.‖) and

C be a subset of X with f(∂C ∩ C) ⊆ C, and cl(f(C)) be complete. Let

x0 ∈ F (f, g) such that PC(x0) is nonempty, weakly compact and starshaped

with respect to p ∈ F (g). If (f, g) is a Banach operator pair on PC(x0), f is

admitting g-center on PC(x0) ∪ {x0}, with center x0, and if g is both weakly

and strongly continuous on PC(x0), F (g) is starshaped with respect to p and

g(PC(x0)) ⊆ PC(x0), and g−f is demiclosed on PC(x0), then PC(x0)∩F (f, g)

is nonempty.

Proof. If x0 is in C, then x0 ∈ PC(x0)∩ F (f, g) and so the assertion holds. So

we assume that x0 6∈ C. In this case we have PC(x0) ⊆ ∂C ∩ C, and hence

f maps PC(x0) into C by assumption. Since f(x0) = g(x0) = x0 and f is

admitting g-center on PC(x0) ∪ {x0}, with center x0 it follows that for each

y ∈ PC(x0),

‖f(y)− x0‖ ≤ ‖g(y)− x0‖ = d(x0, C).

Since g(PC(x0)) ⊆ PC(x0), it implies that f(y) ∈ PC(x0). Therefore f is a

self-map of PC(x0). It is clear that the completeness of cl(f(C)) implies the

completeness of cl(f(PC(x0))), and PC(x0) ∩ F (g) is starshaped with respect

to p. Applying Theorem 3.4 to f and g on S = PC(x0) proves that PC(x0) ∩
F (f, g) 6= ∅.

Theorem 4.2. Let f and g be self-maps of the normed space X, and C be

a subset of X with f(∂C ∩ C) ⊆ C. Let x0 ∈ F (f, g) such that cl(f(D)) is

compact, where

D := {y ∈ PC(x0) : g(y) ∈ PC(x0)}.
If (f, g) is a Banach operator pair on D, f is admitting g-center on D ∪ {x0},
with center x0, and if g is continuous on cl(D) and D ∩ F (g) is starshaped

with respect to p, then PC(x0) ∩ F (f, g) 6= ∅.
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Proof. If x0 is in C, then we are done. So we assume that x0 is not in C and also

by assumption, f maps PC(x0) into C. It is noted that D ∩ F (g) 6= ∅, at least

p ∈ D∩F (g). We shall show that D∩F (g) is closed. In fact, for {yn} ∈ D∩F (g)

such that yn → y0, we have y0 ∈ cl(D) ⊆ PC(x0), since PC(x0) is closed and

from the continuity of g at y0, we have yn = g(yn) → g(y0), which implies that

g(y0) = y0 ∈ PC(x0). Therefore y0 ∈ D ∩ F (g).

It is clear that g is a self-map of D ∩ F (g). We claim that f also maps

D∩F (g) into itself. To show this, let y ∈ D∩F (g). By repeating the process of

the proof of Theorem 4.1, we obtain f(y) ∈ PC(x0), and since (f, g) is a Banach

operator pair on D, we have g(f(y)) = f(y) ∈ PC(x0). Thus f(y) ∈ D ∩ F (g).

Finally we note that cl(f(D∩F (g))) ⊆ cl(f(D)) is compact, by assumption.

Then applying Theorem 3.5 on S = D∩F (g) yields the desired conclusion.

Example 4.3. Let X = R, be the Banach space of real numbers with ‖x‖ =

|x|, and [a, b] ⊂ R. Let f : [a, b] → [a, b] be a continuous function and y0 ∈ X be

a center of f, with k < 1. Suppose we want to find the solution of the equation

f(x) = x. Since y0 ∈ X is a center of f, we have

|f(x)− y0| ≤ k|x− y0|,
for all x ∈ [a, b], and this is definition of contraction admitting center.

Thus f is a continuous contraction admitting center map on [a, b] into itself.

Since [a, b] is a closed subset of X = R, by Theorem 2.1, there exists a fixed

point u ∈ [a, b], i.e., f(u) = u. Therefore u is the solution of the equation

f(x) = x.
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