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Abstract 

In this paper, we present and describe a new version of the Minimum Cost Flow 

Problem (MCFP). This version is the Minimum Cost Flow Time-Windows 

Problem with Interval Bounds and Flows (MCFTWPIBF). The MCFTWPIBF is a 

combinatorial optimization and an NP-hard problem. The minimum cost flow 

time-windows problem with interval data can be using two minimum cost flow 

time-windows problems with crisp data. In this paper, the idea of Ghiyasvand was 

extended the minimum cost flow time-windows problem with interval-valued 

lower, upper bounds and flows. Also, this work is extended to network with fuzzy 

lower, upper bounds and flows. A representation example network is given. 
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 1      Introduction 
         Consider a directed network ),( ANG =  where N  is a set of n  nodes and 

A  is a set of m  arcs.  We associate with each arc Aji ∈),(  an upper bound iju  

that denotes the maximum amount that can flow on the arc and a lower bound ijl  

that denotes the minimum amount that must flow on the arc. Each arc has a non-

negative transit time ijt , ji ≠  and ., Nji ∈  Each node ,Ni∈  has a time-window 

],[ ii ba , within which the node may be served, i.e., iii bta ≤≤ , Tti ∈  is a non-

negative service and leaving for that node. To define the minimum cost flow time-

windows problem, we distinguish two special nodes in the network, namely a 

source node s  and a sink node τ  with time windows ],[ ss ba  and ],[ ττ ba  

respectively, see, El-Sherbeny [15], El-Sherbeny [16], El-Sherbeny [17], and 

Tuyttens, Teghem and El-Sherbeny [23]. The problem is to find the minimum cost 

flow with time-windows from the source node s  to the sink node τ  that satisfy 

the lower, upper bounds and balance constraints at all nodes. The decision 

variables in the minimum cost flow time-windows problem are arc flows, ijf  on 

an arc .),( Aji ∈  

There are several approaches to solve the minimum flow problem. For 

decreasing path algorithms by Ciupala and Ciurea [4], Ciupala and Ciurea [5] and 

Ciupala and Ciurea [7], pre-flow algorithms by Ciupala [3], Ciurea [10], Ciupala 

and Ciurea [6], and Ciupala and Ciurea [8]. For minimax which consists of finding 

a maximum flow from the sink node to the source node in the residual network by 

Bang-jenson and Gutin [1], and Ciupala and Ciurea [5], using dynamic tree 

implementations by Ciupala and Ciurea [9]. Also, Ciurea, Georgescu and 

Marinescu [13], solved the minimum flow problem for bipartite networks. Ciurea 

and Deaconu [11], and Ciurea and Deaconu [12], solved the inverse minimum 

flow problem. 
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In Ghiyasvand [18], a new method to solve the minimum cost flow 

problem with interval data is presented. First, it solves a minimum cost flow 

problem with lower bounds, flows, and costs, second it, shows a minimum cost 

flow problem with upper bounds, flows, and costs. Then, the method combines 

these two solutions to form an interval solution. Ghiyasvand [18], also proved that 

is the interval solution is optimal for the minimum cost flow problem with interval 

bounds, flows, and costs.  

Here, we extend their idea to present and describe the minimum cost flow 

time-windows problem with interval bounds and flows. We show that the 

minimum cost flow time-windows problem can be using the two minimum flow 

time-windows problems with crisp data. 

The reminder of this work consists of five sections including Introduction. 

Section 2 presents the basic concepts, definitions and reviews of some results 

about crisp, time-windows, fuzzy time-windows, interval and fuzzy data which are 

used in the subsequent sections. In section 3, we presented, described the 

mathematical model of MCFTWPIBF and presented the relationship between the 

minimum cost flow time-windows problems with interval data and crisp data. In 

section 4, we presented the minimum cost flow time-windows problem with fuzzy 

data is described and given a representation network example. Finally, the 

conclusion is given in Section 5. 

 

 

2 Basic Concepts and Definitions 

2.1  Mathematical Models 

Consider a directed network ),,( ANG =  where N  is a set of n  nodes, A

is a set of m  arcs with a non-negative transit time ijt , ji ≠  and ., Nji ∈  For each 

node ,Ni∈  a time windows ],[ ii ba  within which the node may be served and 
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iii bta ≤≤ , Tti ∈  is a non-negative service and leaving time of the node .i  A 

source node s  and a sink node τ  with time-windows ],[ ss ba  and ],[ ττ ba  

respectively. We also associate with each arc Aji ∈),(  an upper bound iju  that 

denotes the maximum amount that can flow on the arc and a lower bound ijl  that 

denotes the minimum amount that must flow on the arc. The decision variables in 

the minimum cost flow time-windows problem are arc flows and we represent the 

flow on an arc Aji ∈),(  by .ijf  A minimum cost flow time-windows problem can 

state formally as follows: 

vmin  

subject to  








−∈∀
=
=








−=−∑ ∑

∈ ∈ },{,
,
,

0}),:({ }),:({ τ
τ

sNx
i

si
v

v
ff

Ajij Aijj
jiij                                     (1) 

TttNjittt ijijiji ∈∈∀≤+ ,,,, , where iii bta ≤≤  and jjj bta ≤≤                         (2) 

Ajiufl ijijij ∈∀≤≤ ),(,                                                                                           (3) 

The minimum cost flow time-windows problem is one of the network flow 

that computes the minimum cost flow time-windows between two given nodes, 

called source and sink nodes.  

Definition 2.1.1 A time-windows constraint is defined by, for each node Nji ∈,  

then, a time windows ],[ ii ba  and ],[ jj ba  respectively. Each arc Aji ∈),(  has a 

non-negative transit time ijt , ji ≠  and ,, Nji ∈  where ,, jjjiii btabta ≤≤≤≤  
,, Ttt ji ∈  see Figure 1. 

 

i                         ijt                                  j 

],[ ii ba                                                           ],[ jj ba  

Figure 1: Node service with time-windows constraints 
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Let I  denote the class of non-empty compact intervals ],[ xx  on ).,0[ ∞  If 

,axx ==  identity the interval with the real number .a  

Definition 2.1.2 [20] Let ],[ 11 xx  and ],[ 22 xx  be two compact intervals, then 

],[ 11 xx + ],[ 22 xx = ],,[ 2121 xxxx ++                                                                         (4) 

],[ 11 xx max),,,,[min(],[ 2121212122 xxxxxxxxxx = )],,,,( 21212121 xxxxxxxx              (5) 

],[ 11 xx ≤ ],[ 22 xx  if 21 xx ≤  and 21 xx ≤ .                                                                (6) 

The infimum and supremum of ],[ 11 xx  and ],[ 22 xx , respectively, are defined by 

],[ 11 xx ∧ ],[ 22 xx = }],min{},,[min{ 2121 xxxx                                                          (7) 

],[ 11 xx ∨ ],[ 22 xx = }],max{},,[max{ 2121 xxxx                                                         (8) 

If ],...,,[ 11 xx ,],[ Ixx nn ∈  then the infimum ],[ iii xx∧  and supremum ],[ iii xx∨  are 

well-defined and  

],[
},...,2,1:{

ii
nii

xx∑
=

= ∑ ∑
= =},...,2,1:{ },...,2,1:{

],[
nii nii

ii xx                                                                     (9) 

 

 

2.2 Fuzzy Time-Windows 

Let nX ℜ=  be a non-empty set, XA ⊂
~ . The fuzzy set 

}:))(,{(~
~ XxxxA A ∈= µ  is the set of ordered pairs where ]1,0[:~ →XAµ  is the 

membership function of the fuzzy set .~A  The fuzzy constraint is a fuzzy set 

),,,(~
4321 ttttA =  with flexible time-windows where ),( 41 tt  is the interval of non-

zero satisfaction level and ),( 32 tt  is the interval of satisfaction level equal to 1 see, 

Figure 2. 
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The first step is to ask the expert to give a range for travel time between 

two places along with the most likely time; For example, the time T~  to travel 

from point A  to point B  is between 1t  and ,3t  but must possibly it is .2t  This sort 

of knowledge lets us construct 3-point fuzzy travel times see Figure 3. 

 

                        )(~ xAµ                                                       )(~ xAµ              
 

 

 

 

 

Figure 2: 4-Points representation of fuzzy interval        Figure 3: Fuzzy 

travel time 

 

Similarly obtain a fuzzy time-windows. Every node Ni∈  is assigned by 

the expert to one of two predetermined groups; a classical fuzzy time-windows 

and fuzzy time-windows of a normal node. In an extreme case, fuzzy time-

windows are tighter than the classical counterpartsee, Figure 4 and 5. The shown 

characteristics of fuzzy time-windows are suggested to the shipper who is allowed 

to modify them. 

 

      )(~ xTµ  

 

 

Figure 4: Classical fuzzy time-windows  Figure 5: Fuzzy time-windows of a 

normal node 

0   1t      2t              3t      4t       X   

1 
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              21 tt =           3t        4t  

1 

time0 

)(~ xTµ
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The −β level set of a fuzzy set ,~A  denoted by ,]~[ βA  is the crisp subset of 

X  that contains all of elements with at least the given degree of membership .β  

})(:{]~[ ~ βµβ ≥∈= xXxA A                                                                        (10) 

Fuzzy numbers are the class 1ξ of normal, upper semi-continuous fuzzy 

convex fuzzy sets on .ℜ  That is, A  is fuzzy number if all the level sets β]~[A , 

10 ≤≤ β , are compact intervals and there is at least one ℜ∈z  such that 

.1)(~ =zAµ  

Zadeh's extension principle, Hanss [19] is said to be one of the most 

important tools in fuzzy logic. It gives means to generalize non-fuzzy concepts, 

e.g., mathematical operations, to fuzzy sets. Let nAAA ~,...,~,~
21  be fuzzy sets, defined 

on nXXX ,...,, 21 , and f be a function ....: 21 VXXXf n →×××  Zadeh's extension 

principle of f operating on nAAA ~,...,~,~
21  gives a membership function, fuzzy set 

.~F  

)),(),...,(min(sup)( ~1~
)}(,...,,{

~
11

21

nAA
vfuuu

F uuv
n

n

µµµ
−∈

=                                                   (11) 

where the inverse of f  exist. Otherwise define .0)(~ =vFµ  Function f  is called 

inducing mapping. If the domain is either discrete or compact, sup-min can be 

replaced by max-min. 

• Basically, Zadeh's extension principle says that a fuzzy set is a collection 

of intervals with a membership associated −β( level) to them by Nguyen 

[21] and Nguyen and Kreinovich [22]. Thus, whenever a result can 

mention about the intervals, it can mention about the fuzzy sets. 

Zadeh's extension principle is equivalent to the partition into β -cuts, using 

addition and scalar multiplication of convex sets, when the fuzzification uses 

Definition 2.1.2 for max-min and order operations. 

• In Diamond [14], if a network flow theorem can be proved for compact 

interval-valued flows, capacities and costs, using Definition 2.1.2 for max, 
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min and order properties, then a similar theorem will follow for fuzzy 

network quantities, which characterize a fuzzy number by its level sets, 

which are compact intervals.  

 

 

2.3    Application of the Minimum Flow Problem 

          The famous application for the minimum flow problem is the machine set-

up problem that is presented in this part: A job shop needs to perform p  tasks on 

a particular day. The start and end times of each performance is given, the workers 

must perform these tasks according to the schedule so that exactly one worker 

perform each task. A worker can't work on two jobs at the same time. Also we 

have the set-up time required for a worker to go from one task to another. We 

wish to find the minimum number of workers to perform the task. This problem 

can be formulated as a minimum flow problem, Ciupala and Ciurea [4].   

 

 

3   The Minimum Cost Flow Time-Windows Problem with 

Interval Data and Flows (MCFTWPIDF) 

       We presented and described the mathematical model of MCFTWPIBF and 

presented the relationship between the minimum cost flow time-windows 

problems with interval data and crisp data. Consider a directed network 

),( ANG =  where N  is a set of n  nodes, A  is a set of m  arcs such that the time-

windows, lower bound, upper bound, and flow of each arc are known to fall 

within specific ranges expressed as compact intervals ,,, ultw  and f  respectively. 

Thus, for each arc ,),( Aji ∈  we have 
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where, )(),(),(),(),(),(),( ijlijrijlijrijlijrijl fuulltwtw  and )(ijrf  are non-negative real 

values. The minimum cost flow time-windows problem with compact interval-

valued lower and upper bounds and flow can be state as follows: 

],min[ rl vv  

subject to ∑ ∑
∈ ∈ 
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               jiji ttt ≤+ , ,iii bta ≤≤ ,,, jiTtt iji ≠∈ ,, Nji ∈∀                                   (14) 

   ,),(),()( Ajiijuwtijl twijtw ∈∀≤≤                                                            (15) 

   .),(, Ajiufl ijijij ∈∀≤≤                                                                          (16) 

We call this problem the interval-minimum cost flow time-windows 

problem. Let *f  be an answer of this problem. For each arc ,),( Aji ∈  we define 

any element of the interval ijf *  as an answer for the interval-minimum cost flow 

time-windows problem. By definition 2.1.2, conditions (13), (14), (15) and (16) 

can be written the following: 

{ :( , ) } { :( , ) { :( , ) } { :( , ) ]
[ ( ), ( )] [ ( ), ( )]f f f f

j i j A j i j A j j i A j j i A
l ij r ij l ji r ji

∈ ∈ ∈ ∈
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v v i s
v v i

i N s
τ
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= − =
 ∀ ∈ −

          (17) 

jiji ttt ≤+ , ,iii bta ≤≤ ,,, jiTtt iji ≠∈ ,, Nji ∈∀                                       (18)                        

,),(),()( Ajiijutwijl twijtw ∈∀≤≤                                                               (19) 
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,),(),()()( Ajiijlijlijl ufl ∈∀≤≤                                                               (20) 

.),(),()()( Ajiijrijrijr ufl ∈∀≤≤                                                               (21) 

There for, a flow f  is feasible for the interval-minimum cost flow time-

windows problem if it satisfies the conditions (17), (18), (19), (20) and (21). Thus, 

the interval-minimum cost flow time-windows problem can be written by the 

following: 

:],[ rl vv∧ f  satisfies the conditions (17), (18), (19), (20) and (1).         (22)  

We define the −l minimum cost flow time-windows problem by the 

following: 
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  jiji ttt ≤+ , ,iii bta ≤≤ ,,, jiTtt iji ≠∈ ,, Nji ∈∀                         (24) 

  .),(),()()( Ajiijlijlijl ufl ∈∀≤≤                                                  (25) 

We also define the −r minimum cost flow time-windows problem by the 

following:  

rvmin  

subject to

       

∑ ∑
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                       (26) 

  jiji ttt ≤+ , ,iii bta ≤≤ ,,, jiTtt iji ≠∈ ,, Nji ∈∀                         (27) 

  .),(),()()( Ajiijrijrijr ufl ∈∀≤≤                                                 (28) 

The relationship among the −l minimum cost flow time-windows problem 

and interval minimum cost flow time-windows problem is shown by the next 

theorem. 
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Theorem 3.1 Let *
1f

l  (resp. *
2fr ) is an optimal flow for the −l minimum cost flow 

time-windows problem (resp. −r minimum cost flow time-windows problem). Then 

],[ *
2

*
1

*
ff rlf =  is an optimal flow for the interval-minimum cost flow time-windows 

problem. 

Proof. We first shows that the flow *f  is a feasible flow for the interval-minimum 

cost flow time-windows problem. By the feasibility of *
1f

l  in the −l minimum cost 

flow time-windows problem, we get 

,),(),()()( *
1

Ajiijlijlijl ufl ∈∀≤≤                                                  (29) 

},,{,0)()(
}),(:{ }),(:{

*
1

*
1

τsNijilijl
Ajij Aijj

ff −∈∀=−∑ ∑
∈ ∈

                       (30) 

By satisfying a time-windows constraint, jiji ttt ≤+ , ,iii bta ≤≤

,,, jiTtt iji ≠∈ ., Nji ∈∀  In a same way, *
2fr  is a feasible flow for the −l

minimum cost flow time-windows problem, so we have 

,),(),()()( *
2

Ajiijrijrijr ufl ∈∀≤≤                                                  (31) 

},,{,0)()(
}),(:{ }),(:{

*
2

*
2

τsNijirijr
Ajij Aijj

ff −∈∀=−∑ ∑
∈ ∈

                       (32) 

also, by satisfying a time-windows constraint. By (17), (30) and (32), *f  satisfies 

in (13) and by (18), (19), (20), (21) and (31), it satisfies in (16). Thus, *f  is a 

feasible flow for the interval-minimum cost flow time-windows problem. The 

flow *
1v  (resp. )*

rv  is optimal for the −l minimum cost flow time-windows problem 

(resp. the −r minimum cost flow time-windows problem), so by (22) and 

definition 2.1.1, we yield that ],[ **
1 rvv  is an optimal flow for the interval-minimum 

cost flow time-windows problem. 

There for, by theorem 3.1, for solving the interval-minimum cost flow 

time-windows problem, it is enough that we solve the −l minimum cost flow 

time-windows problems, which yields the following theorem. 
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Theorem 3.2 The minimum cost flow time-windows problem with interval-valued 

lower bound, upper bounds and flows is solved using two minimum cost flow time-

windows problem with crisp data.  

 

 

4    The minimum cost flow time-windows problem according 

with Zadeh's extension principle 

         In this section, the minimum cost flow time-windows problem with fuzzy 

lower, upper bounds and flows is solved using Theorem 3.2. Consider a directed 

network ),( ANG =  where N  is a set of n  nodes, A  is a set of m  arcs with a 

fuzzy time-windows, fuzzy lower, upper bounds, and flows ulwt ~,~,~
 and f~  , 

respectively. We call the minimum cost flow time-windows problem with fuzzy 

data as the fuzzy minimum cost flow time-windowsproblem. As it was mentioned 

in the above of the application of the minimum flow problem, the interval 

representation of the −β level allows extending classical interval arithmetic to the 

case of fuzzy numbers. Interval arithmetic can be directly applied to every −β

level to obtain the resulting fuzzy set. For each ]1,0[∈β  and each arc ,),( Aji ∈  

we define the −β level sets corresponding to ulwt ~,~,~  and f~  as follows: 

)],,(),,([)(~]~[ ββββ ijtwijtwwtwt rlijij ==                                        (33) 

[ )],,(),,([)(~]~ ββββ ijrijlll llijij ==                                                  (34) 

)],(),,([)(~]~[ ββββ ijrijluu uuijij == , and                                       (35) 

)].,(),,([)(~]~[ ββββ ijrijlff ffijij ==                                              (36) 

The minimum cost flow time-windows problem with compact interval-

valued lower, upper bounds, and flows given by the following: 
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)](),(min[ ββ rl vv  

 subject to   =−∑ ∑ ∑∑
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     ,),(),,(),(),( Ajiijtwijtwijtw ufl ∈∀≤≤ βββ                                      (38) 

     ,),(),,(),(),( Ajiijlijlijl ufl ∈∀≤≤ βββ                                              (39) 

     .),(),,(),(),( Ajiijrijrijr ufl ∈∀≤≤ βββ                                              (40) 

We call the interval-valued time-windows network with data (33), (34), 

(35) and (36) as the −β interval minimum flow time-windows network. The 

interval flow β]~[ f  is feasible in the ),( βG  network if it satisfies in (37), (38), (39) 

and (40). There for f~  is a feasible flow for the fuzzy-minimum flow time-

windows problem if, at each −β level, β]~[ f  is a feasible flow in the −β interval 

minimum flow time-windows problem. At each −β level, we define the −β

interval minimum flow time-windows problem by the following: 

)](),(min[ ββ rl vv  

subject to       )(.,βf  satisfies in (4.5), (4.6), (4.7) and (4.8).                             (41) 

Hence, for each ],1,0[∈β  an interval-valued minimum flow 

)],,(),,([),( **
* βββ ijrijlijf ff=  for each arc ,),( Aji ∈  is found by solving the 

−β interval minimum flow time-windows problem. By Theorem 3.2, ),(* βijl f
's 

and ),(* βijrf
's are computed using −− βl interval and −− βr interval minimum 

cost flow time-windows problems defined by the following: 

• The −− βl interval minimum cost flow time-windows problem: 
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)(min βlv  
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 ,),(),,(),(),( Ajiijtwijtwijtw ufl ∈∀≤≤ βββ                              (43) 

                         .),(),,(),(),( Ajiijlijlijl ufl ∈∀≤≤ βββ                                      (44) 

• The −− βr interval minimum cost flow time-windows problem: 

)(min βrv  
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                    ,),(),,(),(),( Ajiijtwijtwijtw ufl ∈∀≤≤ βββ                                   (46) 

        .),(),,(),(),( Ajiijrijrijr ufl ∈∀≤≤ βββ                                           (47) 

Since the representation of the −β levels are used instead of the fuzzy 

numbers, by Zadeh's extension, the result is accorded with Zadeh's extension 

principle. In general, any function of k  intervals )~,...,~,~( 21 kAAAF  of k  intervals 

kAAA ~,...,~,~
21  can be extended to fuzzy by defining =β)]~,...,~,~([ 21 kAAAF

).]~[,...,]~[,]~([ 21
βββ

kAAAF  

However, unless F  preserves inclusion, in order to get a fuzzy number as the 

result, we must modify the definition so that the level set β  is a subset of ./ββ   

There for we define by Bondia, Sala and Sainz [2]: 

         =β)]~,...,~,~([ 21 kAAAF ).]~[,...,]~[,]~([
///

/ 210
βββ

ββ kAAAF
≤≤

∩                          (48) 
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For ]1,0[∈β  and its ),( βG  problem, consider an interval-valued 

minimum cost flow time-windows )],,(),,([),( **
* βββ ijrijlijf ff=  for each arc 

.),( Aji ∈  Let ∑
∈

=
Aji

ijfijcz
),(

** ).,(),()( βββ  

 

 Representation example network: 

• The representation example network with fuzzy time-widows, fuzzy 

bounds and flows, for a given β : 

 

    )],(),,([ ββ ijbija
ul ii                                                    )](..,),(..,[ ββ

ul jj ba  

                              s             i                               ijt                           j                τ  
 

                                                )],(),,([)],,(),,([ ββββ ijrijlijrijl uull  
 

             Figure 6: A network with fuzzy time-windows, fuzzy bounds and flows 
 
 

• The representation example network corresponding to the β−l  interval 
minimum cost flow time-windows problem: 

 
 

                  )],(),,([ ββ ijbija
ul ii                                                                

)](..,),(..,[ ββ
ul jj ba  
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  Figure 7: A network of β−l  interval minimum cost flow time-windows problem  
 
 

• The representation example network corresponding β−r  interval 
minimum cost flow time-windows problem: 
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Figure 8: A network of the β−r  interval minimum cost flow time-windows 

problem 

  

 

5       Conclusion 

           In this paper, we present and described a new version of the Minimum Cost 

Flow Problem (MCFP), a new version is a MCFTWPIBF. Ghiyasvand [18], 

presented a  method to solve the minimum cost flow problem with interval date, 

which solves the problem using two minimum cost flow problems with crisp data. 

This paper extended the method of Ghiyasvand [18], by using the two minimum 

cost flow time-windows problems with crisp data. Also, this method is extended to 

the minimum cost flow problem with fuzzy time-windows, fuzzy lower, upper 

bounds and flow. A representation example network is given. 
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