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Abstract

Tikhonov regularization is a popular method for linear discrete ill-
posed problems. This paper is concerned with the iterative method
based on a partial range restricted Arnoldi decomposition of the given
matrix. Theoretical analysis and numerical examples are presented to
illustrate the benefit of the proposed method.
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1 The Sundman Transformation

Consider a linear least squares problem

min
x∈Rn

‖Ax− b‖, A ∈ Rm×n, m ≥ n, (1)
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where A is severely ill-conditioned. Usually, A has many singular values of dif-

ferent orders of magnitude close to zero and some singular values may vanish.

Minimization problems with a matrix of ill-determined rank are often referred

to as linear discrete ill-posed problems. They may be obtained by discretizing

linear ill-posed problems, such as Fredholm integral equations of the first kind

with a smooth kernel. This type integral equations arise in science and engi-

neering when one seeks to determine the cause (the solution) of an observed

effect represented by the right-hand side b (the data). Because the entries of

b are obtained through observation, they typically are contaminated by mea-

surement errors and also by discretization errors. We denote these errors by

e ∈ Rn and the unavailable error-free right-hand side associated with b by

b̂ ∈ Rn, i.e.,

b = b̂ + e. (2)

We assume that a bound δ for which

‖e‖ ≤ δ

is available, and the linear system of equations with the unavailable error-free

right-hand side

Ax = b̂ (3)

to be consistent. Let x̂ denote a desired solution of (3), e.g., the solution

of minimal Euclidean norm. We seek to obtain an approximation of x̂ by

computing an approximate solution of the available linear system of equations

(1). Due to the severe ill-conditioning of A and the error e in b, straightfor-

ward solution of (1) generally does not yield a meaningful approximation of x̂.

A common approach to remedy this difficulty is to replace the least-squares

problem by a nearby problem that is less sensitive to perturbations. One of

the most popular replacement approaches is known as Tikhonov regularization

method, which is to solve the minimization problem of the form

min
x∈Rn

{‖ Ax− b ‖2 +
1

µ
‖ Lx ‖2}, (4)

where and throughout this paper, ‖ · ‖ denotes the Euclidean vector norm or

the associated induced matrix norm. The scalar µ > 0 is the regularization

parameter and the matrix L ∈ Rp×n, p ≤ n is referred to as the regularization
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matrix. Common regularization matrices L are the identity matrix I and finite

difference matrices such as

L :=




1 −1

1 −1
. . . . . .

1 −1



∈ R(n−1)×n, (5)

L :=




−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1



∈ R(n−2)×n. (6)

The minimization problem (4) is said to be in standard form when L = I and

in general form otherwise. Many examples of regularization matrices can be

found in [2, 1, 9, 21, 23].

The matrix L is assumed to be chosen such that

N(A) ∩N(L) = {0},

where N(M) denotes the null space of the matrix M . Let MT denote the

transpose of the matrix M . Then the Tikhonov minimization problem (4) has

the unique solution

xµ = (AT A +
1

µ
LT L)−1AT b.

When the matrices A and L are of small to moderate sizes, (4) can be

solved with the aid of the Generalized Singular Value Decomposition (GSVD)

of the matrix pair {A, L}, see, e.g.,[18, 17, 13] for details. The main drawback

of the GSVD is that it is quite expensive to compute for matrices of large sizes.

Kilmer et al. [19] proposed an inner-outer iteration method which com-

puted a partial GSVD of the matrix pair {A,L}. However, this method re-

quired large number of matrix-vector product evaluations with A and AT .

Lewis and Reichel [20] presented an Arnoldi-Tikhonov method based on reduc-

ing A by a range-restricted Arnoldi scheme which required L to be a square ma-

trix. Automatic parameter setting for Arnoldi-Tikhonov methods was recently

proposed by Gazzola and Novati [14], and this new strategy can work without

restrictions on the choice of the regularization matrix. Another method based

on reducing both A and L by an Arnoldi-type method was proposed in [22],
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and this method required both A and L are square matrices. In [12], Dykes

and Reichel suggested a simplified GSVD method which described how the

standard methods for the computation of the GSVD of a matrix pair can be

simplified in the context of Tikhonov regularization.

Approximations of the solution xµ of problem (4) in standard form can

be computed by partial Lanczos bidiagonalization of A based on the Krylov

subspace

Kk(A
T A,AT b) = span{AT b, (AT A)AT b, · · · , (AT A)k−1AT b}, (7)

which is independent of the regularization matrix L. This method carries

out k steps of Lanczos bidiagonalization of the matrix A to determine the

decompositions

AṼk = Ũk+1C̃k, A
T Ũk = ṼkC

T
k ,

for a suitable k > 0. Here, the matrices Ũk+1 ∈ Rm×(k+1) and Ṽk ∈ Rn×k

have orthonormal columns, Ũk consists of the first k columns of Ũk+1, and

C̃k ∈ R(k+1)×k is lower bidiagonal. See, e.g.,[4, 5, 7, 8] for several solution

methods based on this approach.

When L 6= I, Hochstenbach and Reichel [15] proposed a iterative method

by first computing a partial Lanczos bidiagonalization of the matrix A, and

then projecting L onto the space.

The method in this paper differs from [15] in that the space in which we

determine an approximate solution of (4) is the Krylov subspace

Kk(A,Ab) = span{Ab,A2b, · · · , Akb}. (8)

This method requires A to be a square matrix, which can be satisfied by zero-

padding if necessary.

Our interest in the space (8) stems from the fact that for many linear dis-

crete ill-posed problems the spaces (7) and (8) can be chosen to be of about the

same dimension, and the computation of an orthonormal basis for the space (8)

requires fewer matrix-vector product evaluations than for the space (7). The

main reason is that each iteration with the space (7) demands the evaluation of

one matrix-vector product with the matrix A and one matrix-vector product

with AT , while each iteration with the space (8) requires the evaluation of only

one matrix-vector product with A. These evaluations typically constitute the
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dominant computational effort required. Moreover, the matrix-vector product

with A is easier to evaluate than that with AT .

This paper is organized as follows. Section 2 discusses the proposed it-

erative method. The determination of the regularization parameter µ and

Arnoldi steps k are presented in Section 3. Numerical examples are described

in Section 4.

2 The projected Range-Restricted Arnoldi it-

erative method

We reduce the problem (4) to a problem of smaller size by application of

k steps of the Arnoldi process to A with the initial vector u1 = Ab/ ‖ Ab ‖ .

This yields the decomposition

AUk = Uk+1H̄k, (9)

where Uk+1 = [u1, u2, · · · , uk+1] ∈ Rm×(k+1) has orthonormal columns, which

span the Krylov subspace (8). We call this decomposition as range restricted

Arnoldi decomposition. The matrix Uk ∈ Rm×k consists of the first k columns

of Uk+1. We assume that k is chosen sufficiently small so that H̄k ∈ R(k+1)×k is

a upper Hessenberg matrix with nonvanishing subdiagonal entries. Then H̄k

is of rank k.

We use the QR factorization

LUk = QkRk, (10)

where Qk ∈ Cp×k has orthonormal columns and Rk ∈ Ck×k is upper triangular.

The computation of the decomposition (9) requires the evaluation of k + 1

matrix-vector products with the matrix A. Since the matrix L generally is

very sparse, the computational effort needed to evaluate LUk typically is much

smaller than for the evaluation of k + 1 matrix-vector products with A.

We seek to determine an approximate solution of (1) in the Krylov subspace

(8). Substituting x = Uky, y ∈ Rk into (4) and using (10), we get the reduced
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minimization problem

min
x∈Rn

{‖ Ax− b ‖2 +
1

µ
‖ Lx ‖2}

= min
y∈Rk

{‖ AUky − b ‖2 +
1

µ
‖ LUky ‖2}

= min
y∈Rk

{‖ Uk+1H̄ky − b ‖2 +
1

µ
‖ QkRky ‖2}

= min
y∈Rk

∥∥∥
(

H̄k

1√
µ
Rk

)
y −

(
UT

k+1b

0

)∥∥∥
2

. (11)

Since the subspace dimension k is quite small, we evaluate the solution y
(µ)
k

of (11) by first transforming the matrix
( H̄k

1√
µ
Rk

)
into upper triangular form

by application of a judiciously chosen sequence of Givens rotations, and then

followed by back substitution. Having determined the solution y
(µ)
k , we obtain

an associated approximate solution x
(µ)
k = Uky

(µ)
k of (1).

We will apply the discrepancy principle to determine a suitable value of µ.

By simple calculation, we have

‖Ax
(µ)
k − b‖2 = ‖AUky

(µ)
k − b‖2 = ‖H̄ky

(µ)
k − UT

k+1b‖2 + ‖(I − Uk+1U
T
k+1)b‖2.

The norm of the residual error is a function of both the residual error norm

for the reduced problem and the projection error norm ‖(In − Uk+1U
T
k+1)b‖.

Similar to [22], we use the projected discrepancy principle to determine µ,

so that

‖H̄ky
(µ)
k − UT

k+1b‖ = ηδ, (12)

where η ≥ 1 is a user-specified constant independent of δ and is usually fairly

close to unity, and y
(µ)
k solves (11). Let µk denote the solution of (12), and

clearly ‖Ax
(µ)
k − b‖ ≥ ηδ.

When the number of Arnoldi step k increases, the QR factorization of LUk

has to be updated. Formulas for updating a QR factorization are described

by Daniel et al. [10]; see also [13]. Note that only the upper triangular ma-

trices Rk, k = 1, 2, · · · , are required, but not the associated matrices Qk with

orthonormal columns.
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3 Determining the regularization parameter

and iterative step

In this section, we discuss the computation of µ = µk and the Arnoldi step

k so that yk = y
(µk)
k and k statisfies (12) and ‖Axk − b‖ ≤ ηδ respectively.

Introduce the function

φk(µ) = ‖H̄kyk − UT
k+1b‖2, (13)

where yk = y
(µ)
k is the solution of (11). Then equation (13) can be expressed

as

φk(µ) = η2δ2. (14)

The QR factorization of H̄k is

H̄k = Q̃kR̃k,

where Q̃k ∈ C(k+1)×k has orthonormal columns and R̃k ∈ Ck×k is upper trian-

gular.

The following theorem discusses some properties of the equation (14).

Theorem 3.1. Assume that the matrix Rk in (10) is nonsingular. Let R̂ =

R̃kR
−1
k . Then the function (13) can be expressed as

φk(µ) = ‖(µR̂R̂T + I)−1Q̃T
k UT

k+1b‖2 + ‖(I − Q̃kQ̃
T
k )UT

k+1b‖2. (15)

Consequently, φk(µ) is strictly decreasing and convex, and equation (14) has a

unique solution 0 < µk < ∞, provided that

‖PN(Q̃k)U
T
k+1b‖ < ηδ < ‖b‖, (16)

where PN(Q̃k) denotes the orthogonal projector onto N(Q̃k).
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Proof. The representation (15) follows from

φk(µ) = ‖H̄kyk − UT
k+1b‖2

= ‖Q̃kR̃kyk − UT
k+1b‖2

= ‖R̃kyk − Q̃T
k UT

k+1b‖2 + ‖(I − Q̃kQ̃
T
k )UT

k+1b‖2

= ‖R̃k(H̄
T
k H̄k +

1

µ
RT

k Rk)
−1H̄T

k UT
k+1b− Q̃T

k UT
k+1b‖2 + ‖(I − Q̃kQ̃

T
k )UT

k+1b‖2

= ‖[R̃k(R̃
T
k R̃k +

1

µ
RT

k Rk)
−1R̃T

k − I]Q̃T
k UT

k+1b‖2 + ‖(I − Q̃kQ̃
T
k )UT

k+1b‖2

= ‖{R̃k[R
T
k (R̂T R̂ +

1

µ
I)Rk]

−1R̃T
k − I}Q̃T

k UT
k+1b‖2 + ‖(I − Q̃kQ̃

T
k )UT

k+1b‖2

= ‖(µR̂R̂T + I)−1Q̃T
k UT

k+1b‖2 + ‖(I − Q̃kQ̃
T
k )UT

k+1b‖2, (17)

where we have used the expression

y = (H̄T
k H̄k +

1

µ
RT

k Rk)
−1H̄T

k UT
k+1b

for the forth equality and the formula

R̂ = R̃kR
−1
k , R̂(R̂T R̂ +

1

µ
I)−1R̂T = I − (µR̂R̂T + I)−1

for the last equality.

Define the spectral factorization

R̂R̂T = WΛW T ,

where Λ = diag[λ1, λ1, · · · , λk] and W ∈ Rk×k is orthonormal. Then (17) is

equal to

b̃T (µΛ + I)−2b̃ + ‖(I − Q̃kQ̃
T
k )UT

k+1b‖2,

where b̃ = W−2Q̃T
k UT

k+1. Thus φk is decreasing and convex. Moreover, we

obtain from (15) that

lim
µ→0

φk(µ) = ‖b‖2, lim
µ→∞

φk(µ) = ‖PN(Q̃k)U
T
k+1b‖2.

Therefore, when the bounds (16) hold, the equation (14) has a unique bounded

solution.

The stopping index k for the Arnoldi process can be determined by the

discrepancy principle, i.e., the iterations are terminated as soon as an approx-

imate solution xk satisfies

‖Axk − b‖ ≤ ηδ, (18)
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where η ≥ 1 is a user-specified constant independent of δ. See [6] for a validity

of this stopping criterion.

4 Numerical experiments

We consider five linear discrete ill-posed problems that arise from the dis-

cretization of Fredholm integral equation of the first kind with a smooth kernal.

We use these numerical examples to illustrate the performance of our method

described in Section 2. The error-free b̂ is available by

b̂ = Ax̂.

The error vector e has normally distributed entries with zero mean and is

scaled so that the contaminated b, defined by (2), has a specified noise level

relative error

ε = ‖e‖/‖b̂‖.

We let ε = 1 · 10−3 and determine the regularization parameter µ by (12) in

all examples.

We denote the projected Lanczos bidiagonalization-Tikhonov iterative method

in [15] as PLBDT and our projected range-restricted Arnoldi-Tikhonov itera-

tive method as PRRAT respectively. In all examples, we compare the relative

errors ‖x− x̂‖/‖x̂‖, iteration steps and the CPU time of the two methods.

Example 4.1. The Fredholm integral equation of the first kind

∫ π

0

K(s, t)x(t)dt = g(s), 0 ≤ s ≤ π

2
, (19)

with the kernel and solution given by

k(s, t) := exp(scos(t)),

x(t) := sin(t).

The right-hand side function g(s) is defined by (19). This integral equation is

discussed by baart [3].
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We discretize the integral equation by the Galerkin method with orthonor-

mal box functions as test and trial functions using the MATLAB code baart

from [16] and obtain the matrix A ∈ R1000×1000 and the discretized solution x̃

of the error-free linear system (3). The associated contaminated vector b in

(1) is obtained by adding 0.1% normally distributed zero mean “noise” e to b̂;

cf.(2).

Table 1: Relative errors, iterative steps and CPU time of the numerical solu-

tions for example 4.1.

Method Regularization matrix Relative error Iterative step CPU(s)

PLBDT I 1.14 · 10−1 4 0.163s

PRRAT I 3.58 · 10−2 3 0.097

PLBDT (5) 1.14 · 10−1 4 0.136

PRRAT (5) 3.88 · 10−2 4 0.131

PLBDT (6) 9.89 · 10−2 38 5.711

PRRAT (6) 3.39 · 10−2 3 0.087

Example 4.2. Consider the Fredholm integral equation of the first kind

∫ 1

0

K(s, t)x(t)dt = g(s), 0 ≤ s ≤ 1, (20)

with the kernel and solution given by

k(s, t) :=

{
s(t− 1), s < t,

t(s− 1), s ≥ t,

x(t) := t.

The right-hand side function g(s) is defined by (20). This integral equation is

discussed by Delves and Mohamed [11].

We discretize the integral equation by the Galerkin method with orthonor-

mal box functions as test and trial functions using the MATLAB code deriv2

from [16] and obtain the matrix A ∈ R1000×1000 and the discretized solution x̃

of the error-free linear system (3). The associated contaminated vector b in

(1) is obtained by adding 0.1% normally distributed zero mean “noise” e to b̂;

cf.(2).
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Table 2: Relative errors, iterative steps and CPU time of the numerical solu-

tions for example 4.2.

Method Regularization matrix Relative error Iterative step CPU(s)

PLBDT I 1.37 · 10−1 21 2.338

PRRAT I 1.35 · 10−1 12 0.526

PLBDT (5) 1.30 · 10−1 110 44.005

PRRAT (5) 1.35 · 10−1 12 0.459

PLBDT (6) 1.31 · 10−1 43 7.353

PRRAT (6) 1.37 · 10−1 13 0.638

Example 4.3. The Fredholm integral equation of the first kind
∫ ∞

0

K(s, t)x(t)dt = g(s), s ≥ 0, (21)

with the kernel and solution given by

k(s, t) := exp(−st),

x(t) := exp(−t/2).

The right-hand side function g(s) is defined by (21). This integral equation is

discussed by Varah [25].

We discretize the integral equation by the Galerkin method with orthonor-
mal box functions as test and trial functions using the MATLAB code ilaplace
from [16] and obtain the matrix A ∈ R1000×1000 and the discretized solution x̃
of the error-free linear system (3). The associated contaminated vector b in

(1) is obtained by adding 0.1% normally distributed zero mean “noise” e to b̂;
cf.(2).

Example 4.4. The Fredholm integral equation of the first kind
∫ π

2

−π
2

K(s, t)x(t)dt = g(s), −π

2
≤ s ≤ π

2
, (22)

with the kernel and solution given by

k(s, t) := (cos(s) + cos(t))(
sin(u)

u
)2, u = π(sin(s) + sin(t)).

x(t) := sin(t).

The right-hand side function g(s) is defined by (22). This integral equation is

discussed by shaw [24].
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Table 3: Relative errors, iterative steps and CPU time of the numerical solu-

tions for example 4.3.

Method Regularization matrix Relative error Iterative step CPU(s)

PLBDT I 7.61 · 10−1 22 2.019

PRRAT I 4.22 · 10−1 8 0.444

PLBDT (5) 7.58 · 10−1 30 3.095

PRRAT (5) 4.22 · 10−1 8 0.391

PLBDT (6) 7.69 · 10−1 > 200 100.851

PRRAT (6) 4.22 · 10−1 8 0.368

We discretize the integral equation by the Galerkin method with orthonor-

mal box functions as test and trial functions using the MATLAB code shaw

from [16] and obtain the matrix A ∈ R1000×1000 and the discretized solution x̃

of the error-free linear system (3). The associated contaminated vector b in

(1) is obtained by adding 0.1% normally distributed zero mean “noise” e to b̂;

cf.(2).

Table 4: Relative errors, iterative steps and CPU time of the numerical solu-

tions for example 4.4.

Method Regularization matrix Relative error Iterative step CPU(s)

PLBDT I 4.73 · 10−2 8 0.468

PRRAT I 4.75 · 10−2 7 0.362

PLBDT (5) 4.63 · 10−2 12 0.793

PRRAT (5) 4.59 · 10−2 8 0.365

PLBDT (6) 5.96 · 10−1 > 200 119.566

PRRAT (6) 3.46 · 10−2 8 0.460

Example 4.5. The Fredholm integral equation of the first kind

∫ 1

0

K(s, t)x(t)dt = g(s), 0 ≤ s ≤ 1, (23)

with the kernel and solution given by

k(s, t) := d(d2 + (s− t)2)−3/2, d = 0.25.
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x(t) := sin(πt) +
1

2
sin(2πt).

The right-hand side function g(s) is defined by (23). This integral equation is

discussed by Wing [26].

We discretize the integral equation by the Galerkin method with orthonor-

mal box functions as test and trial functions using the MATLAB code gravity

from [16] and obtain the matrix A ∈ R1000×1000 and the discretized solution x̃

of the error-free linear system (3). The associated contaminated vector b in

(1) is obtained by adding 0.1% normally distributed zero mean “noise” e to b̂;

cf.(2).

Table 5: Relative errors, iterative steps and CPU time of the numerical solu-

tions for example 4.5.

Method Regularization matrix Relative error Iterative step CPU(s)

PLBDT I 1.04 · 10−2 11 0.752

PRRAT I 9.20 · 10−3 9 0.546

PLBDT (5) 4.92 · 10−1 > 200 121.801

PRRAT (5) 9.60 · 10−3 9 0.455

PLBDT (6) 9.50 · 10−3 > 200 116.906

PRRAT (6) 9.80 · 10−3 10 0.534

We can see that in some cases the relative error by these two methods is

about the same (such as examples 4.2, 4.3 and 4.4), however, the computational

time required by the proposed method is less than that required by PLBDT.

On the other hand, the results from examples 4.1 and 4.5 are superior to that

by PLBDT in terms of the relative error, iterative step and CPU time. It is

clear that PRRAT is more efficient (in iterations and computational times)

than PLBDT. Furthermore, we can see that the change of the regularization

matrix has greater influences on PLBDT than on PRRAT in terms of iterative

step and CPU time.
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