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1 Introduction

The unsolved Oppermann’s conjecture (1882) [1] states that:

For any integer N > 1 one has : π(N2 + N) > π(N2) > π(N2−N), where

π(x) is the prime counting function.

The unsolved Sierpiński’s S conjecture (1958) [2] states that:

For any integer N > 1, there is always at least one prime number in each

line of a N×N matrix filled up from left to right and from bottom to top with

the N2 integers from 1 to N2.

Let’s then write Sierpiński’s S(N) matrix:

Table 1. Sierpiński’s matrix S(N)

N . . . . . . . . . Low Opp. Conj. . . . . . . N2

N-1 . . . . . . . . . . . . . . . . . . . . . . . . N2 −N

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . Sierp. Conj. . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 3N+1 . . . . . . . . . . . . . . . . . . . . . 4N

3 2N+1 . . . . . . . . . . . . . . . . . . . . . 3N

2 N+1 . . . . . . . . . . . . . . . . . . . . . 2N

1 1 2 3 . . . . . . . . . . . . . . . N

L/C C1 C2 . . . . . . . . . . . . . . . C(N-1) C(N)

In this Table 1, with the definitions of the conjectures given above, one can

see that all the lines of the matrix S(N) correspond to Sierpiński’s conjecture

and that the top line only corresponds to the lower part of Oppermann’s

conjecture.

Considering only the integers N > 1, one can see that for N = 2 et N = 3,

Sierpiński’s matrices are:

Table 2. Sierpiński’s matrix S(2)

3 4

1 2
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Table 3. Sierpiński’s matrix S(3)

7 8 9

4 5 6

1 2 3

and one can check that Sierpiński’s conjecture is verified by these two matrices.

But they do not show any kind of recurrence.

2 Preliminary Notes

Now, let’s define a new matrix that we name D(N) and in which we intro-

duce some recurrence with the help of the recurrence relation:

(N + 1)2 = N2 + (2N + 1)

In order to do that, we simply add to Sierpiński’s S(N) matrix, two lines

upwards with the 2N numbers immediately greater than N2 and then, one

column rightwards filled up with zeros except the number (N + 1)2 at its top,

as follows:

Table 4. Matrix D(N) (from column 1 to column N+1)

N+2 A . . . . . . . . . . . . . . . B (N + 1)2

N+1 C High Opp. Conj. . . . D N2 + N 0

N E Low Opp. Conj. F N2 − 1 N2 0

N-1 . . . . . . . . . . . . . . . . . . N2 −N 0

. . . . . . . . . . . . . . . . . . . . . . . . 0

k . . . . . . Sierp. Conj. . . . . . . kN 0

. . . . . . . . . . . . . . . . . . . . . . . . 0

4 3N+1 . . . . . . . . . . . . . . . 4N 0

3 2N+1 . . . . . . . . . . . . . . . 3N 0

2 N+1 . . . . . . . . . . . . . . . 2N 0

1 1 2 . . . . . . . . . . . . N 0

L/C 1 2 . . . . . . . . . . . . N N+1

As lines L=N+1 and L=N+2 correspond to Legendre’s conjecture, this Table

4 ties three independent conjectures into one real matrix. With this model,

matrix D(N+1) is:
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Table 5. Matrix D(N+1)

N+3 . . . Low Opp. Conj. . . . Legend. Conj. (N + 2)2

N+2 . . . High Opp. Conj. . . . Legend. Conj. 0

N+1 A Low Opp. Conj. . . . B (N + 1)2 0

N N2 C High Opp. Conj. D N2 + N 0

N-1 . . . . . . E Low Opp. F N2 − 1 0

. . . . . . . . . . . . . . . . . . . . . . . . 0

k . . . . . . . . . . . . . . . . . . k(N+1) 0

. . . . . . . . . . . . . . . . . . . . . . . . 0

4 3N+4 . . . . . . . . . . . . . . . 4(N+1) 0

3 2N+3 . . . . . . . . . . . . . . . 3(N+1) 0

2 N+2 . . . . . . . . . . . . . . . 2(N+1) 0

1 1 2 . . . . . . . . . . . . N+1 0

L/C 1 2 . . . . . . . . . . . . N+1 N+2

Using Table 4 to replace numbers up to (N + 1)2 of Table 5, this last one can

be written :

Table 6. New matrix D(N+1)

N+4 . . . Low Opp. . . . . . . Legend. Conj. (N + 2)2

N+3 . . . High Opp. . . . . . . Legend. Conj. 0

N+2 A Low Opp. . . . . . . B (N + 1)2 0

N+1 C High Opp. . . . D N2 + N 0 0

N E Low Opp. F N2 − 1 N2 0 ↑
N-1 . . . . . . . . . . . . . . . N2 −N 0 0

. . . . . . . . . . . . . . . . . . . . . 0 Sierp.’s

k . . . . . . . . . . . . . . . kN 0 matrix

. . . . . . . . . . . . . . . . . . . . . 0 S(N)

4 3N+1 . . . . . . . . . . . . 4N 0 0

3 2N+1 . . . . . . . . . . . . 3N 0 0

2 N+1 . . . . . . . . . . . . 2N 0 0

1 1 2 . . . . . . . . . N 0 ↓
L/C 1 2 . . . . . . . . . N N+1 N+2

Let’s notice that line 1 always contains the prime number 2 when N > 1.

Now, let’s modify Sierpiński’s conjecture in order to create conjecture D which

states that:
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For any integer N > 1, there is always at least one prime number in each line

of a matrix D(N), filled in according to the model defined by Table 4.

We will now prove the three tied conjectures by induction.

3 Main Result : Proof by induction

3.1 For N=2 and N=3

One can easily check that conjecture D is verified when N=2 and 3:

Table 7. Matrix D(2)

7 8 9

5 6 0

3 4 0

1 2 0

Table 8. Matrix D(3)

13 14 15 16

10 11 12 0

7 8 9 0

4 5 6 0

1 2 3 0

and one can check that these two matrices show a beginning of recurrence that

we will use in the next step.

3.2 From N to N+1

Now, we suppose that conjecture D is verified for a value N > 3 and we

will prove that it is still true for N+1.
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3.3 Extension of matrix D(N+1) of Table 6

By using recurrently the principle used to transform matrix D(N+1) of

Table 5 into the new matrix D(N+1) of Table 6, we get at the end of the

process, from any N > 2 down to N = 1 :

Table 9. Matrix D(N+1) of Table 6 recurrently transformed

. . . Low Opp. for (N+2)2 . . . Leg. Conj. . . . (N+2)2

. . . High Opp. for (N+1)2 . . . Leg. Conj. . . . 0

A Low Opp. for (N+1)2 . . . . . . B (N+1)2 0

C High Opp. for N2 . . . D N2+N 0 0

E Low Opp. for N2 F . . . N2 . . . 0

. . . High Opp. for (N-1)2 . . . . . . 0 0 0

. . . Low Opp. for (N-1)2 . . . (N-1)2 0 0 0

. . . High Opp. for (N-2)2 . . . 0 0 0 0

. . . Low Opp. . . . . . . . . . . . . . . . . . .

. . . High Opp. . . . . . . . . . . . . . . . . . .

21 22 23 24 52 L Opp. for 52 0

17 18 19 20 0 H Opp. for 42 0

13 14 15 42 0 L Opp. for 42 0

10 11 12 0 0 H Opp. for 32 0

7 8 32 0 0 L Opp. for 32 0

5 6 0 0 0 H Opp. for 22 0

3 22 0 0 0 L Opp. for 22 0

2 0 0 0 0 H Opp. for 12 0

12 0 0 0 0 0 0 0

C1 C2 C3 C4 . . . C(N) C(N+1) C(N+2)

Let’s notice that all squares n2 are located at column C=n and line L = 2n−1.

3.4 Conditional proof of Oppermann’s conjecture

Proof. If we suppose that conjecture D is true for matrix D(N), it means that

all Oppermann’s, Sierpiński’s and Legendre’s conjectures are true for N, and



Robert Deloin 19

particularly, it means that both lines N and N+1 of matrix D(N) of Table 4

contain at least one prime number.

As line parts CD and EF of these two lines of matrix D(N) of Table 4 are

parts of Oppermann’s conjecture for N and become respectively parts of lines

N and N+1 of matrix D(N+1) of Table 6, these lines also contain at least one

prime number. Oppermann’s conjecture, which is already verified for N=2

and N=3 in matrices D(2) and D(3) of Tables 7 and 8, is therefore proved for

D(N+1), conditionally to the validity of conjecture D for matrix D(N).

Noticing that Oppermann’s conjecture (just conditionally proved), applies

to lines N to N+4 of matrix D(N+1) of Table 6, these five lines therefore

contain, still conditionally, at least one prime number.

3.5 Conditional proof of Sierpiński’s conjecture

3.5.1 Proof by the global reverse process

Proof. Still because Oppermann’s conjecture is conditionally proved, it also

applies to all the lines of matrix D(N+1) of Table 9 except line 1. This proves

that all lines except line 1 in Table 9, contain at least one prime number.

Now, we will do the reverse operation that we did to get Table 9 from Table

6, operation that was exactly to expand the N lines of the N×N matrix of

Sierpiński into 2N-1 lines for which we have just shown that each of them

contains at least one prime number except line 1. We can therefore say that

this reverse operation consists, ignoring zeroes, to force the first N-1 lines of

Table 9, each of them containing at least one prime number except line 1, into

the N lines from line N to line 2N-1 of Table 9, each of them also containing at

least one prime number. At the end of this process, the N-2 prime numbers of

the first N-1 lines of Table 9 have been forced into the N lines from N to 2N-1

of Table 9, lines that, at the start of the reverse process, already contained at

least one prime number.

Therefore, according to the pigeonhole principle, all lines of the regenerated

matrix of Sierpiński in Table 6 contain at least one prime number. This proves

Sierpiński’s conjecture, conditionally to the validity of conjecture D for matrix

D(N).
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3.5.2 A deeper analysis of the reverse process

In the original article, the last proof does not define clearly the status of each

line of Sierpiński’s matrix and so, has been criticized. This is the reason why a

deeper analysis of the reverse process is given here, that gives the exact status

of each line and thus validates this last proof.

At the beginning of the reverse process, that is to say when Table 9 is just

obtained, all the lines of Table 9 are lines corresponding to the lower or upper

conditions of Oppermann’s conjecture and so, all the lines including numbers

from 2 to N2 contain at least a prime number. To make it simple, we will

name these lines (zeroes and square numbers excluded): Oppermann’s lines.

At the end of the reverse process, that is to say when the N×N matrix of

Sierpiński has been regenerated in Table 6, all lines of this N×N matrix have

the fixed length N and we will name them: Sierpinski’s lines.

We can then identify Oppermann’s lines by accolades in this N×N Sierpiński’s

matrix S(N) of Table 6 for D(N+1), which we extract into Table 10 that fol-

lows:

Table 10. Sierpiński’s matrix S(N) in D(N+1) with N=10

N {91 92 93 94 95 96 97 98 99} N2

N-1 (N-1)2 {82 83 84 85 86 87 88 89 90} n2

8 71 72} {73 74 75 76 77 78 79 80}
7 61 62 63} (N-2)2 {65 66 67 68 69 70 n3

6 51 52 53 54 55 56} {57 58 59 60

5 41 42} {43 44 45 46 47 48} 72 {50

4 {31 32 33 34 35} 62 {37 38 39 40

3 {21 22 23 24} 52 {26 27 28 29 30} n1

2 11 12} {13 14 15} 42 {17 18 19 20}
1 12 {2} {3} 22 {5 6} {7 8} 32 {N

L/C 1 2 3 4 5 6 7 8 9 N

3.5.3 A first set of n1 Sierpiński’s lines

In Table 10 (with N=10) which is indeed Sierpiński’s matrix S(N) of Table

6, we notice that the square numbers (N − 1)2(=81), (N − 2)2(=64) and
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(N − 3)2(=49) of general equation:

z = (N −√C)2

where z is integer only when the column number C is a square number, are

located on a parabola of horizontal axis that is described by the equation:

L = (N + 1)− 2
√

C

where C is the column number and L is the line number or:

C = ((N + 1)− L)/2)2

This means that in this Table 10, the biggest of these square numbers (here

z = 49) allowing that the Oppermann’s line preceeding it (of length
√

z−1 = 6):

{43, 44, 45, 46, 47, 48} can be fully inserted on the left of this square in the

corresponding Sierpinski’s line, is the greatest square near the intersection of

the arc of parabola and the last column on the right of Sierpinski’s matrix.

The position of this intersection is defined by the condition:

C = N

which gives, putting this value into the definition of the arc of parabola defined

above:

L = (N + 1)− 2[N1/2] = 11− 6 = 5

where the square brackets [x] will indicate, from now on, the integer value of

x.

So, in Table 10 and from the condition C = N , lines from L=1 to L=(N+1)

-2[N1/2](=5) always contain at least one full Oppermann’s line and as Opper-

mann’s conjecture has been conditionally proved in section 3.4, all these lines

contain at least one prime number.

Hence, for Table 10, a first number of lines containing at least one prime

number is:

n1 = (N + 1)− 2[N1/2]
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3.5.4 A second set of n2 Sierpiński’s lines

Now, beginning from top of Table 10, we see that:

• line N=10 has remained unchanged during the whole reverse process.

• line N-1=9 has been shifted one number on the right without losing any

of its numbers.

As Oppermann’s conjecture has been conditionally proved in section 3.4, these

two lines also contain at least one prime number.

Hence, for Table 10, a second number of lines containing at least one prime

number is:

n2 = 2

3.5.5 The third and last set of n3 Sierpiński’s lines

The n3=N-(n1+n2)(=3) remaining lines, from L1=(N+1) -2[N1/2]+1 (=6) to

L2=N-2 (=8), are divided in two parts during the reverse process and it is

more difficult to formulate a status, but this remains possible. Indeed:

1) In Table 9 and for N=10, for numbers up to N2(=100), the number of

Oppermann’s lines is:

2N-1 = 19

The number of full Oppermann’s lines from number 1 to number (L1-1)N =

N((N+1) -2[N1/2]) (= 50) is that which stops at a square z = n2 equal or

immediately less than this value, which gives:

n = [
√

z] =
[√

N((N + 1)− 2[N1/2])
]

= 7

and the Oppermann’s line in table 9 where z(=49) can be located is therefore:

2n− 1 = 2
[√

N((N + 1)− 2[N1/2])
]
− 1 = 2× 7− 1 = 13

2) In Table 10 for N=10, the number of Sierpiński’s lines is : N = 10.

The number of Sierpiński’s lines for which it is already known that they contain

at least one prime number is:

• for numbers from 1 to N((N+1) − 2[N1/2]) (=50) :

n1 = ((N+1) -2[N1/2]) (= 5)
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• for lines N=10 and N-1=9 : n2 = 2

• Total : n1 + n2 = (N+1) − 2[N1/2] + 2 (= 7)

The number of remaining Sierpiński’s whole lines to study for numbers from

N((N+1) − 2[N1/2]) (=50) to (N-1)2 − 1 (=80) is thus:

n3 = N − (n1 + n2) = N − ((N + 1)− 2[N1/2]) + 2) (= 10−7 = 3)

3) But, in Table 9:

• from 49 = n2 located at line 2n− 1 = 13,

• to 80 = (N − 1)2 − 1 located at line (2N − 1)− 2 = 2N − 3 = 17,

there are exactly n4 = (2N −3)− (2n−1) (=4) Oppermann’s lines (neglecting

the square 81=(N-1)2). Therefore, there is always:

n4 = (2N − 3)− (2n− 1) (=4) Oppermann’s lines of Table 9

to share out in:

n3 = N − ((N + 1)− 2[N1/2]) + 2 (=3) Sierpiński’s lines in Table 10.

So, the difference d between the number of Oppermann’s lines in Table 9 located

between N((N+1) − 2[N1/2]) (=50) and (N-1)2 − 1 (=80) and the number of

Sierpiński’s lines in Table 10 for the same interval, is always:

d = n4 − n3 = (2N − 3)− (2n− 1)− {N − ((N + 1)− 2[N1/2]) + 2)}
d = (2N − 3)− 2n + 1− {−1 + 2[N1/2]− 2}
d = (2N − 3)− 2n + 1 + 1− 2[N1/2] + 2

d = (2N + 1)− 2n− 2[N1/2]

and, as n =

[√
N((N + 1)− 2[N1/2])

]
:

d = (2N + 1)− 2

[√
N((N + 1)− 2[N1/2])

]
− 2[N1/2]

expression that, for any N, always (weirdly) gives:

d = 1
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Remark. This can be easily verified by considering the continuous func-

tion d’ of same form as d and obtained by replacing any square bracket (for

integer values) by a simple parenthesis of same direction, as shown below:

d = (2N + 1)− 2[(N((N + 1)− 2[N1/2]))1/2]− 2[N1/2]

d′ = (2N + 1)− 2(N((N + 1)− 2(N1/2)))1/2)− 2(N1/2)

d′ = (2N + 1)− 2(N(N1/2 − 1)2)1/2 − 2N1/2

d′ = (2N + 1)− 2N1/2(N1/2 − 1)− 2N1/2

d′ = (2N + 1)− (2N − 2N1/2)− 2N1/2

d′ = 1

So, for N > 3 there is always n3 Sierpiński’s lines of constant length N in

Table 10 having to be shared by n4 = n3 + 1 Oppermann’s lines. This evokes

inevitably the pigeonhole principle of Dirichlet (1834) which states that if n

pigeons have to share m pigeonholes with n > m, all pigeonholes will get one

pigeon and one or more pigeonholes will contain more than one pigeon.

To be allowed to apply this principle in our case, we have to clarify what are

the equivalents of the pigeonholes and what are the equivalents of the pigeons.

For the m pigeonholes, it’s easy to find that their equivalents must be the

n3 fixed length Sierpiński’s lines of Table 10, in which numbers range from

N((N+1) - 2[N1/2]) + 1 (=51) to (N-1)2 − 1 (=80).

Then, for the n pigeons, it would be logical to choose as equivalents, the

n4 = n3 + 1 Oppermann’s lines of Table 9. But as these lines are split in

two parts in the reverse process, they are disqualified to be the equivalents of

pigeons. The solution here is to choose as equivalent of a pigeon, the smallest

prime number contained in each Oppermann’s line. These new pigeons, whose

existence is proved as Oppermann’s conjecture has been proved earlier in 3.4,

conditionally to the validity of conjecture D for matrix D(N), are in same

number as Oppermann’s lines and are not split in the reverse process.

Now, having clarified the situation in our case, the pigeonhole principle can

be used, which proves that, for N > 3, the n3 (=3) Sierpiński’s lines in Table

10 and/or Table 6, in which numbers range from N((N+1) − 2[N1/2]) + 1 (=

51) to (N-1)2 − 1 (= 80), all contain at least one prime number.

As this is already the case for the n1 + n2 (=7) lines identified earlier, we

can now conclude that all Sierpiński’s lines of S(N) in Table 10 or in table 6

for D(N+1) contain at least one prime number for a chosen N > 3.



Robert Deloin 25

Proof. Finally, as all lines of S(N) in D(N+1) of Table 6 contain at least one

prime number when it is supposed true for S(N) in D(N) and as we have seen

in section 3.1 that it is also true for N=2 and N=3, all this proves Sierpiński’s

conjecture, conditionally to the validity of conjecture D for matrix D(N).

3.6 Unconditional proof of conjecture D (2014)

Proof. As we have seen that:

• conditionally to the validity of conjecture D for matrix D(N), lines N to

N+4 of the new matrix D(N+1) of Table 6 contain at least one prime number

according to the conditionally proved Oppermann’s conjecture of section 3.4,

• and that lines 1 to N of the new matrix D(N+1) of Table 6 contain at least

one prime number according to the conditionally proved Sierpiński’s conjecture

of section 3.5,

• one can therefore conclude that all lines of the new matrix D(N+1) of Table

6 contain at least one prime number when it is supposed true for D(N).

As in section 3.1 we have seen that conjecture D is also verified for N=2

and 3, it is therefore unconditionally proved for any N.

3.7 Unconditional proofs of Oppermann’s (1882) and

Sierpiński’s (1958) conjectures

Proof. Oppermann’s and Sierpiński’s conjectures which were only proved con-

ditionally to the validity of conjecture D for matrix D(N) are now uncondi-

tionally proved, as conjecture D has been unconditionally proved in section

3.6.

3.8 Unconditional proof of Legendre’s conjecture (1808)

Proof. Finally, as Oppermann’s conjecture has been unconditionally proved in

section 3.7, Legendre’s conjecture is also unconditionally proved.
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This result can even be improved: as Legendre’s conjecture concerns two

Oppermann’s lines, it is then proved that:

For N>0, there are always at least two prime numbers between N2 and (N+1)2.

4 Consequences

The above four proved conjectures allow other proofs of conjectures. Three

of these are given hereafter.

4.1 Conjecture on gaps dm = pm+1 − pm = O(
√

pm)

Proof. As Oppermann’s and Sierpiński’s conjectures have been proved, we can

therefore say that in lines 1 to N+1 of the following extended matrix S(N),

there is always at least one prime number:

Table 11. Extended Sierpiński’s matrix S(N)

N+1 N2 + 1 . . . High Opp. Conj. for N2 . . . pm+1 (N+1)N

N pm . . . Low Opp. Conj. for N2 . . . . . . N2

N-1 . . . . . . . . . . . . . . . . . . . . . . . . (N-1)N

N-2 . . . . . . . . . . . . . . . . . . . . . . . . (N-2)N

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

k . . . . . . . . . Sierp. Matrix . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 3N+1 . . . . . . . . . . . . . . . . . . 4N-1 4N

3 2N+1 . . . . . . . . . . . . . . . . . . . . . 3N

2 N+1 . . . . . . . . . . . . . . . . . . . . . 2N

1 1 . . . . . . . . . . . . . . . . . . N

L/C 1 2 3 4 . . . . . . . . . N-1 N

As all numbers of the column on the right are composite, for any couple of

lines N and N+1, the maximum possible distance dm between two consecutive
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prime numbers pm and pm+1 is:

dm = pm+1 − pm ≤ (kN − 1)− ((k − 2)N + 1) = 2N − 2 (1)

Verifying this on the couples of lines (3, 4) and (N, N+1), we get respectively:

dm = pm+1 − pm ≤ (4N − 1)− (2N + 1) = 2N − 2

dm = pm+1 − pm ≤ ((N + 1)N − 1)− ((N − 1)N + 1) = 2N − 2

As for lines N and N+1, Oppermann’s proved conjecture implies that:

(N − 1)2 < N2 −N < pm < N2 < pm+1 < N2 + N < (N + 1)2

one also has, taking only the positive square roots:

(N − 1) <
√

pm < N <
√

pm+1 < (N + 1) (2)

which shows that:

√
pm+1 −√pm < (N + 1)− (N − 1) = 2 (3)

But as (2) contains:

N <
√

pm+1 (4)

and as (3) can also be written:

√
pm+1 <

√
pm + 2 (5)

from relations (1), (4) and (5) applied in that order, we get:

dm = pm+1 − pm ≤ 2N − 2 < 2
√

pm+1 − 2 < 2(
√

pm + 2)− 2

or :

dm = pm+1 − pm < 2
√

pm + 2

which proves the limit searched for by Hoheisel [3] and others since 1930:

dm = pm+1 − pm = O(
√

pm)

where O( ) is the big O of Landau’s notation.
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4.2 Andrica’s conjecture (1986)

Proof. This conjecture [4] states that for any m > 0:

√
pm+1 −√pm < 1

Proof - As pm+1 − pm > 0, with relation (3) we have:

0 <
√

pm+1 −√pm < 2

which gives, by division by
√

pm:

0 <

√
pm+1 −√pm√

pm

<
2√
pm

(6)

Since Euclid it is known that there are infinitely many increasing primes. This

implies that when m tends to infinity, we have:

2√
pm

→ 0

which, put together with relation (6), gives :

0 <

√
pm+1 −√pm√

pm

<
2√
pm

→ 0

which, in turn, implies that when m tends to infinity:

limm→∞(
√

pm+1 −√pm) = 0 (7)

Finally, as the quantity
√

pm+1 − √
pm reaches a maximum of

√
11 − √

7 =

0, 67... < 1 for m = 4 before tending to zero as proved above in (7), this proves

Andrica’s conjecture.

4.3 Brocard’s conjecture (1904)

This conjecture states that for m ≥ 2 :

π(p2
m+1)− π(p2

m) ≥ 4

Proof. As the minimum distance between two odd primes is dmin = pm+1 −
pm = 2 for the case of twin primes and that, for any N, we have:

(N + 1)− (N − 1) = 2
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and:

(N + 1)2 − (N − 1)2 = 4N (8)

it is therefore possible to consider the minimum case of twin (odd) primes

with:

pm = (N − 1)

pm+1 = (N + 1)

where N is inevitably even, so that from (8):

p2
m+1 − p2

m = 4N

Sierpiński’s matrix S(N) extended up to line N+7 for an even N between twin

primes, can then be written as in Table 12.

Table 12. Sierpiński’s matrix S(N) extended up to line N+7 for twin primes

. . . . . . . . . . . . (N + 3)2 . . . N2 + 7N

. . . . . . . . . . . . . . . . . . N2 + 6N

. . . (N + 2)2 . . . . . . . . . . . . N2 + 5N

. . . . . . . . . . . . . . . . . . N2 + 4N

p2
m+1 . . . . . . . . . . . . . . . N2 + 3N

. . . proved Leg.’s conj. . . . . . . . . . N2 + 2N

. . . proved Leg.’s conj . . . . . . . . . N2 + N

. . . proved Sierp.’s conj. . . . . . . . . . N2

p2
m proved Sierp.’s conj. . . . . . . . . . N2 −N

. . . . . . . . . . . . . . . . . . N2 − 2N

. . . (N − 2)2 . . . . . . . . . . . . N2 − 3N

. . . . . . . . . . . . . . . . . . N2 − 4N

. . . . . . . . . . . . (N − 3)2 . . . N2 − 5N

. . . . . . . . . . . . . . . . . . . . .

. . . proved Sierp.’s conj. . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

2N+1 . . . . . . . . . . . . . . . 3N

pm+1 . . . . . . . . . . . . . . . 2N

1 . . . . . . . . . . . . pm N(even)

C1. . . C4. . . . . . . . . C9. . . C(N-1) C(N=102)
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Here, we have to consider four points.

First point, Table 12 is obtained for the case of twin primes.

Second point, no couple of two consecutive primes can be nearer than twin

primes.

Third point, in Table 12 the square numbers (N−3)2, (N−2)2, (N−1)2 =

p2
m, (N + 1)2 = p2

m+1, (N + 2)2 and (N + 3)2 of general equation:

z = (N ±√C)2

where z is integer only when the column number C is a square number, are

located on a parabola of horizontal axis that is described by the equation:

L = (N + 1)± 2
√

C

where C is the column number and L is the line number. Fourth point, the

already proved Sierpiński’s and Legendre’s conjectures provide at least one

prime number per line in Table 12, up to p2
m+1.

Taking the four points into account, as p2
m+1 and p2

m are located four lines

away in Table 12 when pm and pm+1 are twin primes, and, as each of these

four lines contains at least one prime number, as Sierpiński’s and Legendre’s

conjectures have been proved, we can conclude that there is always at least 4

prime numbers between p2
m and p2

m+1. This proves Brocard’s conjecture.

5 Conclusion

This article provides the proofs of six conjectures: Oppermann’s, Sierpiński’s,

Legendre’s, the one on the gaps dm = pm+1 − pm between consecutive primes

as well as Andrica’s and Brocard’s conjectures. It shows a method to solve

the overlapping three first conjectures by linking them into a larger one, the

D conjecture, that includes the property of recurrence.
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