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Numerical solutions of integro-differential
equation with purely integral condition
by using Laplace transform method

Moussa Zakari Djibibe!, Nadjime Pindra® and Kokou Tcharie?

Abstract
The aims of this paper are to prove the existence, uniqueness and
continuous dependence upon the data of solution of following intogro-
differential hyperbolique equation with purely integral conditions.
%—agzzé—cgz—i—au(x,t) —/Otﬁ(t—s)u(x,s)ds, O<ax<l, 0<t<T,
u(z,0) = ¢(z), 0<z </,
ou

a(I,O):X(I), 0<z <Y,

l
/ u(z,t)de = E(t), 0<t<T,
0

l
/ zu(z,t)de = G(t), 0<t<T.
0

The proofs are based on a priori estimates and Laplace transform method.
We present a numerical approximate solution to integro-differential equa-

tion with integral conditions. A Laplace transform method is described
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for the solution of considered equation. Following Laplace transform
of the original problem, an appropriate method of solving differential
equations is used to solve the resultat time-independent modified equa-
tion and solution is inverted numerically back into the time domain.
Numerical results are provided to show the accuracy of the proposed
method.

Mathematics Subject Classification: 35B45; 351.82; 44A10
Keywords: Laplace transform method; Integral conditions; Continuous de-

pendence; Integro-differential

1 Introduction

In this paper, we deal with a class of hyperbolic integro-differential equation
with purely nonlocal conditions. The precise statement of the problem is a
follows : let £ >0, T > 0,and Q = {(z,t) eR? : 0 <z </, 0<t<T} We
shall determine a solution u, in €2 of the differential equation
Pu 0*u  Ou

t
W—a@—c%—l—au(x,t):/o19(t—3)u(x,s)ds, O<z<d{, 0<t<,T
(1)

satisfying the initial conditions

u(z,0) =d(x), 0<z </, (2)
%(m,()) =x(z), 0<z</{, (3)

and the integral conditions
¢
/ u(z,t)de = E(t), 0<t<T, (4)
0
¢
/ zu(z,t)de = G(t), 0<t<T, (5)
0

where ¥, &, ¢, E, G are known functions, ¢, T and a are pasitive constants,

and «, c are the reals.
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Assumption 1.1. For all x,t) € Q, we assume that

190 < l9(l’,t) < 791, 190 > 0, 191. >0

¢ is continuously derivate on (0, ).

The notion of nonlocal condition has been introduced to extend the study
of the classical initial value problems and it is more precise for describing
nature phenomena than the classical condition since more information is taken
into account, thereby decreasing the negative effects incurred by a possibly
erroneous single measurement taken at the initial value. The inportance of
nonlocal conditions in many applications is discussed in [10], [16].

Mathematical modelling by evolution problems with a nonlocal constraint

of the form )

) u(zx,t) de = ((t)
is encountered in heat transmission theory, thermoelasticity, chemical engi-
neering, underground water flow, and plasma physic.

Many methods were used to investigate the existence and uniqueness of the
solution of mixed problems which combine classical and integral conditions. J.
R. Cannon [5] used the potentiel method, combining a Dirichlet and an intégral
condition for a parabolic equation. L.A. Mouravey and V. Philinovoski [9] used
the maximum principle, combining a Neumann and an integral condition for
heat equation. M.Z. Djibibe and K. Tcharie [13], Ionkin [6] and L. Bougofta
[4] used the Fourier method for same purpose. Recently, mixed problems with
integral conditions for generalization of equation (1) have been treated using
the energy-integral method. See M.Z. Djibibe and K. Tcharie [11] , M.Z.
Djibibe and K. Tcharie [12], M.Z. Djibibe el al. [14], [15], N.I. Yurchuk [16],
[17], M. Mesloub, A. Bouziani and N. Kechkar [8]. Differently to these works,
in the present paper we combine a priori estimate and Fourier’s method to
prove existence and uniqueness solution of the problem (1)- (5).

The results obtained in this paper generalize the results of [1], and consti-
tute a new contribution to this emerging field of research.

It can be a part in the contribution of the development of a priori estimates
an Laplace methods for solving such problems.

The questions related to these problems are so miscellaneous that the elab-
oration of a general theory is still premature. Therefore, the investigationof

these problems requires at every time a separate study.
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The remainder of the paper is organized as follows. After this introduction,
in section 2, we present some preliminaries and basic lemmas. Then in Section
3, we establish a priori estimate. Finally, in section 4, we prove existence

solution.

2 Preliminaries

We transform the problem (1)-(5) with nonhomogeneous boundary condi-
tions (4) and (5) into a problem with homogeneous boundary conditions. For

this, we introduce a new unknow function defined by u(z,y) = v(z,t)+w(z, t),

where
20 — 4z 4o — 20 4o — 20
w(z,t) = TE(t) + TG(t) = T(G(t) — E(t)).
Then, problem becomes :
0% v v
g — = = <
52~ Y52 cax—i—av(w,t) flz,t), O0<z<dt, 0<t<T, (6)
v(@,0) =p(z), 0<z<L, (7)
W 0) =), 0<w<t, ©)
¢
/v(m,t)dx—(), 0<t<T, 9)
0
¢
/ zv(z,t)de =0, 0<t<T, (10)
0
where
4o — 20
pla) = ¢la) — —5—(G(0) = E(0)),
B 4o — 20

() = x(&) = —7—(G"(0) = E(0)),

fla,t) = /0 I(t — s)u(z, s)ds — w

220 — ol — 2¢
- LR G - B())
Instead of searching for the function u, we search for the function v. So the
solution of problem (1), (2), (3), (4) and (5) will be given by u(z,t) = v(z,t)+

w(zx,t).

(G"(t) — E"(t))
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Lemma 2.1 (Gronwall). Let x(t) > 0, h(t), y(t) the integrables fonc-
tions on [a;b]. If

y() < h(t) + / Ce(ry(r) dr. Vi€ [a:l]

then
y(t) < h(t) +/ h(7)x(T) exp(/ x(s)ds)dr, Vtela; bl.

In particular, if z(t) = c is invariable fonction and h(t) is an increasing fonc-
tion, then

y(t) < h(t)e?" Vit € [a ; D).

3 Main Results

3.1 Uniqueness and Continuous Dependence of the so-

lution

Theorem 3.1. If v(x,t) is a solution of problem (1), (2), (3), (4) and (5),

then we have a priori estimates

) 14 4
oililET/o (J2 (81;) + J2udr + u? ) dr <A (/o ©* () dx+/0 J2)(x) dw
+/€ J2o(x) dx) (11)
; P :

0
Proof. Appying J, to (1), Multiplying with Jxa—? and integrating the re-
sults obtained over Q, = (0,/¢) x (0, 7). Observe that

[ (28)0 () e [ [ (205

—c// ( ) (a”) dtdx+a//vath(g—> dt dz
:/0 /0 J, </O ﬁ(t—s)u(m,s)ds) J, (%) dtdz, (12)
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T

where J,(u(z,t) = / u(&,t) d€. Successive intrgration by parts of integrals
0
on the left-hand of (12) are straight-foward but somewhat tedious. We give

only their results

%/Oejx@“(“)d - /ﬁ )da + = /ﬁudag——/

+g/oeu dx—g/ogp?(x)dx:a/m (M)(9 ddt

+?/uj(z)mw—z;(gﬁow+MQiy@G%)Mﬁ
// (/1915—5 J:s)ds)Jm(gv) dt dx. (13)

By the Cauchy inequality,

// (/ﬁt—s xs)d)J(?ﬁ)dtdmﬁTTﬁo
0

/QTu(&t)%dxdtgé/QTUdedt—i-%/QT -

/mujx(%) dxdtg%/ﬂTqude%/ﬂTJg

Substuting (16) into (15), yields

1 ou(x, 1) a [* a [ a [*
J? d — J2ud —/ 2d <—/ 2(z)d
2/0 x( g )x+2/0 xux—l—ZOu :c_20g0(x)3:

J2u dx dt

S~
S N~

w‘§°
~
~
o\
~
a3
N
QJ|QD
~
N~

IS

&

QL
R
N
=

~
N
o

I ¢ TV
+ —/ J2)(z) dw Autoform + g/ J2o(z) dx + la] + o + |c u? dwdt
2/, 2 /4 2 o
FoT 1 9
+ ﬂ/ J? (@) dedr + =2 [ J2udzdt. (17)
2 o " \ ot 2 Jo,

The right-hand side of (17) is independent of 7, hence, replacing the left-hand
side by the upper bound with respect to 7 and by Gronwall Lemma, we get

¢
sup / <J§ (6u( )) + J2udz + u2> dr < e </ ©*(x) dx
0<r<1 Jo ot 0

+ /Of J2)(z) dv + /OZ J2o(x) d$) : (18)
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where
L a T +|c|+1 T+ |a|l+ ||

rnax(— -
272’ 2 ’ 2 )
A= .

. 1 o a
min ( =, —, =
2°2°2

From (18), we obtain the priori estimates (11). This complete the proof of
Theoreme (3.1), with A = e*. O

Corollary 3.2. If problem (1), (2), (3), (4) and (5) has a solution, then

this solution is unique and depends continuously on (¢, ).

3.2 Existence of the Solution

Laplace transform is widely used in the area of engineering technology and
mathematical science. There are many problems whose solution may be found
in terms of the Laplace. In fact, it is an efficient method for solving many
diffential equations and partial differential equation. The mains difficult of
the method of Laplace domain into the real domain.

Hence in this section, we apply the technique of the Laplace transform to
find solutions of the problem (1)-(5).

Suppose that v(z,t) is défined and is of the exponential order for ¢ > 0,
there exists A > 0, 3 > 0 and ¢, > 0 such that |v(z, )| < Ae?® for t > ty. Then
the Laplace transform V(z,s) includind the function v(zx,t) is defined by

+oo
V(z,s) = /0 v(z,t)e " dt, (19)

where s is know as a Laplace variable and V is a function in the Laplace
domain.

Applying the Laplace transform on both sides of (14), we obtain

+o00 82’0 . +o0o azv +o0o a,U
—e S dt— —e st dt — —e St
/0 a1z € a/o 9z2° C/O T +

+a /0+O° v(x, t)e * dt = /0+0<> /Otﬁ‘(t — s)v(z,s)dsdt. (20)
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The standard integration by parts of the terms on the left-hand of (20), leads

+oo 821}
/ Spe " dt = (@) - sp(a) + *V(a,5), (21)
0
+o0 (921) . dZV(JZ,S)
o on dv(z,s)

Substuting (21), (22) and (23) into (20), we get

ad%;’gz, s) CdVC(i:;, s) + (a+ sV (x,s) = f(x,s) + () + sp(x), (24)

where f(x,s) = /OJFOO /Otﬁ(t — s)v(z,s)dsdt.

Similarly, we have
¢
/ V(z,s)dx =0, (25)
0
¢
/ zV(z,s)dr = 0. (26)
0

Now, we distinguish the following cas :

» Case 1: If ¢ + 4aa + 4as® = 0.
» Case 2: If 2 + 4aa + 4as® > 0.
» Case 3: If ¢ + 4aa + 4as® < 0.

In this article, we only deal Case 1 and Case 2

For Case 1, that is ¢® +4aa +4as® = 0, the solution general of (26) is given
by

V(w,s) = (Ci(s)a + Ca(s))e %" — ! /Om(x —7)(f(7,8) +(T) + sp())e2 dr.

(27)
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Putting the intagral conditions (25) and (26) in (27), we get

(2 — (1 + %egle)) Ci(s) + i (1 — e 2¢) Cy(s)
::zAaA?x—yvas>+w@»+swv»a?drm;

4a* + (0 — dacl — 4a*))C1(s) + (2a — (2a + £c))Cy(s)

{ px
= 4a2/0 /0 z(z —7)(f(1,s) + () + sp(7))e” dr d.

For Case 1, that is ¢? + 4aa + 4as? > 0, Using the method of variation of

parameter, to solve (26), we have the general solution as

V(z,s) = Ci(s)exp <—C Ve zja(a : 82)95)

c+ 1/ + da(a + s2) 2
+ Ca(s)exp (— 7 x| — NCETTOETE]

XAﬂﬂn@+wvmwwﬂn”@ﬂ“m<¢§+ngﬂ%@_TOdﬂ

(28)

where C et (5 are arbitrary functions of s.

Substuting (28) into (25) and (26), we have

01(5)/0 exp (_c— V2 +4a(o¢—|—32)x> i

2a
L 244 2
—i—Cg(s)/ exp <_c+\/c rdalats )m> dx 2

2a N Ve +da(a + s2)

X /0 /Ox (f(r,s) + (1) + sp(7)] e~ %" sinh <\/CZ il 420;(& ) (z — T)) dr dz,

(29)
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01(5)/0 e (_c — /A +4dala+ 82)33) .

2a

+ Crls )/exexp< c+ \/c2+4a(04+82)x> . 9

2a V2 + dala + s?)

/ / (1,8) + (1) + sp(T)] e~ “%" sinh <\/02 il 42aa(oz + ) (x — 7')) dr dx,

where

and

an(s) = /OL; erp (—C — v +dafat 82)x> dx, (31)

2a
¢ c 2+ 4a(a + s2
aia(s) :/0 erp (— v Zj o+ )a‘;> dx, (32)
¢ ¢ — /2 + da(a + s?
az (s) :/0 rexp (— v z;l Chi )1:) dx, (33)

4 2 4 4af 2
a22<8):/ xexp( et Ve + ala+s )x> dx, (34)
0

c(z—T1)

bl(S) B \/02 + 4Cl Oé + 52 / / T S ) - SSO(T)] c (35)

x sinh <\/C2 tda(a+ ) (x — T)) dr dz, (36)

2a

c(z—T1)

(37)

x sinh <\/C2 tda(a+ 57 (x — T)) dr dz. (38)

2a

If it is not possible to calculate the integral directly, then we calculate tem

numerically. If the Laplace inversion is possibly computed directly for (28) and



M.Z. Djibibe, N. Pindra and K.Tcharie 11

(38), we obtain our solution explicitly. Otherwise, we use the suitable approx-
imate method, then we use the numerical inversion of the Laplace transform.
We have

¢ c— /A +4dala+ s?
an(s):/oexp(— Ve +dafo+ )x> dx

2a

] — c— /2 +4dala+ s?
- §Zkiexp (— v ( )($i+1)),
i=1

2a

2a

1< 2 44 2
Z—Zkieﬂﬁp (_c+\/c + a(a+s)<xi+1)),
i=1

¢ c c2 a(o + s2
alg(s):/oexp<— +\/ +dafa + )x> dx

2 2a

2a

- iz ki(x; + 1)exp <—C mVEELICEES (i + 1)) ;

as (s) = /Of rexp (—C — Vet dafat 82)x> dx (39)

2a

2a

1 < c+/c+4ala+ s?
=7 Z ki(x; + 1)exp (— vV )(x, + 1)) ,
i=1

¢ 214 2
a22(8):/ verp (_c+ N a(a+s)x> s
0

2a
(40)

_ c(z—T1)

o)== s | [ U9 v o]
X sinh <\/62 +da(a+ %) (x — 7')) dr dz

2a
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- o (gt 0s) v (g )
4 (1 - (%(a:ﬁ— 1)) exp (_i {(1 - %(azi—i- 1)) .

()] S (D

X E {(1 - %(a:i + 1)) zj + (1 + %(xmL 1))} - %(wi + 1)D

c(z—7)

)= \/62+4a a+ s?) // (78) +9(7) + sp(r)] e =0
xsinh<\/02+4a&+s)(x—7)> dr dz

2a

n

bo(s) = — 4\/02+4aaa+s ;/@{f@(mzﬂ) >+¢( (xz—|—1>

oo} W)]( - an) (3] (1 b )
(atecen) Jem (5, (gt )

(i) o (S

« B [(1_%(@«#1)) z; + (1+%(mi+1)>} _%<xi+1)D.

where x; and k; are the abscissa and weights, defined as

2
gt f P ;=
Z; ? Z€ero o n(ﬂf)> ki (1_%2)(]3/(33))2

Their tabulated values can be found in [7] for different values of N.

Using Stehfest’s algorithm, the time domain solution is approximated as

min(k,n)

1n2 T Viz kln2 )
;Z[a} (n —i)lil(i — 1)!(k —9)!(2i — k)! < - )
2

(41)
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