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Moduli Identities and Cycles Cohomologies

by Integral Transforms in Derived Geometry

Francisco Bulnes1

Abstract

Generalizations of Derived categories and their deformed versions are
used to develop a theory of ramifications of field studied in the geomet-
rical Langlands program to obtain the correspondences between moduli
stacks and solution classes in field theory, represented cohomologically
under several versions of generalized Penrose transforms on cycles whose
Spec has objects in a quantum algebra whose derived category is an
extension of holomorphic bundles categories with a special connection
(Deligne connection). The co-cycles in this spectrum can conform the
Langlands correspondence via the Penrose transforms on generalized
D-modules in moduli stacks defined on adequate holomorphic vector
bundles and their possible extension to meromorphic connections, as an
example. In this correspondence problem a Zuckerman functor is a fac-
tor of the universal functor of derived sheaves of Harish-Chandra which
can be worked widely in the Langlands geometrical program to the mir-
ror symmetry in different physical stacks of the Universe (for example,
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worked in different moduli spaces identities to different moduli prob-
lems). One important cosmological problem that exists is to reduce the
number of field equations that are resoluble under the same gauge field
(Verma modules) and to extend them to gauge solutions to other fields
using the topological groups symmetries that define their interactions
(generalized Verma modules). For it, are analyzed the cohomological
groups that can establish a theory of the Ext functor to characterizing
of a twisted derived category and their elements as ramifications of a
field (to the field equations) and followed through the application of the
corresponding Yoneda algebra where is searched extends the action to
an endomorphism of Verman modules of critical level bundles through
the action of a Lie algebra and on a cohomological space of zero dimen-
sion, which we want, that is to say; the first member of the Penrose
transform must be isomorphic to a cohomology group of zero dimension
on the Verma modules belonging to a twisted derived category whose
points are Hecke sheaves, but that in our spectral resolution must be at
least of q = 1, dimension.
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1 Introduction

Factorizations of the moduli space M(LG, C), exhibit the flatness of the

Cousin complexes that appears in this factorable process (and that are re-

interpreted by the Penrose transform as varieties whose zeros are roots of the

corresponding polynomials on a bundle of lines) due to the holonomicity and

conformably of M, in the field theory scale nearest to the Higgs fields. Then by

local cohomology [1] we can inquire using the corollary given in [2], the coho-

mology of P3 through moduli spaces modulo M(P3, 0). Then for geometrical

Langlands program, ramifications correspond to extensions of induced moduli

stacks where meromorphic connections are induced to holomorphic connec-
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tions. Thus in the context of the Penrose transforms is available to obtain

the different cohomological solution classes of the field equations including the

singularities of the space-time in an algebraic frame with a geometrical image

on twisted lines bundles. Likewise, when set L̃λ = Lλ ⊗ p∗(K1/2), we are es-

tablishing a corresponding sheaf Dλ
k,Iy

of L̃λ -twisted differential operators on

the moduli space BunG,Iy well-defined, which is our deformed sheaf necessary

to establish the geometrical correspondences between objects of moduli stacks

and differential operators that require meromorphic connections to determine

the holomorphic connections of the corresponding derived category and their

geometry. Other method to establish a justification on the nature of the our

twisted derived category and their elements as ramifications of a field (to the

field equations) is the followed through the Yoneda algebra [3], [4] where is

searched extends the action of the endomorphism End(Vcritical), through the

Lie algebra action ĝ, that is the degree zero part that we want, that is to say, the

first member of the Penrose transform H0(LG, Γ(U,O)) ∼=Ker(U, p∗∇+ τ(∇)),

of their isomorphism, which must be H0(ĝ[[z]], Vcritical). We identify in the

final part of the demonstration of the theorem 4. 1, [5], that with functions on

OpLG
(D×), central elements as IF K, act via their restriction to the sub-variety

OpLG
, of opers on Σ. Then the Yoneda extension algebra must be understood

as a projective Harish-Chandra module to the pair (ĝ, G[[z]]) (to z, a singular

point of manifold Z). Then H0(ĝ[[z]], Vcritical) = C[OpLG
(D×)].

2 Moduli Identities and their Stacks as Divi-

sors

All begins with the relation

MHiggs(G, C) = T∨
V BunC(Σ), (1)

obtained inside the procedure followed to the obtaining of the induced equiva-

lences inside the moduli space MH(G, C). Then is necessary to define certain

ramification corresponding to the connection ∇s such that having a vector

bundle p∗cV , on C × T∨
V Bunc(Σ), that comes equipped with a Higgs field

φεH 0(C × T∨
V BunC(Σ)), characterized uniquely by the property that for ev-

ery θεT∨
V BunC(Σ)), we have φ |C×{θ}= θ which is due to the spectral cover
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equipped with a natural lines bundle L̃λ = Lλ⊗ p∗(V), as has been mentioned

in the introduction, where V , is a complex vector space. As we want projec-

tive Harish-Chandra module to the deformed part of our induced connection

(ramification), where must be induced said lines bundle on the part of DG/H

-modules which is a sheaf of certain lines bundle that is divisor of a lines bun-

dle on BunG, then the component of lines bundle, given by p∗cV , is factor of

a canonical lines bundle on BunG, corresponding to the critical level that is

required.

Theorem 2.1. (F.Bulnes) Considering (1) and φ |C×{θ}= θ, defined before

we have

M(LG, C) = MHiggs(
LG, C)K1/2, (2)

where K1/2, is the square root of the bundle of lines on BunG, corresponding

to the critical level.

Proof .[5].

# Moduli Identity Derived Geometry

1 MFlat(
LG�H, C) ∼= MH(G, C; ωK) Dualities in Mirror Theory

2 Mχ
∼= (C×)k�Ga χ, is the dimensión of the brane space

3 br(M̄g,0(P1, µ)) = Pr Stable Curves in P1

4 MHiggs(G, C) = T∨
V Bunc(Σ) lines bundles L̃λ

of Higgs fields = Higgs bundles

5 M0,0(P1, 1) ∼= G2,4(C) Space-Time(Minkowski Space)

6 M(G, C) = MHiggs(G, C)K1/2 Strings, D -branes

7 MH(G, C) = MFlatK, S1, Cones, Celestial Spheres

Table 1: a This is a Khälerian moduli space.

From the Theorem 2.1, is clear that the ramification to the part of connec-

tion ∇s, must be inside the context of the moduli space MHiggs(
LG, C) The

induced lines bundle must be one from T∨
V BunC(Σ), with the condition of that

it must be a divisor of holomorphic vector bundle.

One immediate consequence of this Theorem 2.1, and the application of

a meromorphic extension given for Pantev [6], but in the circumstance of a



Francisco Bulnes 5

divisor factor of the moduli space MH(LG, C), is the following result:

Theorem 2.2. (F.Bulnes) If ∇s, has moduli stack L̃λ = L⊗2, where L⊗2,

is the sub-bundle of lines

L⊗2 ∼= L̃[C̄hV (θ)] ⊗ ζ⊗−(n−1), (3)

where C̄V → C × T∨
V Bun, is simply the cover of (p∗cV,φ), and hence comes

equipped with a natural line bundle L̃λ, such that πV ∗L̃λ = p∗cV , then their

generalized Penrose transform (which is a Penrose-Ward transform) comes

given by

H0(LG, Γ(U,O)) ∼= Ker(U, p∗∇+ τ(∇)), (4)

Proof [5].

Then we can to analyze through cohomology of cycles these moduli identi-

ties from the Hitchin mappings extended to deformations of the stacks T∨BunG,

and T∨BunLG
, in analogue manner. Likewise these cohomological versions,

can give a factorization result of the solution classes to field equations to a

corresponding dimension of the cohomology spaces considering as proper ram-

ification the used in the stack moduli T∨BunLG
, using the images of Cousin

complexes [7], [8] (the corresponding to the Cousin cohomology) due to the

Penrose transforms framework.

3 Results through Cohomology of Cycles and

Moduli problems

Theorem 3.1. (F. Bulnes) [9]. If we consider the category MKF
(ĝ,Y),

then a scheme of their spectrum VDef
critical, where Y, is a Calabi-Yau monifold

comes given as:

Homĝ(X, V Def
critical)

∼= HomLocLG
(Vcritical, MKF

(ĝ, Y )), (5)

Proof [9].

Then we can to establish the following results considering the moduli prob-

lems between objects of an algebra.
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Studies realized using commutative rings extended by the Yoneda algebra

say that:

Theorem 3.2. The Yoneda algebra ExtDs(BunG)(Ds,Ds), is abstractly A∞

-isomorphic to Ext•LocLG
(OOpLG

,OOpLG
).

This result bring in particular that formal deformations of the sheaf Ds,

can be consigned in Ds
BunG

, -mod, which in the stack moduli language can be

re-written using the Theorem 3.1, as

SpecBunC
TBunG = T∨BunG.

Through of the consideration of Frenkel on the necessity of compute the

cohomologies of higher dimension and prove that

H•(T∨BunG,O)) ∼= Ω•[OpLG
(D)]. (6)

We can establish a long sequence where the correspondence between moduli

stacks and cohomological classes as products of the generalized Verma modules

(see Table [7]) where precisely the cohomological space H•(T∨BunG,O)), has

their corresponding version with coefficients in the Verma module at critical

level 2 as H•(g[[t]], g; Vcrit)). Of fact, this appears inside moduli identity of

the Theorem 2.1.

We consider the following lemma published in [9].

Lemma 3.3. (F. Bulnes) Twisted derived categories corresponding to the

algebra of functions C[OpLG
(D×)], are the images obtained by the composition

P(τ), on L̃λ,∀λεh∗, and such that their Penrose transform is:

P : H0(LG, Γ(BunG,D×)) ∼= Ker(U, D̃λ,y).

Proof It is other form to write the twistor transform treatment followed

in [7]. The image that stays is naturally a Penrose transform image.

The Lemma 3.3 plays an important role to exhibit the influence of twistor

transform to the obtaining the twisted nature of the derived categorie D×,

starting from the line bundle Lλ.

2Vcrit = Ucritĝ⊗g[[z]] C.
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Theorem 3.4. (F. Bulnes) The following resolution of cohomological

spaces is a geometrical resolution to the lines bundles given in (3) and that

gives moduli stacks in (4):

C[OpLG
(D)] ∼=

H0(T∨BunG,O)) → H1(T∨BunG, Ω1)) → H2(T∨BunG(Σ)Ω1)) → · · · → H•(?, Ω•)) → . . .

One question that arises immediately is, who is ‘? ’, and which is the corre-

sponding dimension of the cohomological space H•(?, Ω•)), and their cotangent

bundle Ω•?

Proof Now we demonstrate the Theorem 3.3. To it, we consider the

Yoneda algebra ExtDs(BunG)(Ds,Ds), and as “quantum” version of SymT, the

moduli stack BunG = G[[z]]nX, 3 then by the Theorem 3.2., a Harish-Chandra

module of the type H•(g[[z]], g, Vcrit)), implements an A∞ -isomorphism of

the module H•(BunG,Ds), considering a skew-commutative sub-algebra of

H•(g[[z]], g, Vcrit)). But H•(BunG,Ds), is the corresponding cohomology

Hq
G[[z]](X, (∧•g[Σ0]⊗ Vcrit; ∂)),

where Σ0 = Σn{σ}, ∀σεΣ, and ∂, is the Chevalley differential for the fiber-

wise Lie algebra action of g[Σ0], on Vcrit, twisted at the point φ • G[Σ0]εX,

by the adjoint action of the loop group element φ. We need to use Hodge

theory over classes φ • G[Σ0]εX. We want to extend the Deligne connec-

tion with Penrose transform on each ramification ∂̄ + d, to schemes as [5] of

spectrum VDef
critical, of the category MKF

(ĝ, Y), which are applications in defor-

mation theory [10],[11], [12]. But, by the Lemma A.1, we have the functors

in the space Fun(QCoh(Y ), F)ε FunOpLG
, 4 that by integral transforms as

in [4], their kernels are in a sheaf OOpLG, [13] having as cohomological space

H•(g[[z]], g,EndVcrit)), which has a “quantum version” H•(T∨BunG,O)), where

H•(T∨BunG,O)) = H•(?, Ω•)), (7)

But in OOpLG we have SpecBunC
TBunGεT∨(OpLG

(D)), and the quantum

version of this is obtained in the cohomology space, re-taking the non-commutative

3X := G((z))/G[[Σ0]], is the thick flag variety obtained through “quantum” version of
SymT.

4Here F, is a shead of ramifications.
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Hodge theory to a Higgs context [6] thus we have; H•(T∨BunGγ,O) ∼= C[H]⊗
H∨, where H∨ = T∨(OpLG

(D)), that is to say, the corresponding extension of

the derived category C[H], to the operator ∂, 5 is H∨. For other side, by (4)

or (5)

H1(BunG, SymT ) ∼= Ker(U, g̃; ∂ + d) = Ω•(OpLG
(D)), (8)

and the Higgs stack bundle is C[ H ]⊗ H∨ = Ω1[ H ]. But H•(T∨BunG,O)),

is generated by a copy of H∨, over H0 = C[OpLG
], being associate with the

graded algebra ExtDs(BunG)(Ds,Ds), but is had the exact long sequence when

the sheaves O, are analytic sheaves:

survival only cohomology generators H1. Then the dimension of the hyper-

cohomological space Hq, is at least q = 1, and due to that

H•(H∨, Ω•)) = H•(?, Ω•)), (9)

we have that ?=H∨ = T∨[OpLG
(D)], which is included in the quasi-coherent

category MKF
(ĝ,Y). This proves the Theorem 3.3.

In Stein varieties language, the before quantum version takes the form

T∨X ⊂ Y,∀X, Y stein varieties.

We consider the application of the Theorem 3.2, in the moduli spaces con-

text of the deep space-time M:

Example 3.5. 3. 1. In BRST-cohomology, the field equations

b0 = φa, ∀a
b1l̄dz l̄ = ∂̄a,

5g[Σ0]
∂=Adφ−→ g((z))/g[[z]]
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have solutions such that b0 mod Im φεH0(D,O(D∨) |D ⊗OD) =Ext1(OD,O),

with D, a divisor on the complex line C, 6 that is to say,

0 −→ O(−D)
φ−→ O −→ OD −→ 0,

Reciprocally Ext1(OD,O) = H0(D,O(D∨) |D ⊗OD), with the field equa-

tions

∂̄(b1l̄dz̄ l̄)l̄ = 0,

∂̄b0 = −φ(b1dz̄)

formulas.pdf

which have solutions as the extended fieldQBRST = ∂̄+Σφαβ = ∂̄+ϕ̃ =Oper(QBRST ).

Here precisely, QBRST , is the solution to the field equation with differential op-

erators in O(D∨) |D ⊗OD.

Specialized Notation

P -Penrose tranform.

D× -Twisted sheaf of differential operators to our Oper, given by LocLG
(D×).

K1/2 - Root square of the canonical line bundle on BunG, corresponding to the

critical level. This is a divisor vector bundle.

BunG(X) -Category of principal G - bundles over C ×X. Also is the moduli

stack of principal G -bundles over C.

LocLG
(D×) -Set of equivalence classes of LG -bundles with a connection on

D×. This space shapes a bijection with the set of gauge equivalence classes of

the ramified operators, as defined in [14],[15].

DBRST - the derived category on D -modules of QBRST -operators applied to

the geometrical Langlands correspondence to obtain the “quantum” geomet-

rical Langlands correspondence.

6C/D = OD ∪ O(−D)
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HG− ∼= (B \ G�B), of bi-equivariant D -modules on a complex reductive

group G.

D×(BunG(Σ)) -It’s the category of the twisted Hecke categories HG,λ.

ChG,[λ] -Character sheaves used as Drinfeld centers in derived algebraic geom-

etry. Their use connects different cohomologies in the Hecke categories context.

MHiggs(
LG, C) -Moduli space of the dualizing of the Higgs fields, that is to

say, quasi-coherent D-modules. Usually said quasi-coherent D-modules are co-

herent D-modules as D-branes.

MHiggs(G, C) -Moduli space of the Higgs fields. Their fields are the θεT∨
V (BunC(Σ))

Apendix A.

Lemma 3.6. (F.Bulnes, I. Verkelov) A.1. Let C, a derived category

whose functor belongs to the space Fun(D×, C)7. Then the cycles and co-cycles

in the scheme (7.3.7) of the Theorem 7.3.1., [16] are calculated by the Penrose

transform on each ramification ∂ + d, of OOpLG, having:

Endg̃(Vcrit) ∼= FunOpLG
,

(A.1)

Proof [13].

7Of tact we have in the Oper, language that FunOpL
Gλ

⊂FunOpG(D×) [7]
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