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Abstract 
In an attempt to discover the effect of recurrence on the topological dynamics, a 

nonlinear function whose regime of periodicity amounts to recurrence was 

considered, thus the logistic function. This research seeks to study the logistic 

function as to how it really behaves. In the field of dynamics most especially this 

function in terms of discrete form has been studied. Logistic equation as a model 

based on population growth was initially originated by the famous Pierre-Francios 

Verhulst. It is a continuous form written as  𝑑𝑥
𝑑𝑡

= 𝑟(𝑥 − 𝑥2), which depend on 

time. It can be restructured from the continuous form into a discrete form known 

as logistic function, written as; 𝑥𝑛+1 = 𝑟𝑥𝑛(1 − 𝑥𝑛), with 𝑛 = 0,1,2,3 … …  ,𝑥𝑛 is 
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the state at the discrete time 𝑛 𝑎𝑛𝑑  𝑟  are the control parameters which works 

within a given interval. It is a very simple example of nonlinear systems in 

dynamics. Its true nature or behaviour in changing from one regime to another 

regime is solely dependent on the adjustment or variation of the control parameter 

𝑟. Therefore this research is also about the transitions of this function. For 

instance, for some parameter values of 𝑟 the logistic map display periodic 

behavior (period-1 orbits “fixed point”, period-2 orbits and period-n orbits), and 

for others, it displays chaotic behavior. 

 

Keywords: logistic function; nonlinear dynamical system; fixed points; periodic 

points; bifurcation; chaos; orbits 

 

 

 

1  Introduction 

The logistic equation or the logistic map as a nonlinear dynamic system has a 

class of different behaviors. This function is a polynomial mapping of a degree 2 

which is a nonlinear equation that behaves in series. The biologist Robert May in 

1976 came out of with this paper through his seminal paper, which first created by 

Pierre-Francois Verhulst as a discrete-time demographic model analogous to the 

logistic equation. And it was written mathematically as T (𝑥) = 𝑘𝑥(1- 𝑥), where 

𝑥 = [0,1] and k is the value of interest which is a parameter ( 𝑘 > 0). 

The concepts of chaos can studied without any burden through simplicity of 

the logistic map. The logistic map provides a rich example as to how to explore 

periodic regions and complex chaotic behavior. For the interest of this research, 

where the logistic map changes in behavior due to the parameter introduced into 

the map and allowed to vary continuously in a way that changes in the logistic 

function can be noticed 
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2  Useful definitions and theorem for our work 

Definition 1: orbits (fixed and periodic orbits)  

let𝑓: 𝑅→𝑅 The point 𝑥0 is a periodic point of period 𝑛 for 𝑓 if 𝑓n(𝑥0) = 𝑥0  where 

the point 𝑥0 is fixed point for 𝑓 if 𝑓(𝑥0) = 𝑥0 but 𝑓i(𝑥0) ≠ 𝑥0 for 0 <𝑖<𝑛. The 

sequence {𝑥0, 𝑓(𝑥0), 𝑓2(𝑥0) … 𝑓n(𝑥0) …} is called the orbit of 𝑥0 under 𝑓. 

Definition 2: Types of periodic points 

1. periodic point 𝑝 is attracting if  �(𝑓𝑛)Ꞌ(𝑝) �< 1 

2. periodic point 𝑝 is repelling if  �(𝑓𝑛)Ꞌ(𝑝) �>1 

3. point 𝑝 is neutral if  �(𝑓𝑛)Ꞌ(𝑝) � = 1 

Note: the prime denote differentiation with respect to 𝑝 

 

Theorem 1: if 𝑓 is a continuous function/map𝑓: 𝑅 → 𝑅 and if there exists period-

3 periodic point in𝑓, then all periods exist in 𝑓 leading to chaos. 

 

Definition 3: Let𝑓: 𝑅→𝑅, if 𝛿>0 is a constant such that ɛ>0, then there is 𝑥 

satisfying |𝑥 −  𝑥0| <  𝛿 such that|𝑓𝑛(𝑥) −  𝑓𝑛(𝑥0)|  ≥ 𝜀 , where 𝑛 is an integer. 

Where the point 𝑥0 is called sensitive point, 𝑥 is the initial condition. 

 

 

3 Main results 

3.1 The logistic map/function 

The logistic map is defined by; 𝑥𝑛+1 = 𝑟𝑥𝑛(1 − 𝑥𝑛) , where 𝑛 = 0,1,2,3 … … 

Let 𝑥𝑛+1 = 𝑓(𝑥𝑛) , then  𝑓(𝑥𝑛) = 𝑟𝑥𝑛(1− 𝑥𝑛), 𝑥𝑛 ∈ [0,1] and𝑟 ∈ [1,4]. By setting 

the parameter 𝑟 = 1, the logistic equation becomes; 𝑓(𝑥𝑛)= 𝑥𝑛(1− 𝑥𝑛) =𝑥𝑛 – 𝑥𝑛2 

 

 

 



52         On the nature of the logistic function as a nonlinear discrete dynamical system  

3.2 The roots and the maximum values of 𝒙 in the function 

The roots of 𝑥 in the function 𝑓(𝑥𝑛) = 𝑟𝑥 – 𝑟𝑥2 

If 𝑓(𝑥𝑛) = 0, then r𝑥 – 𝑟𝑥2 = 0 

𝑟𝑥 (1−𝑥) = 0 

Implies, 𝑟𝑥 = 0 and 1 – 𝑥 = 0 

Then, 𝑥 = 0 and 𝑥 = 1 

The maximum and minimum point of 𝑥  𝑖𝑛 𝑓(𝑥𝑛) = 𝑟𝑥 – 𝑟𝑥2 

𝑑𝑓= 𝑟 – 2𝑟𝑥 

𝑑𝑓= 0 implies that, 𝑟 − 2𝑟𝑥 = o 

𝑟(1 − 2𝑥) = 0 

𝑟 = 0 

1 – 2𝑥 = 0 

𝑥 = 1
2
 

The second derivate gives room for the conclusion on the sign, thus 𝑑2𝑓(1
2
) = −2𝑟. 

Hence from the two main features of the logistic function it is clear that it passes 

through 𝑥 at 𝑥 = 0 and 𝑥 = 1 and maximum at 𝑥 = 1
2

 since it is concave down. 

Note:  𝑑𝑓 and 𝑑2𝑓 are the first and second derivatives of the above function. 

 

 

3.3 Solutions/locations of logistic function 

The solution of the logistic function occurs when a diagonal line 𝑦 = 𝑥  is 

been introduced and there is an intersection between the diagonal line and the 

function as indicated on the diagram below with dash red line. Thus, 𝑦 = 𝑓(𝑥𝑛) 

𝑥 = 𝑟𝑥 – 𝑟𝑥2, then 𝑟𝑥2 – 𝑟𝑥 + 𝑥 = 0 

𝑥 (𝑟𝑥 – 𝑟 + 1) = 0, 

𝑥 = 0 and 𝑟𝑥 – 𝑟– 1 = 0 
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Hence, 𝑥 = 𝑟−1
𝑟

 or 𝑥 = 0 are the two main solutions or locations of 𝑓(𝑥𝑛). 

 

 

3.4 Determination of a fixed point of the logistic function for 

period-1 orbit/point 

A period-1 orbits do occur when a function goes through series of iterations 

with an initial value popping-out as the same value (mensah, 2016). 

From the solutions of the logistic function, that is; 𝑥0 = 0 and 𝑥0 = 𝑟−1
𝑟

 which is 

based on the intersection of the diagonal line and the function. 

Then, for 𝑓(𝑥𝑛) = 𝑟𝑥𝑛 − 𝑟𝑥𝑛2 = 𝑟𝑥𝑛(1 − 𝑥𝑛) 

At intersection 𝑥0 = 0, 𝑓(0) = 𝑟(0) (1-0)  

𝑓(0) = 0 

At intersection 𝑥0= 𝑟−1
𝑟

 , 𝑓 �𝑟−1
𝑟
�= 𝑟 �𝑟−1

𝑟
� �1 −  �𝑟−1

𝑟
�� 

                                                                 = (𝑟 − 1) �1 −  𝑟−1
𝑟
� 

                                                                 = (𝑟 –  1) �𝑟−𝑟+1
𝑟

� 

                                                                 = (𝑟 –  1) 1
𝑟
 

                                                                 = 𝑟−1
𝑟

 

                                                    𝑓(𝑟−1
𝑟

) = 𝑟−1
𝑟

 

Clearly, both deduction points out that, the point of intersection 𝑥0 = 0 and 𝑥0 = 
𝑟−1
𝑟

 are the fixed/period-1 points of the logistic map for the period-1 orbit/point 

and also serve as solutions. 

Example 1: let 𝑓(𝑥𝑛) = 𝑟𝑥𝑛(1 − 𝑥𝑛) and𝑟 = 2.7. Show that 𝑥0 = 17
27

 is the fixed 

point of the function. 

Illustration: if 𝑥0 = 17
27

 , then,𝑓(17
27

) = 2.7 �17
27
� �1 − 17

27
� = 17

27
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Hence 𝑥0 = 17
27

  as the initial point is the fixed point of the function, since it gives 

back the same point after several iterating, therefor serving as the fixed point for 

the function. 

 

 

3.5 The nature of the fixed point of the logistic function 

We now show that whether the nature of the fixed/period-1 points of the 

logistic function can be classified under definition 2. That is;  

1. Attracting fixed point 

2. Repelling fixed point  

3. Neutral 

 

Illustration: We determine if the fixed points of the logistic function are attracting 

and repelling fixed points under period-1 orbit base on the definition above. 

Let the logistic function 𝑓(𝑥𝑛) = 𝑟𝑥𝑛(1 − 𝑥𝑛) 

Then, we take the derivative and evaluate the absolute value of the derived 

function, at 𝑥0 = 0 and 𝑥0 =  𝑟−1
𝑟

 

That is, 𝑓′ (𝑥) = 𝑟 – 2𝑟𝑥 

At the fixed point 𝒙𝟎 = 0 

𝒇′(𝑥) = 𝑟 – 2𝑟𝑥, 

        1. Attracting, �𝑓ʹ(0)�< 1 

                      |𝑟 − 2𝑟(0)|< 1 

                    -1 <𝑟 – 2𝑟(0) < 1 

                                 -1 <𝑟< 1 

      2.  Repelling, �𝑓ʹ(0)�>1 

                     |𝑟 − 2𝑟(0)|>1, then 

                     𝑟 – 2𝑟(0) > 1 or 𝑟 – 2𝑟(0) < 1 



Patrick Akwasi Anamuah Mensah et al                                                                         55 

                                  𝑟> 1 or 𝑟<1 

Clearly, 𝑟 ∈  [0, 1) is inside the domain of 𝑟 ∈ [1, 4], hence  𝑥0 =0 is attracting 

and stable at                                  -1 <𝑟< 1 for period-1 orbit of the logistic 

function but repelling at  𝑟> 1 or 𝑟<1 since 𝑟 ∈ (1, 4] 

At the fixed point 𝒙0 =  𝒓−𝟏
𝒓

 

𝑓′ (𝑥) = 𝑟 – 2𝑟𝑥 

 1. Attracting, �𝑓ʹ( 𝑟−1
𝑟

)�< 1  

                        |−𝑟 + 2|< 1 

                     -1 < - 𝑟 + 2 < 1 

                      -3 <−𝑟< -1 this implies 1 <𝑟< 3 

2. Repelling, �𝑓ʹ(𝑟−1
𝑟

 )�>1 

                     |−𝑟 + 2|>1, then −𝑟+ 2 > or −𝑟 + 2 < -1 

Therefore, 𝑟< 1 or 𝑟> 3 

Note: the fixed point 𝑥0 = 0 and 𝑥0 = 𝑟−1
𝑟

 is a neutral fixed points at 𝑟 =1    and   

  𝑟 = 3. Very trivial 

 

Example 2: Algebraic illustration of the attracting fixed point of the logistic 

function, when 𝑟 =2.3<3 then the fixed point will be 0.57 

Algebraically; taking 𝑥 = 0.10 as an initial point and the control parameter 𝑟 =2.3 

< 3. Then for 𝑓(𝑥𝑛) = 2.3𝑥𝑛 – 2.3𝑥𝑛2 at 𝑥0 = 0.10, 𝑥1 = 𝑓(𝑥0) = 0.207, 𝑥2 = 𝑓2(𝑥1) 

= 0.378, 𝑥3= 𝑓3(𝑥2) = 0.541, 𝑥4 = 𝑓4(𝑥3) = 0.571, 𝑥5 = 𝑓5(𝑥4) = 0.563, 𝑥6 = 𝑓6(𝑥5) 

= 0.570,𝑥7= 𝑓7(𝑥6) = 0.570 

 

Example 3: Illustration of the repelling fixed point through algebraic when 𝑟 =3.5 

> 3 with a fixed point 𝑥0 = 0.71 

Algebraically, taking 𝑥 = 0.10 as an initial point and the control parameter  𝑟 =3.5 

> 3. Then for 𝑓(𝑥𝑛) = 3.5𝑥 – 3.5𝑥2 at 𝑥0 = 0.10 𝑥1 = 𝑓(𝑥0) = 0.315, 𝑥2 = 𝑓2(𝑥1) = 
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0.755, 𝑥3 = 𝑓3(𝑥2) = 0.647, 𝑥4 = 𝑓4(𝑥3) = 0.799, 𝑥5 = 𝑓5(𝑥4) = 0.561, 𝑥6 = 𝑓6(𝑥5) = 

0.862, 𝑥7 = 𝑓7(𝑥6) = 0.417 

 

 

3.6 The periodic orbits (period-2) and the bifurcation diagram of 

the logistic map 

From the logistic function 𝑓(𝑥𝑛) = 𝑟𝑥𝑛 – 𝑟𝑥𝑛2, 𝑟 as a parameter of interest 

can lie within 0 and 3 i.e. 0<𝑟< 3. Taken 𝑟= 3 or beyond and iterate the function 

base on this interval it gives birth to an Orbit that alternate between two values 

(twice the period). The second iterate of the logistic map with the fixed point gives 

the period−2 Orbits (Mensah, 2016). 

 

Example 4: Considering the function or map 𝑓(𝑥𝑛) = 3.2𝑥𝑛 – 3.2𝑥𝑛2 for 

𝑥𝑛 ∈ (0, 1), let 𝑥0 = 0.5 

By iteration of the function 𝑓(𝑥) the following sequence was obtain; at 𝑥0 = 0.5, 𝑥1 

= 𝑓(𝑥0) = 0.80, 𝑥2 = 𝑓2(𝑥1) = 0.51, 𝑥3 = 𝑓3(𝑥2) = 0.80, 𝑥4 = 𝑓4(𝑥3) = 0.51, 𝑥5 = 

𝑓5(𝑥4) = 0.80 

Clearly, the iteration of the function 𝑓(𝑥𝑛) = 3.2𝑥𝑛 – 3.2𝑥𝑛2 is a repeat of numbers 

that alternate between two values. Thus Orb = {0.51, 0.80} for the Orbits for the 

function 𝑓(𝑥𝑛) = 3.2𝑥𝑛 – 3.2𝑥𝑛2 with 𝑥0 = 0.5 as the initial point. This point 𝑥0 is 

a period−2 points for the map 

Attracting and repelling points of logistic map for period-𝒏 orbits 

1. periodic point 𝑝 is called attracting if  �(𝑓𝑛)Ꞌ(𝑝) �< 1 

2. periodic point 𝑝 is called repelling if  �(𝑓𝑛)Ꞌ(𝑝) �>1  

3. point 𝑝 is called neutral if  �(𝑓𝑛)Ꞌ(𝑝) � = 1 

 Note: the prime denote differentiation with respect to 𝑝 
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It is obvious that by the definition of the periodic 𝑛 point as the iteration of the 

fixed point 𝑝 in 𝑛 time, thus 𝑓n (𝑝) = 𝑝 for instance, 𝑓 (𝑓(𝑝)) =𝑝, then it is clear 

that the conditions for a fixed point 𝑝 to be attracting fixed point also hold for 

periodic point𝑝 for period 𝑛 point. So it is also true for the periodic point𝑝 if a 

fixed/period-1 point 𝑝 is a repelling fixed point 𝑝.  

 

 

3.7 Solutions/locations for the logistic function/map on its second 

iteration (period-2orbits/points) 

For period-1 point the solution is 𝑥 = 0 and 𝑥 =𝑟−1
𝑟

 . Algebraically, we can 

also find the solutions for period-2 point of the logistic function.  

Let 𝑓(𝑥𝑛) = 𝑟𝑥𝑛 – 𝑟𝑥𝑛2then, for the period-2 point that is the second iteration 

𝑓2(𝑥) of the logistic function implies; evaluating 𝑓2(𝑥) = 𝑓(𝑓(𝑥)), 

𝑓2(𝑥) = 𝑟�𝑟𝑥(1 − 𝑥)��1 − �𝑟𝑥(1 − 𝑥)�� 

          =𝑟2𝑥(1 − 𝑥)[1 − 𝑟𝑥 + 𝑟𝑥2] 

          =(𝑟2𝑥 − 𝑟2𝑥2)[1 − 𝑟𝑥 + 𝑟𝑥2] 

          =𝑟2𝑥[1 − 𝑥 − 𝑟𝑥 + 2𝑟𝑥2 − 𝑟𝑥3]  ………………….. 1.1 

But for period-2 point, 𝑓2(𝑥) = 𝑥 ……………………………1.2 

Then by equating 1.1 and 1.2 

𝑥 = 𝑟2𝑥[1 − 𝑥 − 𝑟𝑥 + 2𝑟𝑥2 − 𝑟𝑥3] 

            0 = 𝑟2𝑥[1 − 𝑥 − 𝑟𝑥 + 2𝑟𝑥2 − 𝑟𝑥3] − 𝑥 

            0 = 𝑥(𝑟2[1− 𝑥 − 𝑟𝑥 + 2𝑟𝑥2 − 𝑟𝑥3] − 1) 

            0 = −𝑥 �𝑥 − 1 + 1
𝑟
� (𝑟2𝑥2 − (𝑟2 + 𝑟)𝑥 + 𝑟 + 1) 

This implies 0 = −𝑥, 0 = �𝑥 − 1 + 1
𝑟
� and 0 = (𝑟2𝑥2 − (𝑟2 + 𝑟)𝑥 + 𝑟 + 1) 

Therefore 𝑥 = 0,  𝑥 =𝑟−1
𝑟

 and 𝑥 = ±√𝑟2−2𝑟−3+𝑟+1
2𝑟

 are the solutions or the fixed 

points for period-2 point/orbits for the logistic function 
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But, since our interest is in 𝑟>0 for 𝑥 is real. So we setts the discriminant to be;  

                                                       𝑟2 − 2𝑟 − 3 ≥ 0 

(𝑟 − 3)(𝑟 + 1) ≥ 0 

                                                    𝑟 ≥ 3 Or 𝑟 ≤ −1 

Hence 𝑟 ≥ 3 will be our interest for this work at this section since our interest was 

that 𝑟>0 for 𝑥 to be real.  

 

 

3.8 Bifurcation diagram of the logistic function 

At exactly 𝑟=3 and beyond, the behavior of the logistic map begins to change 

and it is as a results of the increasing nature of the control parameter 𝑟, and this 

bring about bifurcation (splitting), when there is a qualitative change in the long 

term behavior of the map as the control parameter is varied, we say that the system 

undergo a bifurcation.(Mensah.2016) 

Now by carefully looking at the graph (bifurcation) below the first bifurcation 

starts at exactly 𝑟=3 that is a period-2 periodic points. 

 

 
Figure 1.00: Bifurcation diagram of 𝑟 and 𝑓(𝑥) 
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We can also notice in the figure 1.00 above that there is a split (or bifurcation) 

which happened when 𝑟>3, this bifurcation represents the number of periods an 

initial value obtain when 𝑟 is a certain value/ number. 

From the bifurcation of the logistic function as 𝑟 keeps increasing, Mitchell 

Feigenbaum (in 1978) worked on this process through a computer and arrived 

with the following table. What he discovered is defined by  𝑙𝑖𝑚 𝑛 →

∞𝑟𝑛−1−𝑟𝑛−2
𝑟𝑛−𝑟𝑛−1

≈ 4.6692016 … … now accepted and is called Feigenbaum Constant. 

 

 

3.9 Bifurcation table of the logistic function as 𝒓 keeps increasing 

𝑛 Bifurcation  

 (2n-cycle) 

𝑟𝑛 𝑟𝑛−1 − 𝑟𝑛−2 𝑟𝑛−1 − 𝑟𝑛−2
𝑟𝑛 − 𝑟𝑛−1

 

1 2 3 - - 

2 4 3.449490 - - 

3 8 3.544090 0.44949 4.7515 

4 16 3.564407 0.09460 4.6562 

5 32 3.568759 0.020317 4.6684 

6 64 3.56989 0.004352 4.6692 

7 128 3.56993 0.001131 4.6694 

 

It can be seen that the distance between successive bifurcations shrinks by a 

constant factor. This Feigenbaum Constant can be used to predict subsequent 

values of 𝑟 at exactly where there is a split on the bifurcation diagram. 

Note: the sequence { 𝑟𝑛} is an infinite series called a period doubling cascade: this 

when the control parameter of given system is been adjusted further and further, 

where 2n-cycle exist for every positive integer 𝑛. From Feigenbaum computations 

the location of 𝑟𝑛 numerically appear closer and closer together through successive 

period doubling bifurcation. (Mensah, 2016) 
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When 𝑟 is slightly higher than 3.54 the function alternate between 8,16,32,64 as in the 

Table above. Also the lengths 𝑟 n-1− 𝑟 n-2 of the control parameter distances/gabs 

producing the same values of alternation reduce speedily.  

The ratio 𝑟 n-1− 𝑟 n-2/ 𝑟 n− 𝑟 n-1 between the lengths 𝑟 n-1− 𝑟 n-2 of two successive 

bifurcation distances get closer to the value 4.6692016. And when 𝑟=4, chaotic 

behavior of the map occurs.  

 

 

4  Chaotic behavior of the logistic function 

The last nature/characteristic of the logistic map 𝑓(𝑥𝑛) = 𝑟𝑥 (1− 𝑥), is the 

chaotic regime. To arrive at this chaotic regime, it has been shown in the various 

bifurcation diagrams and the Feigenbaum computations that the map moves faster 

or closer as 𝑟 is been increase. 

 

 

4.1 Proof of theorem 1: the existence of period-3 as one of the 

route to chaos 

It is also very clear that for period-3 points, there are some indications of 

small open spaces which break beyond a certain point, hence periodic leading to 

chaos. 
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Graphical display of the period-3 points of the logistic map  

(bifurcation diagram) 

 

 
Figure 1.10: Bifurcation diagram for 3.8 <𝑟< 4.0 

 

4.2 Illustration: Algebraic proof of the period-3 points of the 

logistic function 

It shows that period−3 point exists when 𝑟 lies approximately between 3.83 

and 3.84 as shown in Figure 1.10 above. It will be much better and easier if we use 

algebraic approach. 

So Then, by considering the iterations of the logistic function 𝑓(𝑥𝑛) = 𝑟𝑥𝑛 (1−𝑥𝑛) 

where 𝑟=3.83, implies 𝑓(𝑥𝑛) = 3.83𝑥𝑛 (1− 𝑥𝑛).  Let 𝑥0=0.5 
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𝑥1= 𝑓(𝑥0) =0.9575, 𝑥2= 𝑓2(𝑥1) =0.1559, 𝑥3=𝑓3 (𝑥2) =0.5039, 𝑥4=𝑓4 (𝑥3) =0.9574, 

𝑥5=𝑓5 (𝑥4) =0.1561, 𝑥6=𝑓6 (𝑥5) =0.5044, 𝑥7=𝑓7 (𝑥6) =0.9574, 𝑥8=𝑓8 (𝑥7) 

=0.1561, 𝑥9=𝑓9 (𝑥8) =0.5046 

Upon iterating the function 𝑓(𝑥𝑛) = 3.83𝑥𝑛 (1− 𝑥𝑛), the sequence we are 

obtaining are a repeaof numbers that alternate between three values as shown 

above, thus {0.96, 0.16, 0.50} 

This clearly, shows that there is the existence of period-3 in logistic function. 

Hence period−3 point exists implying that all other periods also exist. 

So  the route  to chaos  can be seen through the existence of period-3, the  

doubling nature of the  periodic orbits and all this route are dependents on the  

strength of the control parameter 𝑟. 

 

So the question now is what happens when 𝒓=4? 

By considering the Approximation of 𝑟 within 3.83 and 3.84, there exist a periodic 

orbits of period-3 point for 𝑓(𝑥𝑛) and after 𝑟>3.84 period doubling starts, hence 

chaotic at 𝑟=4?  

Then, by considering sensitive dependence on initial conditions as a concept for 

chaos and setting 𝑟=4.  The logistic becomes, 𝑓(𝑥𝑛) = 4𝑥𝑛 (1-  𝑥𝑛). 

 

 

4.3 Proof of definition 3: sensitive dependence on initial condition 

at 𝒓=4 

Sensitive dependence on initial conditions as a concept for chaos on logistic 

function/map 

Taking the logistic function 𝑓(𝑥𝑛) = 4𝑥𝑛 (1-  𝑥𝑛) and setting 𝑥0=0.3333 as the 

approximation of  1
3
. Then, The iteration of the logistic function with initial value 

 1
3

 and its approximation 0.3333 
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  When 𝑥0=0.3333  

𝑥1= 𝑓(𝑥0) =0.8888, 𝑥2= 𝑓2(𝑥1) =0.3952, 𝑥3=𝑓3 (𝑥2) =0.9561, 𝑥4=𝑓4 (𝑥3) =0.1680, 

𝑥5=𝑓5 (𝑥4) =0.5591, 𝑥6=𝑓6 (𝑥5) =0.9860, 𝑥7=𝑓7 (𝑥6) =0.0552 

      When 𝑥=1
3
 

𝑥1= 𝑓(𝑥) =8
9

 , 𝑥2= 𝑓2(𝑥1) =32
81

 , 𝑥3=𝑓3 (𝑥2) =6272
6561

 , 𝑥4=𝑓4 (𝑥3) =0.1684, 𝑥5=𝑓5 (𝑥4) 

=0.5602, 𝑥6=𝑓6 (𝑥5) =0.9855, 𝑥7=𝑓7 (𝑥6) =0.0572 

It can be seen in that increase in iterations increases the distance between each 

successive number. For the chaotic regime we base our argument on the definition 

and the above iterations.  

Then by setting 𝛿=0.000333. We choose 𝜀 = 0.0001, it can be seen that at 𝑓4 the 

difference is 0.0004 which is more than 𝜀. And for 𝑥 and 𝑥0 to get closer let 𝑥0 

=0.3333, then 0.0000333 as the difference between 𝑥 and 𝑥0 due to the iterations 

and for 𝛿=0.000333 and our fixed 𝜀 = 0.0001.  

Clearly, �𝑥 −  𝑥0� <  𝛿 implying that |0.0000333| < 0.000333 and at 𝑓7, the 

resulting difference between the values is 0.0020 which also exceed our fixed 𝜀 = 

0.0001. 

Thus if  �𝑓7  (𝑥) − 𝑓7 (𝑥0 )�  ≥ 𝜀 implying |0.0020| ≥ 0.0001 

Therefore it is evidently clear and easy to say that the function is sensitive to 

initial condition.   

And since this hold for sensitive condition the function is chaotic at 𝑟=4 

Finally we can accept the fact that period-3 lead to chaos since it exits by the 

algebraic analysis and also through the zooming of the bifurcation diagram of 

figure 1.10 when 𝑟 lies between 3.83 and 3.84 which are less than 𝑟 equal to 4. 

And beyond this period-3 subsequent period occurs called the period doubling 

cascade into chaos. Also at 𝑟=4 the function is sensitive to initial condition 

therefore showing chaotic behavior. 
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5  Conclusion 

Clearly, the behavior of the logistic function into a period−1 points also known as 

the fixed points was as a results of the control parameter 𝑟<3 and will only results into 

periodic point when 𝑟 =3 or beyond. It was found that the period-1 point (fixed points) of 

the logistic function was attracting and repelling, that is converging and diverging when 𝑟 

lies within 0 and 3 and 𝑟<1 and 𝑟>3 respectively.  On the issue of period−2 points of the 

logistic map, it was shown that the bifurcation diagram (figure 1.00) gives a better and 

transparent solution than that of the algebraic iteration of the function.That is when it 

moves from the fixed points/ orbits solution 𝑥 = 0,  𝑥 =𝑟−1
𝑟

 to the periodic points which 

also add another solutions  𝑥 =±√𝑟2−2𝑟−3+𝑟+1
2𝑟

 to the previous solutions. 

It can be concluded that for a logistic function, when the parameter 𝑟 keeps 

increasing the nature or behavior moves from periodic behaviour to chaotic 

behaviour, making it unstable. That is an increase in 𝑟 makes the solutions 

unstable and higher periodic oscillating occurs. 

When the cycles keep on becoming unstable, period doubling gives way to a 

different regime hence chaos then occurs at 𝑟 = 4. 

So a route to chaos can be seen through the existence of period-3, the 

doubling nature of the periodic orbits and the sensitive dependence on its initial 

condition. All these routes relies on the strength of the controlparameter 𝑟. 
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