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Abstract
We consider the notion of a confluent spherical function on a con-

nected semisimple Lie group, G, with finite center and of real rank 1,

and discuss the properties and relationship of its algebra with the well-
known Schwartz algebra of spherical functions on G.
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1 Introduction

Let G be a connected semisimple Lie group with finite center, a maximal

compact subgroup K and a Lie algebra g having a Cartan decomposition,

g = t⊕ p.
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If we choose a maximal abelian subspace, a, of p and define A+ = {exp tH :

H ∈ a, t > 0} then G has a polar decomposition given as G = K · cl(A+) ·
K, where cl(A+) is the closure of A+. A function ϕ : G 7→ C is said to be

K−biinvariant whenever

ϕ(k1xk2) = ϕ(x), ∀ k1, k2 ∈ K, x ∈ G.

The polar decomposition of G above implies that every K−biinvariant function

on G is completely determined by its restriction to A+. A spherical function

on G is therefore a K−biinvariant function, ϕ : G 7→ C, in which ϕ(e) = 1

and which is an eigenfunction for every left-invariant differential operator on G.

An example of such a function is the Harish-Chandra (zonal) spherical

function, ϕλ, λ ∈ a∗C, on G. If we denote the restriction of ϕλ to A+ as ϕ̃λ, then

the following system of differential equations hold:

q̃ϕ̃λ = γ(q)(λ)ϕ̃λ,

where q ∈ Q(gC)(:= U(gC)K = centralizer of K in U(gC)), γ := γg/a is

the Harish-Chandra homomorphism of Q(gC) onto U(gC)w, the w− invari-

ant subspace of U(gC), with w denoting the Weyl group of the pair (g, a),

tU(gC)
⋂

Q(gC) is the kernel of γ and q̃ is the restriction of q to A+. Since

q̃ · f = q̃ · f̃ ,

for every f ∈ C∞(G//K) we conclude that q̃ is the radial component of q. We

define q ∈ Q(gC) to be spherical whenever q = q̃.

The above system of differential equations have been extensively used by

Harish-Chandra in the investigation of the nature of the spherical functions,

ϕλ, their asymptotic expansions and their contributions to the Schwartz al-

gebras on G. The history of this investigation dated back to the 1950′s with

the two-volume work of Harish-Chandra, [3(a.)] and [3(b.)], which still attracts

the strength of twenty-first century mathematicians (see [10.] and [1.]). Other

functions on G satisfying different interesting transformations under members

of Q(gC) have also been studied in the light of the approach taken by Harish-

Chandra. We refer to [5.] and the references cited in it for further discussion.

Now if G is a semisimple Lie group with real rank 1 then it is known (see

[3a.]) that the above system of differential equations can be replaced with

δ
′
(ω) · ϕλ = γ(ω)(λ) · ϕλ,
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where ω is the Casimir operator of G and δ
′
(ω) denotes the radial component

of the differential operator, δ
′
(ω), associated with ω. If we load the structure

of G, as a real rank 1 semisimple Lie group, into the last equation it becomes

(
d2

dt2
+ {(p + q) coth t + q tanh t} d

dt
)fλ = (λ2 − (p + 2q)2

4
)fλ,

where p = n(α), q = n(2α), fλ(t) := ϕλ(exp tH0) and H0 is chosen in a such

that α(H0) = 1 (see [13.], p. 190 for the case of G = SL(2, R)). Setting

z = −(sinh t)2 transforms the above ordinary differential equation to the hy-

pergeometric equation

(z(z − 1)
d2

dz2
+ ((a + b + 1)z − c)

d

dt
+ ab)gλ = 0,

where gλ(z) = fλ(t), z < 0, a = p+2q+2λ
4

, b = p+2q2λ
4

and c = p+q+1
2

, whose

solution is from here given by the Gauss hypergeometric function, F (a, b, c : z),

defined as

F (a, b, c : z) =
∞∑

k=0

(a)k(b)k

(c)k

zk

k!
,

| z |< 1 ([16.], p. 283). It then follows that

ϕλ(exp tH0) = F (a, b, c : z)

with z = −(sinh t)2 and we conclude that the spherical functions on real rank

1 semisimple Lie groups are essentially the hypergeometric function. In other

words, the hypergeometric functions form the spherical functions on any real

rank 1 semisimple Lie group.

The confluent hypergeometric function is defined as

1F (a, c : z) = limb→∞F (a, b, c : z/b) =
∞∑

k=0

(a)k

(c)k

zk

k!
.

Thus replacing z with z/b in the hypergeometric function, F (a, b, c : z), and

computing the limit as b → ∞ leads to its confluent, 1F (a, c : z). Taking

the same steps for the above hypergeometric equation shows that 1F (a, c : z)

satisfies the confluent differential equation

z
d2w

dz2
+ (c− z)

dw

dz
− aw = 0.
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Now since on any real rank 1 semisimple Lie group G, every spherical

function is expressible, as seen above, in terms of a hypergeometric function,

we refer to 1F (a, c : z) as a confluent spherical function on G and we denote

it by ϕσ
λ(exp tH0). i.e.,

ϕσ
λ(exp tH0) =1 F (a, c : z),

with z = −(sinh t)2. It is however noted that if we replace z with z/b in

z = −(sinh t)2, as in the derivation of the confluent hypergeometric equation,

then we have

t = sinh−1(i
√

z/b).

So that as b →∞ it implies that values of t becomes very small. It then means

that the relationship

ϕσ
λ(exp tH0) =1 F (a, c : z),

is valid only for sufficiently small values of t. We conclude therefore that the

spherical function, ϕλ(exp tH0), becomes a confluent spherical function on G

for small values of t.

Our aim in this paper is, therefore, to study the function ϕλ(exp tH0) for

small values of t since this corresponds with the study of the confluent spherical

function, ϕσ
λ(exp tH0) as explained above. In this respect we find the Stanton-

Tomas expansion of ϕλ(exp tH0) very appropriate to define the general notion

of a confluent spherical function.

The paper is arranged as follows: §2. contains a discussion of the radial

component of spherical differential operators on any G of arbitrary rank, as

discovered by Harish-Chandra ([3a.] and [3b.]), while the motivation for the

notion of a confluent spherical function on a real rank 1 semisimple Lie group

is developed in §3. This motivation informs our choice of the Stanton-Tomas

expansion in the definition of a confluent spherical function. The algebra of

these functions are then studied and related with the Schwartz algebra of

spherical functions.

An insight into the study of specific confluent spherical functions on the

real rank 2 case of Sp(2, R), leading to the consideration of different kinds of

Whittaker functions, is contained in Hirano, et al [5.]. However the approach

taken in this paper is more general than theirs and holds for any real rank 1

semisimple Lie groups, and may be extended to higher ranks.
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2 Radial Components of Spherical Differential

Operators

Consider a connected real semisimple Lie group G with finite center and

with the Lie algebra g, whose complexification is denoted as gC. We can identify

the members of g with left-invariant vector fields of G in the following manner.

For every X ∈ g, we define a map

X 7−→ ∂(X),

where ∂(X) is to act on members of C∞(G) by the requirement

(∂(X)f)(x) :=
d

dt
f(x · exp tX)|t=0

.

This depicts ∂(X) as a first order left-invariant differential operator on G

associated to every X ∈ g and which satisfies the relation

∂([X, Y ]) = ∂(X)∂(Y )− ∂(Y )∂(X),

for X, Y ∈ g. This outlook may be used to introduce left-invariant differential

operators of any order on G, by choosing more than one member of g at a

time. Indeed, if X1, ..., Xr ∈ g and we define the map

X1 · · ·Xr 7−→ ∂(X1 · · ·Xr)

as

∂(X1 · · ·Xr) = ∂(X1) · · · ∂(Xr)

then

∂(X1 · · ·Xr)(x) = (
∂r

∂t1 · · · ∂tr
f(x · exp tX1 · · · exp tXr))|(t1,··· ,tr)=(0,··· ,0)

,

which is a left-invariant differential operator on G of order ≤ r. These operators

are analytic and are precisely the endomorphisms of C∞(G) generated by ∂(X),

X ∈ g ([13], p. 101). Thus if we define D(G) = spanC{∂(X) : X ∈ g}, then

D(G) is a subalgebra of the algebra EndC(C∞(G)), of all endomorphisms on

C∞(G), with the identity operator as its identity element.

However, it is known that if X1, · · · , Xr ∈ g, the product X1 · · ·Xr may

not generally be a member of g, as may easily be verified with low-dimensional
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Lie algebras. Thus we should seek a gadget in which every product, X1 · · ·Xr,

of members of g is always found, and then study the structure of the map

∂ : X1 · · ·Xr 7−→ ∂(X1 · · ·Xr)

with this gadget on the foreground. With this aim in mind we consider the

tensor algebra, T (gC), of the complexification, gC, of g, given as

T (gC) = C⊕ gC ⊕ (gC ⊗ gC)⊕ (gC ⊗ gC ⊗ gC)⊕ · · · =
∞⊕

k=0

T k(gC),

where T 0(gC) := C, and T k(gC) := gC⊗· · ·⊗gC. T (gC) is an associative algebra

over C with identity, and there is a natural map , ι, of gC into T (gC) given

by identifying gC with the first-order terms ([1.]). T (gC) has the following

universal property.

2.1 Theorem([6.], p. 644). If A is any other associative algebra over C
with identity and τ is a linear map of g into A, then there exists a unique

associative algebra homomorphism τ̄ , with τ̄(1) = 1 such that τ̄ ◦ ι = τ. �

We conclude, from the definitions of ∂ and T (gC) above, that

∂ : T (gC) 7−→ D(G).

However, as [X, Y ], XY, Y X ∈ T (gC), for every X, Y ∈ gC and

∂([X, Y ])− ∂(X)∂(Y )− ∂(Y )∂(X) = 0,

for every X,Y ∈ gC, it would be necessary to factor, out of T (gC), the set

generated by all elements of the form X ⊗ Y − Y ⊗X − [X, Y ], for X, Y ∈ gC.

Indeed

I = spanC{X ⊗ Y − Y ⊗X − [X, Y ] : X, Y ∈ gC}

is a two-sided ideal of T (gC), and we define

U(gC) := T (gC)/I.

U(gC) is also an associative algebra with identity, it contains gC and has the

following universal property inherited from T (gC).
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2.2 Theorem([6.], p. 215). Let ι be the canonical map of gC into U(gC),

let A be any complex associative algebra with identity, and let ϕ be a linear

mapping of gC into A such that

ϕ([X,Y ]) = ϕ(X)ϕ(Y )− ϕ(Y )ϕ(X), X, Y ∈ gC.

Then there exists a unique algebra homomorphism ϕ0 : U(gC) −→ A with

ϕ0(1) = 1 such that ϕ0 ◦ ι = ϕ. �

The canonical map ι, in the above theorem is one-to-one ([6.], p. 217) and

the object U(gC) is called the universal enveloping algebra of gC. One of the

most fundamental results in the theory of U(gC) is the following, which gives

a concrete way of constructing it.

2.3 Theorem(Poincaré-Birkhoff-Witt Theorem)([1.], p. 32). If X1, · · · , Xn

is a basis of gC over C, then the monomials ι(X1)
j1 · · · ι(Xn)jn , jk ≥ 0, k =

1, · · · , n, form a basis of U(gC) over C. �

The inclusion of ι in the above is not necessary since it is a one-to-one map.

However, the members of U(gC) may seem to be difficult to handle if we only

the definition U(gC) := T (gC)/I in mind. However recalling, from Theorem

2.2, that, with A = D(G), ∂ : gC −→ D(G) is a (natural) homomorphism such

that ∂([X, Y ]) = ∂(X)∂(Y ) − ∂(Y )∂(X), X, Y ∈ gC, and which also extends

to all of U(gC), this implies that the members of U(gC) are more concrete

than predicted by the Poincaré-Birkhoff-Witt Theorem. Indeed we have the

following major result that gives a different outlook on U(gC).

2.4 Theorem([1.], p. 32). The algebra homomorphism ∂ : U(gC) −→
D(G) is an algebra isomorphism onto. �

The message of these theorems is that the members of U(gC) are mixed

derivatives, so that U(gC) is the algebra of all left-invariant differential op-

erators on G. This allows us to view U(gC) as the house of all left-invariant

differential operators on C∞(G). Furthermore U(gC) may also be realized as the

algebra of right-invariant differential operators on G via the anti-isomorphism

∂r given as

(∂r(X1 · · ·Xr)f)(x) = (
∂r

∂t1 · · · ∂tr
f(exp t1X1 · · · exp trXr · x))|(t1,··· ,tr)=(0,··· ,0)

.
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This second realization of U(gC) suggests that there are some of its members

which are both left- and right-invariant. i.e., members q ∈ U(gC) in which

qX = Xq, for all X ∈ gC. This set of members that are both left- and right-

invariant is the center of U(gC) and is denoted by Z(gC). Though the algebra

Z(gC) is abelian and sufficient in the harmonic analysis on G, we shall however

consider the larger subalgebra Q of U(gC) defined as the centralizer of K in

U(gC). i.e.,

Q = {q ∈ U(gC) : Ad(k)q = q, k ∈ K}.

This is due to the fact that we are ultimately interested in the study of K−
biinvariant functions on G. It is the radial component of members of Q, viewed

as a subalgebra of the algebra, D(G), of left-invariant differential operators

on G, that we set out to compute in this section. This is reminiscence of

the classical method of finding the normal form of an ordinary differential

operator. However we need to have a generalization of the polar decomposition

of matrices to members of G in order to start. We take a cue from the example

of the case G = SL(2, R), where the generalization of polar coordinates and

normal form are easily seen.

Let G = SL(2, R) = {x =

(
a b

c d

)
∈ GL(2, R) : ad − bc = 1} with Lie

algebra g = sl(2, R) = {X ∈ GL(2, R) : tr(X) = 0} and complexification

gC = sl(2, C) = {X ∈ GL(2, C) : tr(X) = 0}. The matrices H =

(
1 0

0 −1

)
,

X =

(
0 1

0 0

)
, and Y =

(
0 0

1 0

)
are members of g and are such that the

set {X − Y,H, X + Y } form a basis for g. Now since, for t ∈ R, exp tH =(
et 0

0 e−t

)
=: at and, for θ ∈ [0, 2π], exp θ(X − Y ) =

(
cos θ sin θ

− sin θ cos θ

)
=:

uθ, form the closed subgroups A and K of G, the basis of g above implies that

G = K · A · K. More precisely we have G = K · cl(A+) · K, where cl(A+)

stands for the closure of {at : t > 0}. This is the polar decomposition which is

known to generalize to any connected semisimple Lie group, with finite center.

Another way to establish the polar decomposition, which easily extends to

more general semisimple Lie groups, is by considering the map

ϕ : K × cl(A+)×K −→ G : (kθ1 , at, kθ2) 7−→ ϕ(kθ1 , at, kθ2) = kθ1atkθ2 .

This map is a diffeomorphism onto, and we can seek its differentials on the
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basis elements X−Y, H, X +Y of g. Indeed, since the tangent spaces to K and

A at 1 are t = {θ(X −Y ) : θ ∈ R} =: R(X −Y ) and a = {tH : t ∈ R} =: RH,

then we have that

∂

∂x1

=
∂

∂θ1

,
∂

∂x2

=
∂

∂t
,

∂

∂x3

=
∂

∂θ2

,

in the formula

∂ϕ(
∂

∂xj |m

) =
3∑

k=1

∂(yk ◦ ϕ)

∂xj |m

· ∂

∂yk |ϕ(m)

,

where (x1, x2, x3) and (y1, y2, y3) are coordinate systems about m and ϕ(m),

respectively (cf. [14.], p. 17). Since, in this case, m = 1, we have ϕ(m) = 1.

Thus, as the tangent space to G at ϕ(1) = 1 is g, with an orthonormal basis

{X − Y, H, X + Y }, we also have that

∂

∂y1

= (X − Y ),
∂

∂y2

= H,
∂

∂y3

= (X + Y ).

Hence

∂(y1 ◦ ϕ)

∂x1 |1

=
∂(y1 ◦ ϕ)

∂θ1 |(θ1,t,θ2)=(0,0,0)

=
∂

∂θ1

(exp θ1(X − Y ) · at · kθ2)|(θ1,t,θ2)=(0,0,0)

=
∂

∂θ1

(atkθ2 exp θ1(X − Y )k(−θ2)a(−t))|(θ1,t,θ2)=(0,0,0)

(since exp(Z)y = y exp(Zy−1
) for Z ∈ g, y ∈ G.)

= k0a0
d

dθ1

(exp θ1(X − Y )k(−θ2)a(−t))|θ1=0

= (X − Y )k(−θ2)a(−t)

= k(−θ2) · a(−t) · (X − Y ) · at · kθ2

= (cosh 2t)(X − Y ) + (sin 2θ2 sinh 2t)H + (− cos 2θ2 sinh 2t)(X + Y )

In the same manner

∂(y2 ◦ ϕ)

∂x2 |1
= Hk(−θ2) = 0(X − Y ) + (cos 2θ2)H + (sin 2θ2)(X + Y ),

∂(y3 ◦ ϕ)

∂x3 |1
= (X − Y ) = 1(X − Y ) + 0H + 0(X + Y ).
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We then have the specifications of the differential, dϕ, of ϕ on the basis ele-

ments, ∂
∂θ1

, ∂
∂t

and ∂
∂θ2

, as

dϕ :



∂
∂θ1

7−→ (cosh 2t)(X − Y ) + (sin 2θ2 sinh 2t)H + (− cos 2θ2 sinh 2t)(X + Y )

∂
∂t
7−→ 0(X − Y ) + (cos 2θ2)H + (sin 2θ2)(X + Y )

∂
∂θ2

7−→ 1(X − Y ) + 0H + 0(X + Y )

The Jacobian of this transformation is then sinh 2t, so that the correspond-

ing Haar measure , dG, of G is also dG = 1
2
sinh 2tdθ1dtdθ2. Its inverse, (dϕ)−1,

is then given as

(dϕ)−1 :


(X − Y ) 7−→ ∂

∂θ2

H 7−→ cos 2θ2
∂
∂t

+ sin 2θ2

sinh 2t
( ∂

∂θ1
− cosh 2t ∂

∂θ2
)

(X + Y ) 7−→ sin 2θ2
∂
∂t
− cos 2θ2

sinh 2t
( ∂

∂θ1
− cosh 2t ∂

∂θ2
)

by simple substitution of the terms for ∂
∂θ2

, ∂
∂t

and ∂
∂θ1

, respectively.

Now, since the above expression for (dϕ)−1 imply that dϕ is bijective ev-

erywhere on K × A+ × K it follows that ([13.], p. 190) that any analytic

differential operator D on G+ := KA+K gives rise to a unique differential

operator Dϕ on K × A+ × K, called the polar form of D, such that, for any

f ∈ C∞(G+), we have

(Df) ◦ ϕ = Dϕ(f ◦ ϕ).

The composition with ϕ in this equation means restriction to G+. If we now

denote the restriction of f to A+ by f̃ , then the last equation above becomes

D̃f = D̃f̃

This means that D̃ is the radial component of the differential operator D

on G+, whose existence is proved in [3a.], p. 265, and is called spherical

whenever D = D̃. Now since D(G) ∼= U(gC) it is sufficient to consider Dϕ

for D = Z ∈ gC = sl(2, C). Indeed, for every D = Z ∈ gC, we have that,

Dϕ = (dϕ)−1(Z) and since a standard basis {H ′
, X

′
, Y

′} of gC is given as

H
′
= −i(X − Y ), X

′
=

1

2
(H + i(X + Y )), Y

′
=

1

2
(H − i(X + Y )),

we have that

H
′ϕ = (dϕ)−1(H

′
) = −i

∂

∂θ2

,
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X
′ϕ = (dϕ)−1(X

′
) =

ie−2iθ2

sinh 2t

∂

∂θ1

+ e−2iθ2
∂

∂t
− i

cosh 2t

sinh 2t
e−2iθ2

∂

∂θ2

,

and

Y
′ϕ = (dϕ)−1(Y

′
) =

−ie2iθ2

sinh 2t

∂

∂θ1

+ e2iθ2
∂

∂t
+ i

cosh 2t

sinh 2t
e2iθ2

∂

∂θ2

.

The Poincaré-Birkhoff-Witt Theorem above then implies that we consider

the radial components of the monomials given as

H
′j1X

′j2Y
′j3 , j1, j2, j3 ≥ 0,

in order to exhaust the members of U(gC). It is sufficient, for a start, however

to consider the center Z(gC) or the centralizer, Q(gC), of K in U(gC), both

of which are commutative subalgebras. Indeed, Z(gC) is the commutative

polynomial algebra in the single variable

ω = (H
′
)2 + 2H

′
+ 4Y

′
X

′
,

the Casimir operator of G. i.e., Z(gC) = C[ω] ([8.], p.195), while Q(gC) is

the commutative polynomial algebra in the two variables ω and X − Y. i.e.,

Q(gC) = C[ω,X − Y ] ([8.], p.196). Clearly Z(gC) ⊂ Q(gC). We however use

the normalized casimir operator, ω
′
, given as

ω
′
= (H

′
)2 + 2H

′
+ 4Y

′
X

′
+ 1,

so that

ω
′ϕ = (dϕ)−1(ω

′
) = [

1

sinh2(2t)
(

∂2

∂θ2
1

+
∂2

∂θ2
2

)− 2
cosh 2t

sinh2(2t)

∂2

∂θ1∂θ2

] + [
∂2

∂t2
+ 2

cosh 2t

sinh 2t
+ 1]

is the restriction of ω
′
to G+, and may be referred to as the polar form of ω

′
.

This shows that members of Z(gC) , indeed of U(gC), are essentially partial

differential operators on G+. Hence the radial component, δ
′
(ω

′
), of the nor-

malized Casimir operator, ω
′
, which is the restriction of the above ω

′
to A+,

is simply

δ
′
(ω

′
) =

d2

dt2
+ 2

cosh 2t

sinh 2t

d

dt
+ 1,

(see also [7.], p. 73) reducing the mixed derivatives from Z(gC) to the ordinary

derivatives dr

dtr
, 0 ≤ r ≤ 2, on spherical functions on G.

The following well-known result of [8.], p. 199, explains that the eigenfunc-

tions of Z(gC), or of ω
′
, are exactly the spherical functions on G.
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2.5 Theorem. A K− biinvariant C∞ function f on G, with f(1) = 1, is

a spherical function iff ω
′
= λ2f for some λ ∈ C. �

A detailed proof of Theorem 2.5 is contained in [9.], p. 88. Now as every

element q ∈ U(sl(2, C)), of degree ≤ r, may be written as

q = γHr +
∑

l+m+n≤r,m≤r−1

βl,m,n(X − Y )lHm(X + Y )n,

with where γ and βl,m,n are constants, we may generalize the above expression

for δ
′
(ω

′
) to all members of U(sl(2, C)) in the following manner. Let R be

the complex algebra of functions on (0,∞) that are generated by (sinh 2t)−1

and cosh 2t · (sinh 2t)−1. We know that ( d
dt

)R ⊂ R, since the derivatives of

the generators are all in R. The reduction of every q ∈ U(sl(2, C)), and not

just of Z(sl(2, C), to ordinary derivatives is established using the above expres-

sion for q and the method of using (dϕ)−1 in the calculation of Dϕ, for every

D = Z ∈ sl(2, C), as enumerated for ω
′
above.

2.6 Proposition([13.], p. 238). If q ∈ U(sl(2, C)) is of degree ≤ r, then

there exist f0, · · · , fr−1 ∈ C ·1⊗R such that, for any ϕ ∈ C∞(G//K), we have

(q · ϕ) = (δ
′
(q) · ϕ)

on A+, where the operator δ
′
(q) is given as

δ
′
(q) = γ

dr

dtr
+

∑
0≤j≤r−1

fj ·
dj

dtj
,

for some constant γ. �

If r = 2 and q = ω
′ ∈ Z(sl(2, C)), the conclusion of Proposition 2.6 implies

that

δ
′
(ω

′
) = γ

d2

dt2
+ f1

d

dt
+ f0,

which is in conformity with the direct computations above, where we see that

γ is 1, f1(t) is 2 cosh 2t
sinh 2t

and f0(t) is 1. The operator δ
′
(q) in Propositon 2.6 above

may then be called the radial component of every q ∈ U(sl(2, C)). It would be

a huge step to generalize this Proposition to every q in the universal enveloping

algebra, U(gC), of the complexification, gC, of a real connected semisimple Lie

algebra, g, of G. To this end we extract the basic features in the above case of

G = SL(2, R) as follows:
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(i.) Computation of the differential(s) of the Cartan decomposition map,

K × A+ ×K −→ G+.

(ii.) Use this differential, in (i.), to find the radial component for every

member of Z(gC) or of Q(gC).

Though the programme to solve items (i.) and (ii.) above may not be as

straightforward as we have seen for gC = sl(2, C), the following result sets in

motion the process of dealing with (i.). To this end, let ϕ : K ×A×K −→ G

and G+ = KA+K.

2.7 Proposition([2.], p. 125). The map ϕ : K × A ×K −→ G, given as

ϕ(k1, h, k2) := k1hk2, is submersive on K ×A+ ×K. In particular, G+ is open

in G and ϕ is an open map of K × A+ ×K onto G+.

Proof. We prove that the differential (dϕ)(k1,h,k2) =: D maps t×a× t onto

g. To this end, let Z1, Z2 ∈ t, R ∈ a, then

(dϕ)(k1,h,k2)(Z1, R, Z2) = D(Z1, R, Z2)

= D(Z1, 0, 0) + D(0, R, 0) + D(0, 0, Z2)

= (dϕ)(k1,h,k2)(Z1, 0, 0) + (dϕ)(k1,h,k2)(0, R, 0) + (dϕ)(k1,h,k2)(0, 0, Z2)

= (
d

dθ1

ϕ(k1 exp θ1Z1 · h exp 0 · k2 exp 0))|θ1=0

+ (
d

dt
ϕ(k1 exp 0 · h exp tR · k2 exp 0))|t=0

+ (
d

dθ2

ϕ(k1 exp 0 · h exp 0 · k2 exp θ2Z2))|θ2=0

= (
d

dθ1

ϕ(k1 exp θ1Z1 · hk2))|θ1=0
+ (

d

dt
ϕ(k1 · h exp tR · k2))|t=0

+ (
d

dθ2

ϕ(k1h · k2 exp θ2Z2))|θ2=0

= (
d

dθ1

ϕ(k1k2h · exp θ1Z
(hk2)−1

1 ))|θ1=0
+ (

d

dt
ϕ(k1hk2 · exp tRk−1

2 ))|t=0

+ (
d

dθ2

ϕ(k1hk2 · exp θ2Z2))|θ2=0

= Z(hk2)−1

+ Rk−1
2 + Z2

= Ad(k−1
2 ) · (Zh−1

1 ) + Ad(k−1
2 ) ·R + Ad(k−1

2 ) · (Zk2
2 )

= Ad(k−1
2 ) · (Zh−1

1 + R + Zk2
2 )

Hence (Ad(k2)◦D)(Z1, R, Z2) = Zh−1

1 +R+Zk2
2 , showing that D is one-to-

one. The surjectivity of D would hold if we show that g = th
−1

+a+ t for every
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h ∈ A+. Indeed, it is sufficient to verify that θn is contained in th
−1

+ a + t,

where θ is a Cartan involution on g, n =
∑

α∈∆+ gα, and ∆+ is a set of positive

restricted roots of (g, a). To this end, let X ∈ gα, α ∈ ∆+, then

(X + θX)h−1

= e−α(log h)X + eα(log h)(θX),

so that

(X + θX)h−1 − e−α(log h)(X + θX) =

= e−α(log h)X + eα(log h)(θX)− e−α(log h)X − e−α(log h)(θX)

= (eα(log h) − e−α(log h))(θX),

i.e.,

θX = (eα(log h) − e−α(log h))−1((X + θX)h−1 − e−α(log h)(X + θX))

= (eα(log h) − e−α(log h))−1(X + θX)h−1

− (eα(log h) − e−α(log h))−1e−α(log h)(X + θX) · · · (∗)
∈ th

−1

+ t (since (X + θX) ∈ t)

⊂ th
−1

+ a + t.

This ends the proof as expected. �

We see that (dϕ)(1,h,1) = Zh−1

1 +R+Z2, in anticipation of its use on the K−
biinvariant functions on G. The proof of Proposition 2.7 above gives a formula

for the first differential, (dϕ)(k1,h,k2), of ϕ. However since we are ultimately

interested in the radial component of an arbitrary C∞ spherical differential

operator on G, which may have second, third, and higher derivatives, we com-

pute higher order derivatives of ϕ to give the full differential, which we shall

denote by (dϕ)∞(k1,h,k2). This is mainly because the property of Z(sl(2, C)), as

a polynomial algebra in the variable ω
′
, has not be found generalizeable to

arbitrary semisimple G and g. Indeed we have the following.

2.8 Proposition([2.], p. 127). The full differential, (dϕ)∞(k1,h,k2), of the

map ϕ in Proposition 2.7 is given on U(tC)⊕ U(aC)⊕ U(tC) as

(dϕ)∞(k1,h,k2)(ξ1 ⊗ u⊗ ξ2) = ξ
(hk2)−1

1 uk−1
2 ξ2,

where ξ1, ξ2 ∈ U(tC) and u ∈ U(aC). In particular

(dϕ)∞(1,h,1)(ξ1 ⊗ u⊗ ξ2) = ξh−1

1 uξ2. �
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Just as in Proposition 2.7, the map

Dh : U(tC)⊕ U(aC)⊕ U(tC) −→ U(gC)

defined as Dh = (dϕ)∞(1,h,1) is surjective. Thus for every q ∈ U(gC) there

exists τh ∈ U(tC)⊕ U(aC)⊕ U(tC) such that Dh(τh) = q. If we assume that τh

depends smoothly on h, then the map h 7−→ τh leads to a differential operator

on K × A+ ×K which, at the points of (1)× A+ × (1), is simply q expressed

in polar coordinates. To the find the formula for τh we proceed as follows.

Let q 7−→ t(q) be the projection of U(gC) onto U(aC)U(tC), which corre-

sponds to the direct sum U(gC) = U(aC)U(tC)⊕ θ(n)U(gC), then deg(t(q)) ≤
deg(q). In view of the f ′js in Proposition 2.6, we define fα and gα, α ∈ ∆+,

on A+ by fα = (ξα − ξ−α)−1 and gα = ξ−α(ξα − ξ−α)−1, respectively, where

ξλ = eλ◦log, λ ∈ aC. Also, let R0 be the algebra with unit generated over, C,

by the fα and gα, and, for any integer d ≥ 1, let R0,d be the linear span of the

monomials in these generators of degree d. Now if we put

R+
0 =

∑
d≥1

R0,d,

then for every q ∈ U(gC) of degree m, there exist ξi, ξ
′
i ∈ U(tC), ui ∈ U(aC)

and ϕi ∈ R+
0 , 1 ≤ i ≤ n such that

q = t(q) +
∑

1≤i≤n

ϕi(h)ξh−1

i uiξ
′

i, h ∈ A+,

and we may take

τh = 1⊗ t(q) +
∑

1≤i≤n

ϕi(h)ξi ⊗ ui ⊗ ξ
′

i, h ∈ A+, q ∈ U(aC).

This is the appropriate generalization of the expression for q in U(sl(2, C)) of

degree ≤ r as given after Theorem 2.5 above. This direct comparison with

the case of sl(2, C) implies that we need to use the general expression for q

above to seek the generalization of Proposition 2.6 to all members of U(gC)

for any semisimple Lie algebra g. It is sufficient, in our present case, to seek

this generalization to all members of Q(gC) as we now do next. First a little

preparation.

Take βn : U(gC) −→ U(aC) be the projection corresponding to the direct

sum U(gC) = U(aC) ⊕ (tU(gC) + U(gC)n), having Q ∩ (tU(gC) as its kernel



64 Differential equations and the algebra of confluent spherical functions...

([3(a.)], p. 260) and define a map γn : Q(gC) −→ U(aC) by the specification

γn(q)(λ) = βn(q)(λ− ρ), λ ∈ a∗C, q ∈ Q(gC), ρ =
1

2

∑
α∈∆+

dim(gα) · α.

γn is a homomorphism ([3(a.)], p. 260), is independent of the choice of n and

is called the Harish-Chandra homomorphism. We denote it simply as γ which,

for g = sl(2, R), is given on ω
′
= (H

′
)2 + 2H

′
+ 4Y

′
X

′
as γ(ω

′
) = H2 7−→ d2

dt2
.

(see [7.], p. 51 and use the isomorphism in Theorem 2.4) We state the major

result of this section.

2.9 Theorem([2.], p. 129 and [3(a.)], p. 267). Given any analytic spherical

differential operator E on G+ there is a unique analytic differential operator

Ẽ on A+, the radial component of E, such that Ẽf = Ẽf̃ , f ∈ C∞(G//K).

The map E 7−→ Ẽ is a homomorphism that does not increase degree. If

E = q ∈ Q(gC), then the radial component, written as δ
′
(q), is given as

δ
′
(q) = e−ρ · γ(q) · eρ +

∑
1≤i≤n

ϕiui,

where ui ∈ U(gC), ϕi ∈ R+
0 and deg(ui) < deg(q). �

It is clear that Theorem 2.9 generalizes the assertions of Proposition 2.6,

at least to all members of Q(gC), and it sets the stage for analysis of the

differential equations satisfied by spherical functions on G. Indeed, by Theorem

2.5 we have that ω
′
ϕ = λ2ϕ which, when combined with Proposition 2.9, (see

also Lemma 23 of [3(a.)]) implies that δ
′
(ω

′
)ϕ = λ2ϕ where, according to

Theorem 2.9,

δ
′
(ω

′
) = e−ρ · γ(ω

′
) · eρ +

∑
1≤i≤n

ϕiui,

and ω
′

is the normalized Casimir operator of U(gC). Even though the rela-

tion Z(sl(2, C)) = C[ω
′
] does not generalize to arbitrary gC the sufficiency of

considering the differential equations

δ
′
(ω

′
)ϕ = λ2ϕ (= γn(ω

′
)(λ) · ϕ)

in our study of spherical functions on G may be justified as follows.
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2.10 Theorem([2.], p. 145). If ϕλ, λ ∈ a∗C is an eigenfunction of δ
′
(ω

′
),

then it is also an eigenfunction of δ
′
(q), q ∈ Q(gC), with the same eigenvalue.

Proof. We first show that the differential operators, δ
′
(q), q ∈ Q(gC),

commute with each other. Indeed, for any q1, q2 ∈ Q(gC), and any f ∈
C∞(G+//K), the commutativity of Q(gC) implies that q1q2f = q2q1f. Hence

δ
′
(q1q2)f̃ = δ

′
(q2q1)f̃ ,

wheref̃ = f|A+ . Therefore

δ
′
(q1)δ

′
(q2) = δ

′
(q2)δ

′
(q1) · · · (∗)

Now let ϕλ, λ ∈ a∗C, be an eigenfunction of δ
′
(ω

′
). i.e., for some λ ∈ C, we

have δ
′
(ω

′
)ϕλ = γ(ω

′
)(λ) · ϕλ. Thus

δ
′
(ω

′
)(δ

′
(q)ϕλ) = δ

′
(q)(δ

′
(ω

′
)ϕλ) = γ(ω

′
)(λ)(δ

′
(q)ϕλ),

meaning that δ
′
(q)ϕλ is an eigenfunction of δ

′
(ω

′
). However, by the uniqueness

of Theorem 2.9, we must have that δ
′
(q)ϕλ is a constant multiple of ϕλ, as

required. �

The above result explains that it is sufficient to consider the operator

δ
′
(ω

′
) = ω̃

′
=

d2

dt2
+ 2

cosh 2t

sinh 2t

d

dt
+ 1

in the study of spherical functions, ϕλ, on SL(2, R). In this case we have

γ(ω
′
)(λ) = λ2 so that the equation

δ
′
(ω

′
)ϕλ = γn(ω

′
)(λ) · ϕλ

becomes
d2ϕλ

dt2
+ 2

cosh 2t

sinh 2t

dϕλ

dt
+ (1− λ2)ϕλ = 0 · · · (Υ)

i.e.,

sinh2(2t)
d2ϕλ

dt2
+ 2 sinh 2t cosh 2t

dϕλ

dt
+ sinh2(2t)(1− λ2)ϕλ = 0

Now setting z = cosh 2t, and defining ϕλ(t) as Φλ(z), we would have dϕλ

dt
=

(2 sinh 2t)dΦλ

dz
and d2ϕλ

dt2
= 4 sinh2(2t)d2Φλ

dz2 + 4 cosh 2tdΦλ

dz
so that the last differ-

ential equation above transforms to

sinh4(2t)
d2Φλ

dz2
+ 2 sinh2(2t) cosh(2t)

dΦλ

dz
+

1

4
sinh2(2t)(1− λ2)Φλ = 0.



66 Differential equations and the algebra of confluent spherical functions...

We finally have, with sinh2(2t) = −(1− z2),

(1− z2)
d2Φλ

dz2
− 2z

dΦλ

dz
+

(λ2 − 1)

4
Φλ = 0.

This is the well-known Legendre equation.

This comfirms that the spherical functions on G = SL(2, R) are

essentially the Legendre functions as enunciated in [4.], pp. 405−407.

It is a well-known fact in the general theory of ordinary differential equa-

tions that we can now consider the associated confluent Legendre functions

on G = SL(2, R) in this context, and since every spherical function on G =

SL(2, R) is a Legendre function, we may refer to the confluent Legendre func-

tions on G = SL(2, R) as confluent spherical functions. This is the motivation

for the next section where this outlook is generated to all semisimple Lie groups

with real rank 1.

3 Reduction to the real rank 1 case

It is appropriate, from Theorem 2.10, to find the general Casimir operator

for the semisimple Lie group G in order to get the generalization of the Legen-

dre equation of the group G = SL(2, R) as already seen above. To this end let

J be the two-sided proper ideal of U(gC), generated over C by elements of the

form X⊗Y −Y ⊗X, where X, Y ∈ gC. The quotient T (gC)/J is the symmetric

algebra of gC, denoted as S(gC). Clearly if gC is abelian, then U(gC) = S(gC)

Even if gC is non abelian, so that we only have U(gC) ⊃ S(gC) in general, there

is a map, λ : S(gC) −→ U(gC), called the Harish-Chandra symmetrization map

given as

λ(X1 · · ·Xr) =
1

r!

∑
σ

Xσ(1) · · ·Xσ(r),

where X1, · · ·Xr ∈ gC and σ runs over the set of all permutations of the set

{1, · · · , r}. This is a linear isomorphism and it may be shown that, for every

x ∈ G, we have λ ◦ Ad(x) = Ad(x) ◦ λ, where Ad(x) is viewed as a map from

S(gC) into U(gC) (By an adaptation of Theorem 2.2 to S(gC))([4.], p. 393).

We the have the following.



O.O. Oyadare 67

3.1 Theorem([13.], p. 103). If I(gC) is the subset of members of S(gC)

which are Ad(G)− invariant, then λ : I(gC) −→ Z(gC) is a linear isomorphism.

Proof. This is a direct consequence of the relation λ ◦Ad(x) = Ad(x) ◦ λ,

for x ∈ G. �

The above result allows us to use a basis of I(gC) in the construction of

a basis of Z(gC). Since it is known that S(gC) is essentially the polynomial

algebra on gC, we may introduce the Casimir polynomial, ξ, on gC given as

ξ(Z) = tr(adZ)2. It follows that ξ ∈ S(gC) and hence we have λ(ξ) ∈ Z(gC).

If we define ξ̃ on gC by the requirement

〈ξ̃, Z〉 = ξ(Z), Z ∈ gC,

then we shall refer λ(ξ̃) as the Casimir operator and denote it by ω. The

situation for g = sl(2, R) may be used to justify these terms. Indeed, the

Casimir polynomial in this example is H2 +4Y X and, hence, λ(H2 +4Y X) =

λ(HH)+4λ(Y X) = 1
2!
(HH +HH)+4[ 1

2!
(Y X +XY )] = H2 +2Y X +2XY =

H2 + 2Y X + (2H + 2Y X) = H2 + 2H + 4Y X, which when normalized gives

exactly ω
′
. In the general case we have the following, where we denote B as

the Cartan-Killing form on gC × gC.

3.2 Theorem([12.], p. 217). The Casimir operator ω belongs to the center,

Z(gC) of Y(gC). If {X1, · · · , Xm} is a basis for gC and {X1, · · · , Xm} is the

dual basis defined by B(Xi, X
j) = δij, then

ω =
∑

1≤i≤m

XiX
i.

Proof. The first statement holds from the linear isomorphism in Theorem

3.1. The dual basis, {X1, · · · , Xm}, exists since B is a non-singular symmetric

bilinear form. Now for every X ∈ gC we have that X =
∑

1≤j≤m B(X, Xj)Xj

so that

(adX)2 =
∑

1≤r,s≤m

B(X, Xr)B(X, Xs)adXradXs.

Therefore

ξ(X) = tr(adX)2 =
∑

1≤r,s≤m

B(X, Xr)B(X, Xs)B(Xr, Xs).
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Hence ξ̃ =
∑

1≤r,s≤m B(Xr, Xs)X
rXs. We then have that ω = λ(ξ̃)

=
∑

1≤r,s≤m B(XrXs)X
rXs =

∑
1≤s≤m(

∑
1≤r≤m B(Xr, Xs)X

r)Xs =
∑

1≤s≤m XsX
s,

as expected. �

We need to now compute the expression for the constant coefficient differ-

ential operator, γ(ω), for ω as in Theorem 3.2 above, in anticipation of its use

in the formula for δ
′
(ω) contained in Theorem 2.9. This would require using a

specific basis of g according to the decomposition g = m⊕ a⊕
∑

λ∈∆ gλ, as we

now proceed next.

Let {Zi}1≤i≤m be a basis of m such that B(Zi, Zj) = −δij, and let {Hi}1≤i≤a

be a basis of a such that B(Hi, Hj) = δij. This is possible since B is negative-

definite on t (hence on m) and positive-definite on p (hence on a). Also since, for

any two roots α, β of (g, a), the root-space gα is orthogonal to gβ whenever α 6=
β, and since B is non-degenerate when restricted to gα×g−α (see [4.], p. 141) we

may select a basis {Xα,i}1≤i≤dim(gα), of gα, such that B(Xα,i, X−α,i) = δij, where

θXα,i = X−α,i for a Cartan involution, θ, on g, for every root α. It is clear, from

the assertion of Theorem 3.2, that ω|m =
∑

1≤i,j≤m ZiZ
j = −(Z2

1 + · · · + Z2
m),

ω|a =
∑

1≤i,j≤a HiH
j = H2

1 + · · · + H2
a and ω|gα

=
∑

1≤i,j≤dim(gα) Xα,iX
α,j =∑

1≤i,j≤dim(gα)(Xα,iX−α,i + X−α,iXα,i). Hence the direct sum g = m ⊕ a ⊕∑
λ∈∆ gλ now implies that

ω = −(Z2
1 + · · ·+ Z2

m) + (H2
1 + · · ·+ H2

a) +
∑

1≤i≤n(α),α>0

(Xα,iX−α,i + X−α,iXα,i).

The present form of the Casimir operator in theses bases may now be used to

compute the constant coefficient differential operator, γ(ω).

3.3 Lemma([2.], p. 94). In the above form of ω, we have that

γ(ω) =
∑

1≤i≤a

H2
i −B(Hρ, Hρ)

where Hρ = 1
2

∑
α>0 n(α)Hα and Hα is uniquely defined by the requirement,

α(H) = B(Hα, H) for all H ∈ a.

Proof. We know that Xα,iX−α,i = X−α,iXα,i+[Xα,i, X−α,i]. Now if X ∈ gα

and X
′ ∈ g−α, then [X, X

′
] ∈ gα=0 ⊂ m ⊕ a, and, for every H ∈ a, we

always have B(H, [X, X
′
]) = α(H)B(X, X

′
). These sum up to give [X, X

′
] ≡

B(X, X
′
)Hα(modm), for every X ∈ gα, X

′ ∈ g−α. In particular

[Xα,i, X−α,i] ≡ B(Xα,i, X−α,i)Hα(modm) = Hα(modm).



O.O. Oyadare 69

It then follows that

ω = −
m∑

k=1

Z2
k +

a∑
i=1

H2
i +

∑
1≤i≤n(α),α>0

(Xα,iX−α,i + X−α,iXα,i)

= −
m∑

k=1

Z2
k +

a∑
i=1

H2
i +

∑
1≤i≤n(α),α>0

(2X−α,iXα,i + [Xα,i, X−α,i])

≡ −
m∑

k=1

Z2
k +

a∑
i=1

H2
i +

∑
1≤i≤n(α),α>0

(2X−α,iXα,i + Hα(modm)).

Now using the fact that Q(gC) ∩ (tU(gC)), which contains m, is the kernel of

βn, we have

βn = −0 +
a∑

i=1

H2
i +

∑
α>0

n(α)Hα.

Hence

γ(ω)(λ) = βn(ω)(λ− ρ)

= βn(ω)(λ)− βn(ω)(ρ)

= (
a∑

i=1

H2
i +

∑
α>0

n(α)Hα)− (2
∑

1≤i≤a

ρ(Hi)Hi −
∑

1≤i≤a

ρ(Hi)
2 +

∑
α>0

n(α)ρ(Hα)).

i.e.,

γ(ω) =
a∑

i=1

H2
i +
∑
α>0

n(α)Hα− 2
∑

1≤i≤a

ρ(Hi)Hi +
∑

1≤i≤a

ρ(Hi)
2−
∑
α>0

n(α)ρ(Hα).

If we now observe, due to the orthonormality of the basis {Hi} of a relative

to B, that
∑

1≤i≤a ρ(Hi)Hi = Hρ = 1
2

∑
α>0 n(α)Hα and

∑
1≤i≤a ρ(Hi)

2 =

B(Hρ, Hρ) = 1
2

∑
α>0 n(α)ρ(Hα), we now have

γ(ω) =
a∑

i=1

H2
i +
∑
α>0

n(α)Hα−2(
1

2

∑
α>0

n(α)Hα)+(
1

2

∑
α>0

n(α)ρ(Hα))−
∑
α>0

n(α)ρ(Hα)

a∑
i=1

H2
i −

1

2

∑
α>0

n(α)ρ(Hα) =
a∑

i=1

H2
i −B(Hρ, Hρ). �

We can therefore get the expression for the radial component, δ
′
(ω), of ω

using the above expression for γ(ω) in Theorem 2.9. This would give the most
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general form of the formula

δ
′
(ω

′
) =

d2

dt2
+ 2

cosh 2t

sinh 2t

d

dt
+ 1

of the case of G = SL(2, R) to all connected semisimple Lie group G with

finite center. The result is as follows.

3.4 Proposition([2.], p. 133, and [3(a.)], p. 269). The radial component,

δ
′
(ω), of the differential operator ω is given as

δ
′
(ω) =

∑
1≤i≤a

H2
i + 2

∑
α>0

n(α)gαHα +
∑
α>0

n(α)Hα.

Proof. Having known that

ω = −
m∑

k=1

Z2
k +

a∑
i=1

H2
i +

∑
1≤i≤n(α),α>0

(Xα,iX−α,i + X−α,iXα,i)

and that the first sum vanishes under βn, it remains for us to find an expression

for the sum
∑

1≤i≤n(α),α>0(Xα,iX−α,i +X−α,iXα,i) in terms of members, fα and

gα, of R+
0 , as expected in the expression for δ

′
(ω) in Theorem 2.9 and explicitly

seen in the case of G = SL(2, R).

To this end, let Xα,i = Kα,i + Sα,i where Kα,i ∈ t and Sα,i ∈ p. Since

[Xα,i, X−α,i] = [Kα,i + Sα,i, K−α,i + S−α,i] = [Kα,i + Sα,i,−Kα,i + Sα,i] =

2[Kα,i, Sα,i] ∈ p, and [X, X
′
] ≡ B(X, X

′
)Hα(modm), X ∈ gα, X

′ ∈ g−α, we

arrive at [Xα,i, X−α,i] = Hα. This then means that [Kα,i, Xα, i] = [Kα,i, Sα,i] =
1
2
[Xα,i, X−α,i] = 1

2
Hα. Now setting X = Xα,i and g = Xα,i in

θX · g = fα(h)(X + θX)h−1

g − gα(h)(X + θX)g
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(from the equation (∗) of the proof of Theorem 2.7) gives

2X−α,iXα,i = −2θ(Xα,i)Xα,i

= −2[fα(h)(Xα,i + θXα,i)
h−1

Xα,i − gα(h)(Xα,i + θXα,i)Xα,i]

= −2fα(h)[(Kα,i + Sα,i) + (Kα,i − Sα,i)]
h−1

Xα,i

+ 2gα(h)[(Kα,i + Sα,i) + (Kα,i − Sα,i)]Xα,i

= −4fα(h)Kh−1

α,i Xα,i + 4gα(h)Kα,iXα,i

= −4fα(h)Kh−1

α,i Xα,i + 4gα(h)(Xα,iKα,i + [Kα,i, Xα,i])

= −4fα(h)Kh−1

α,i Xα,i + 4gα(h)Xα,iKα,i + 4gα(h)[Kα,i, Xα,i]

= −4fα(h)Kh−1

α,i Xα,i + 4gα(h)Xα,iKα,i + 4gα(h)(
1

2
Hα)

= −4fα(h)Kh−1

α,i Xα,i + 4gα(h)Xα,iKα,i + 2gα(h)Hα,

so that

Xα,iX−α,i + X−α,iXα,i

= 2X−α,iXα,i + Hα

= −4fα(h)Kh−1

α,i Xα,i + 4gα(h)Xα,iKα,i + 2gα(h)Hα + Hα,

which when substituted into the above expression for ω gives

ω = −
m∑

k=1

Z2
k+

a∑
i=1

H2
i +

∑
1≤i≤n(α)

(−4fα(h)Kh−1

α,i Xα,i+4gα(h)Xα,iKα,i+2gα(h)Hα+Hα).

Using the kernel of βn, and hence of γn, in the expression for δ
′
(ω) we have

δ
′
(ω) = −0 +

a∑
i=1

H2
i − 4(0) + 4(0) + 2

∑
α>0

n(α)gα(h)Hα +
∑
α>0

n(α)Hα

=
a∑

i=1

H2
i + 2

∑
α>0

n(α)gα(h)Hα +
∑
α>0

n(α)Hα. �

As from now on we may start the discussion on the asymptotic behaviour

of the spherical functions, ϕ, from the pertubation theory of the system of

differential equations satisfied by it given as

δ
′
(ω) · ϕλ = γn(λ) · ϕλ,
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with δ
′
(ω) as in Theorem 3.4. This is already contained in [3(a.)], [3(b.)], [11.]

and, more recently [10.] In the present paper however, we shall seek to general-

ize the outlook that led, in §2., to the notion of a confluent spherical function

to all semisimple Lie groups, with real rank 1. This would require loading the

structure of G and its Lie algebra, g, into the known expressions for δ
′
(ω) and

γn(λ) as we do next.

We now take G to be a connected semisimple Lie group with finite center

and real rank 1. i.e., dim(a) = 1. This implies that there exists exactly one

simple root in ∆ that we denote by α. This also means that 2α is the only

other possible element in ∆+ and, if p and q represents the numbers n(α) and

n(2α) of roots in ∆ which coincide on a+ with α and 2α, respectively, then

ρ =
1

2

∑
λ∈∆+

n(λ) · λ =
1

2
(n(α) · α + n(2α) · (2α)) =

1

2
(p + 2q) · α

and that p ≥ 1, q ≥ 0. Now choose H0 ∈ a+ such that α(H0) = 1. Since,

for any H ∈ a, we always have B(H, H) = 2
∑

λ∈∆+ n(λ) · λ(H)2 = 2(n(α) ·
(α(H))2 + n(2α) · ((2α)(H))2) = 2α(H)2(p + 4q), hence

B(H0, H0) = 2 · α(H0)
2(p + 4q) = 2(p + 4q) · · · · · · (i.),

and B(Hα, Hα) = 2 · α(Hα)2(p + 4q)). i.e., α(Hα) = 2α(Hα)2(p + 4q). (since

λ(H
′
) = B(Hλ, H

′
), for all H

′ ∈ a.) This implies that α(Hα) = (2(p + 4q))−1.

Therefore

Hα = α(Hα) ·H0 = (2(p + 4q))−1 ·H0 · · · · · · (ii.)

Equation (ii.) and the relation ρ = 1
2
(p + 2q) · α also imply that Hρ = ρ(Hα) ·

H0 = 1
2
(p + 2q) · α(Hα) ·H0 = 1

2
(p + 2q)(2(p + 4q))−1 ·H0. i.e.,

Hρ =
1

2
(p + 2q)(2(p + 4q))−1 ·H0 · · · · · · (iii.)

We now state the major result of this section as follows. This result general-

izes the situation of SL(2, R) above and motivates the concept of a confluent

spherical function.
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4 Confluent Spherical Functions And Their Al-

gebra

4.1 Theorem. Let G be a real rank 1 connected semisimple Lie group with

finite center and having the polar decomposition G = K ·cl(A+)·K. Then every

K− biinvariant function on G is spherical iff it is a hypergeometric function.

Proof. Using the isomorphism t 7−→ exp tH0, t ∈ R between R and A we

identify H0 with d
dt

so that

2(p + 4q)δ
′
(ω)

= 2(p + 4q)[H2
α + 2(n(α)gαHα + n(2α)g2αH2α) + (n(α)Hα + n(2α)H2α)]

= 2(p + 4q)[(2(p + 4q))−1 ·H2
0 + 2(p · ξ−α(ξα − ξ−α)−1 · (2(p + 4q))−1H0

+ 2q · ξ−2α(ξ2α − ξ−2α)−1(2(p + 4q))−1 ·H0)

+ (p · (2(p + 4q))−1 ·H0 + 2q · (2(p + 4q))−1 ·H0)]

(from an adaptation of formula (ii.) above)

= 2(p + 4q)(2(p + 4q))−1[
d2

dt2
+ 2(pg1

d

dt
+ 2qg2

d

dt
) + (p

d

dt
+ 2q

d

dt
)]

(where gk(t) = ξ−kα(t)(ξkα(t)− ξ−kα(t))−1 =

= e−kt(ekt − e−kt)−1 = e−2kt(1− e−2kt)−1, k = 1, 2)

=
d2

dt2
+ {2(pg1 + 2qg2) + (p + 2q)} d

dt

=
d2

dt2
+ {(2g1 + 1)p + 2(2g2 + 1)q} d

dt
=

d2

dt2
+ {p coth t + 2q coth 2t} d

dt

=
d2

dt2
+ {(p + q) coth t + q tanh t} d

dt
· · · · · · (iv)

(using the relation coth 2t = 1
2
(coth t + tanh t))

In the case of γn(ω)(λ), we identify a∗C with C via the map λ 7−→ λ(H0),

and for every H1 ∈ a, we set B(H1, H1) = 1. Now if we substitute H = H1 into

the relation B(H, H) = 2α(H)2(p + 4q), it gives H1 = (2(p + 4q))−
1
2 H0, and

when used with the expression for Hρ in (iii.) above we have (from Lemma
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3.3) that

γn(ω)(λ) = λ(H1)
2 −B(Hρ, Hρ)

= λ(H1)
2 − ρ(Hρ)

= (λ((2(p + 4q))−
1
2 H0))

2 − ρ(
1

2
(p + 2q)(2(p + 4q))−1H0)

= ((2(p + 4q))−1λ(H0))
2 − (

1

2
(p + 2q)(2(p + 4q))−1)ρ(H0)

= (2(p + 4q))−1λ2 − (
1

2
(p + 2q)(2(p + 4q))−1)(

1

2
(p + 2q)α(H0))

= (2(p + 4q))−1(λ2 − (p + 2q)2

4
) · · · · · · (v.)

We now substitute the expressions for δ
′
(ω) and γn(ω)(λ) in (iv.) and (v.)

into the equation

δ
′
(ω)ϕλ = γn(ω)(λ) · ϕλ

and define the function fλ on R, as fλ(t) = ϕλ(exp tH0), which is possible

because of the above isomorphism between R and A, to have

(
d2

dt2
+ {(p + q) coth t + q tanh t} d

dt
)fλ = (λ2 − (

(p + 2q)2

4
))fλ · · · · · · (ΥΥ).

This is the equation (Υ) at the tail-end of §2. for G = SL(2, R), where

p = 2 and q = 0. We now transform (ΥΥ), as done in §2. for ϕ
′′

λ +2 coth 2tϕ
′

λ +

(1−λ2)ϕλ = 0, by setting z = −(sinh t)2. This implies that dz
dt

= −2 sinh t cosh t

from which we may deduce that d
dt

= (−2 sinh t cosh t) d
dz

and d2

dt2
= (4 sinh2 t cosh2 t) d2

dz2−
2(sinh2 t + cosh2 t) d

dz
. Defining a function, gλ, on C as gλ(z) = fλ(t) under the

transformation z = −(sinh t)2 then converts equation (ΥΥ) to

(z(z − 1)
d2

dz2
+ ((a + b + 1)z − c)

d

dz
+ ab)gλ = 0,

where the constants a, b, c are given by a = p+2q+2λ
4

, b = p+2q−2λ
4

, c = p+q+1
2

,

respectively.

This is the well-known Gauss’ hypergeometric equation. The point z = 0

which corresponds to t = 0, is a regular singular point for this equation, and it

is known that there is exactly one solution of it which is analytic at z = 0 and

takes the value 1 there. This is the hypergeometric functions, F (a, b, c : z),

which, for |z| < 1, is given as

F (a, b, c : z) =
∞∑

k=0

(a)k(b)k

(c)k · k!
zk,
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where (m)k := m(m + 1) · · · (m + k− 1). Now since gλ(0) = fλ(0) = ϕλ(1) = 1

and gλ is analytic in z at z = 0 we conclude that

ϕλ(exp tH0) = F (a, b, c : −(sinh t)2),

where t ∈ R and a, b, c are as given above.

Conversely, let a function ϕλ be K− biinvariant and be given as ϕλ(exp tH0) =

F (a, b, c : −(sinh t)2) for some a, b, c. If we consider the equation

δ
′
(ω)ϕλ = γn(ω)(λ) · ϕλ

for some yet-to-be known constant γn(ω)(λ) ∈ C, then a =
p+2q+2

√
γn(ω)(λ)

4
,

b =
p+2q−2

√
γn(ω)(λ)

4
, and c = p+q+1

2
. For any known real rank 1 connected

semisimple Lie group G, with finite center, in which p and q are also known,

we may solve for γn(ω)(λ) explicitly from the above relations. With the fact

that ϕλ(1) = F (a, b, c : 0) = 1 we conclude that ϕλ is a spherical function on

G. �

The above result shows the one-to-one correspondence between the hy-

pergeometric functions and spherical functions on real rank 1 semisimple Lie

groups, G. Now we recall the well-known notion of the confluent hypergeomet-

ric function and use it, via Theorem 4.1 above, to introduce the notion of a

confluent spherical function on G, which is then later generalized using the

Stanton-Tomas expansion for spherical functions.

We recall that replacing z(= −(sinh t)2) by z
b
(= −(sinh t)2

b
) the hypergeomet-

ric equation gives

z(z − z

b
)

d2

dz2
gλ(z) + {c− (1 +

a + 1

b
)z} d

dz
gλ(z)− agλ(z) = 0

becoming, as b −→∞,

z
d2

dz2
gλ(z) + (c− z)

d

dz
gλ(z)− agλ(z) = 0

whose solution, gλ, is the confluent hypergeometric function, 1F (a, c : z), is

clearly given as

1F (a, c : z) = lim
b−→∞

F (a, b, c :
z

b
) =

∞∑
k=0

(a)k

(c)kk!
zk

where a, c and z are as above. Theorem 4.1 implies that there exists a K−
biinvariant function, say ϕσ

λ, on G such that ϕσ
λ = 1F. It would be important
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to have a concise way of defining the function ϕσ
λ. To do this we study more

closely the properties of 1F as follows.

The relationship between z and t, given as z = −(sinh t)2, could be recast

as t = sinh−1(i
√

z). Now the process of deriving the confluent hypergeomet-

ric equation above entails substituting z with z
b
, before applying the limit

as b −→ ∞. Doing the same for the expression t = sinh−1(i
√

z), we have

t = sinh−1(i
√

z
b
). In applying the limit as b −→ ∞, it follows that t −→ 0.

Now as limb−→∞ F (a, b, c : z
b
) gives 1F (a, c : z), the last statement above implies

that we study limt−→0 ϕλ(exp tH0). i.e., we study ϕλ(exp tH0) for sufficiently

small values of t. This observation is explicitly written as

ϕσ
λ(exp tH0) = lim

b−→∞
ϕλ(exp tH0)|

t=sinh−1(i
√

z
b
)
.

Since b −→∞ results to t being very small, the equality above implies that

the study of the confluent spherical functions, ϕσ
λ, on semisimple Lie groups is

the same as the study of spherical functions, ϕλ for sufficiently small values of

t. i.e., the study of the function ϕσ
λ : G → C in which given ε > 0 we can find

δ = δ(ε) > 0 such that | ϕλ(exp tH0)− ϕσ
λ(exp tH0) |< ε whenever t < δ.

This is the idea behind our notion of a confluent spherical function on G,

and to develop this idea further we make use of the Stanton-Tomas expansion

for spherical functions on a real rank 1 connected semisimple Lie group, with

finite center (See [11.]). We however start with a motivation via the case of

G = SL(2, R) which proves the fact that Legendre functions admit a series

expansion in terms of Bessel functions.

It has been shown by Harish-Chandra, [3(a.)], that every spherical function,

on any connected semisimple Lie group G, with finite center and arbitrary real

rank, has the integral expansion

ϕλ(x) =

∫
K

e(λ−ρ)(H(xk))dk,

where λ ∈ a∗C, x ∈ G, ρ = 1
2

∑
α∈∆+ dim(gα) · α. When G = SL(2, R), a

calculation contained in [15.], p. 339, shows that

ϕλ(exp tH0) =
1

2π

∫ 2π

0

(cosh t + sinh t cos θ)(λ− 1
2
)dθ.

This is the integral formula for the Legendre function, Pλ− 1
2
(cosh t) and is in

consonance with the conclusion in §2. A change of contour in the integral
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yields

ϕλ(exp tH0) = c

∫ t

0

cos(λs)(cosh t− cosh s)−
1
2 ds.

See [11.] for some details. Now for small values of t, it is known that

(cosh t− cosh s)−
1
2 = (t2 − s2)−

1
2 + error.

So that for sufficiently small values of t, we have

ϕλ(exp tH0) = c

∫ t

0

cos(λs)(t2 − s2)−
1
2 ds = J0(λt),

where Jn(λt) is the Bessel function of order n, giving as the series expansion

Jn(x) =

xn

2n · n!
{1− x2

22 · 1!(n + 1)
+

x4

24 · 2!(n + 1)(n + 2)
}

− xn

2n · n!
{ x6

26 · 3!(n + 1)(n + 2)(n + 3)
+ · · · },

for any n ∈ Z, with J−n(x) = (−1)nJn(x), and, if n /∈ Z,

Jn(x) =
∞∑

k=0

(−1)k

k!Γ(n + k + 1)
(
x

2
)n+2k.

We can state our deductions above as follows.

4.2 Theorem. The confluent spherical functions, ϕσ
λ, on G = SL(2, R)

are the zero-th order Bessel functions, J0, of sufficiently small arguments.

Proof. Exactly as in the above deductions. �

This idea generalizes to all real rank 1 semisimple Lie groups and is the

first main result of Stanton and Tomas, [11.]. To state their result we make

some preparations.

Let n = dim(G/K), which is known to be equal to p + q + 1, define c0 =

c0(G) and the function Jµ, respectively, as

π
1
2 2(q/2)−2 Γ(n−1

2
)

Γ(n
2
)

and

Jµ(z) =

{
Jµ(z)

zµ Γ(µ + 1
2
)Γ(1

2
)2µ−1, if z 6= 0,

0, if z = 0,
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where Jµ is the Bessel function of order µ. Let also D be the Jacobian for the

polar decomposition of G, then D > 0 on A+ and is given by

D(t) = D(at) = e−ρ(log at) · Πα>0(e
2α(log at) − 1)n(α).

(see §2. for its reduction in the case of SL(2, R))

In the case of a real rank 1 group, G, in which there are at most two

positive roots, α and 2α, with multiplicity p and q, the Jacobian reduces to

D(t) = e−2ρ0tg1(t)
−pg2(t)

−q where gk(t) = e−2kt(1 − e−2kt)−1, k = 1, 2, and

ρ0 = 1
2
(p+2q). We now state a very important expansion formula for spherical

functions, ϕλ, as follows.

4.3 Theorem([11.], p. 253) There exist R0 > 1, R1 > 1, such that for any

t with, 0 ≤ t ≤ R0, the spherical function, ϕλ, has the given expansion

ϕλ(exp tH0) = c0[
tn−1

D(t)
]1/2

∞∑
m=0

t2mam(t)J (n−2)
2

+m
(λt)

where

a0(t) ≡ 1, and | am(t) |≤ cR−m
1 . �

The error on truncating the above series is controlled as in the following.

4.4 Corollary([11.], p. 253) There exist R0 > 1, R1 > 1, such that for any

t with 0 ≤ t ≤ R0 and any M ≥ 0, the spherical function, ϕλ, is given as

ϕλ(exp tH0) = c0[
tn−1

D(t)
]1/2

M∑
m=0

t2mam(t)J (n−2)
2

+m
(λt) + EM+1(λt)

where

a0(t) ≡ 1, and | am(t) |≤ cR−m
1 ,

and

| EM+1(λt) |≤ cM t2(M+1),

if | λt |≤ 1, and

| EM+1(λt) |≤ cM t2(M+1) · (λt)−(
(n−1)

2
)+(M+1),

if | λt |> 1. �
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We shall refer to the expansion in Theorem 4.3 above as the Stanton-Tomas

expansion for spherical functions. We are therefore motivated to give the fol-

lowing general definition of a confluent spherical function on a real rank 1

semisimple Lie group G.

4.5 Definition. A confluent spherical function is any K− biinvariant

function on G(= K · cl(A+) ·K) which has the Stanton-Tomas expansion on

A+.

Explicitly, a function ϕσ
λ ∈ C(G//K) is a confluent spherical function on

G if there exist R0 > 1, R1 > 1 such that for any t, with 0 ≤ t ≤ R0, and any

λ ∈ C,

ϕσ
λ(exp tH0) = c0[

tn−1

D(t)
]1/2

∞∑
m=0

t2mam(t)J (n−2)
2

+m
(| λ | t)

where a0(t) ≡ 1, and | am(t) |≤ cR−m
1 .

We have ϕσ
0 (x) = 0 while the introduction of complex λ’s and their mod-

uli guarantee that ϕσ
−λ(x) = ϕσ

λ(x). The differential equation satisfied by the

confluent spherical function is contained in the following.

4.6 Theorem. The function, gλ : C → C which coincides with ϕσ
λ on

K × cl(A+) ×K, via the transformation z = −(sinh t)2, for sufficiently small

values of t, is a solution of the differential equation

z
d2y

dz2
+ (c− z)

dy

dz
− ay = 0.

Proof. Since z d2

dz2 +(c−z) d
dz

is a differential operator on C we may take it

as the realization of some q ∈ Q, under the transformation z = −(sinh t)2, for

sufficiently small values of t. As ϕσ
λ is, in particular, a spherical function on G,

with sufficiently small arguments, it satisfies the relation q · ϕσ
λ = γ(q)(λ)ϕσ

λ ,

for some γ(q)(λ) ∈ C. The result follows if we set γ(q)(λ) = a. �

4.7 Remarks.

The confluent spherical functions, ϕσ
λ(exp tH0), are defined for all t ≥

0, and all λ ∈ C. Indeed, ϕσ
λ(1) = ϕσ

λ(exp(0)H0) = 0, since D > 0 on A+.

We denote the set of all confluent spherical functions on G by Cσ(G) and

consider it as an algebra in the following precise manner:
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4.8 Definition. A non-empty set A, whose entries are indexed by a set

∆, is called a ∆−algebra (over a field K) if it is an (associative) algebra with

respect to the operations

(i.) aλ1 + aλ2 := aλ1+λ2 , for every aλ1 , aλ2 ∈ A.

(ii.) αaλ := aαλ, for every aλ ∈ A, α ∈ K.

(iii.) aλ1 · aλ2 := aλ1λ2 , for every aλ1 , aλ2 ∈ A.

We shall refer to (i.)− (iii.) above as the ∆−operations on A.

One of our major results in this seminar is the following Theorem. In order

to establish this result we denote the Schwartz algebra of spherical functions on

G by C(G//K) and equip both Cσ(G) and C(G//K) with the a∗C−operations.

Let w denote the Weyl group of (g, a) and

ls(a
∗
C) = {λ ∈ a∗C : s−1λ = λ}

for some s ∈ w. Clearly ls−1(a∗C) = ls(a
∗
C), ∀ s ∈ w and, if id represent the

identity element of w, then lid(a
∗
C) = a∗C. In general, ls(a

∗
C) ⊆ a∗C, ∀ s ∈ w.

We shall refer to a map between any two ∆−algebras as being ∆−linear

if it preserves (i.) and (ii.) of Definition 4.8.

4.9 Theorem. The sets C(G//K) and Cσ(G) are a∗C−algebras over C,

where the zero and identity elements of C(G//K) are Ξ and ϕ1, respectively.

The map σ : C(G//K) −→ Cσ(G), given by σ(ϕλ) = ϕσ
λ is non-trivial and

well-defined up to ls(a
∗
C), s ∈ w. Moreover σ is an a∗C−linear map and an

isomorphism for all real-positive λ.

Proof. We verify using the a∗C−operations that C(G//K) is a a∗C−algebra.

The situation for Cσ(G) follows the same pattern.

To this end let ϕλ1 , ϕλ2 , ϕλ3 , ϕλ ∈ C(G//K), and α, β ∈ C;

(i.) ϕλ1 + ϕλ2 = ϕλ1+λ2 ∈ C(G//K), since λ1 + λ2 ∈ a∗C.

(ii.) It is also clear that ϕλ1 + (ϕλ2 + ϕλ3) = (ϕλ1 + ϕλ2) + ϕλ3 .

(iii.) Ξ + ϕλ = ϕ0 + ϕλ = ϕ0+λ = ϕλ = ϕλ+0 = ϕλ + ϕ0 = ϕλ + Ξ.

(iv.) ϕ−λ + ϕλ = ϕ−λ+λ = ϕ0 = ϕλ+(−λ) = ϕλ + ϕ−λ.

(v.) ϕλ1 + ϕλ2 = ϕλ1+λ2 = ϕλ2+λ1 = ϕλ2 + ϕλ1 (vi.) αϕλ = ϕαλ ∈ C(G//K),

since αλ ∈ a∗C.
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(vii.) α(βϕλ) = ϕα(βλ) = ϕ(αβ)λ = (αβ)ϕλ.

(viii.) 1ϕλ = ϕ1λ = ϕλ = ϕλ1 = ϕλ1.

(ix.) α(ϕλ1 + ϕλ2) = ϕα(λ1+λ2) = ϕαλ1+αλ2 = αϕλ1 + αϕλ2 .

(x.) (α + β)ϕλ = ϕ(α+β)λ = ϕαλ+βλ = αϕλ + βϕλ.

(xi.) ϕλ1 · ϕλ2 = ϕλ1·λ2 ∈ C(G//K), since λ1 · λ2 ∈ a∗C.

(xii.) It is also clear that ϕλ1 · (ϕλ2 · ϕλ3) = (ϕλ1 · ϕλ2) · ϕλ3 .

(xiii.) ϕ1 · ϕλ = ϕ1·λ = ϕλ = ϕλ·1 = ϕλ · ϕ1.

(xiv) (ϕλ1 + ϕλ2) ·ϕλ3 = ϕ(λ1+λ2)·λ3 = ϕ(λ1·λ3)+(λ2·λ3) = (ϕλ1 ·ϕλ3) + (ϕλ2 ·ϕλ3).

(xv.) ϕλ1 · (ϕλ2 + ϕλ3) = ϕλ1·(λ2+λ3) = ϕ(λ1·λ2)+(λ1·λ3) = (ϕλ1 ·ϕλ2) + (ϕλ1 ·ϕλ3),

verifying the first statement.

The map σ is non-trivial from Theorem 4.3 and Definition 4.5.

We observe also that ϕλ1 = ϕλ2 iff λ2 = sλ1, for some s ∈ w; [2.], p. 106.

Since s−1λ2 = λ2 iff s = id ∈ w, it follows therefore σ(ϕλ1) = σ(ϕs−1λ2
) =

σ(ϕλ2). Hence ϕλ1 = ϕλ2 implies σ(ϕλ1) = σ(ϕλ2), showing that σ is well-defined

up to lid(a
∗
C) = a∗C.

σ is a a∗C−linear map since σ(ϕλ1 + ϕλ2) = σ(ϕλ1+λ2) = ϕσ
λ1+λ2

= ϕσ
λ1

+

ϕσ
λ2

= σ(ϕλ1) + σ(ϕλ2)

and, σ(αϕλ) = σ(ϕαλ) = ϕσ
αλ = αϕσ

λ = ασ(ϕλ).

onto:

Let ϕσ
λ ∈ Cσ(G), then λ ∈ ls(a

∗
C), s ∈ w. Therefore ϕλ ∈ C(G//K). Hence

σ(ϕλ) = ϕσ
λ.

into:

Let σ(ϕλ1) = σ(ϕλ2), then from Theorem 4.3, (λ1t)
n+2k−m = (λ2t)

n+2k−m.

Hence

(n + 2k −m) log λ1 = (n + 2k −m) log λ2, t 6= 0.

We then have λ1 = λ2, which makes sense only if λ1, λ2 ∈ R+. �

We shall consider the extension of these results to a connected semisimple

Lie group with finite center and of real rank m > 0 in another paper.
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