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Abstract 

In this paper we develop techniques related to the Riemann Hypothesis that are based on 

the Taylor series of the Riemann Xi function, and the asymptotic behavior of ξ(2n)(1
2
). 

 

Mathematics subject classification: 11M06; 30D15 

Keywords:  Riemann’s Hypothesis;  Riemann’s Xi function;  convexity; Taylor series 

 

 

1 Introduction 

In this article I present a formal treatment of a special limit process associated 

with an infinite series, such that when we add a new term of the series, some of 

the previous terms also slightly change, but in such a manner that the limit can be 

precisely defined (mainly Section 3 and Theorem 2).   

I also present a sufficient condition for an infinite series, in order to take only 

positive values (Propositions 3 and 5, Section 3). 
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In Section 2, I present a theorem related to convexity that will be useful later 

in the article. 

In Section 4, I present a  different approach, and Theorem 3 presents Turan-type 

inequalities that are sufficient (if true) for the Riemann Hypothesis to be true. 

The tools presented here allow us to attack Riemann’s Hypothesis in a completely 

new manner.  The presentation is informal but the results are clearly stated and the 

proofs given in full.  

 

 

2 A theorem related to convexity 

Theorem 1. We consider the holomorphic function F(s) (that does not vanish 

identically)  , where in general s =  σ + i · t , defined on the critical strip. We 

assume that F(s)  satisfies the functional equation  F(s)=F(1-s). We also assume 

that the real function defined by   

φ(σ)≔ φ(σ) ≔ |F(σ+ i · t)|2 is a convex function (as a function of σ) for 0< σ<1 

(and for any t fixed). Then the function F(s) has all its zeros on the critical line  

Re(s)= σ= 1/2 . 

Proof. We assume that the function F(s) has a zero at x + i · t , where x <  1
2
 . 

Then from the functional equation F(s) = F(1− s) , the function also has a zero 

at 1 − x − i · t . Since the complex conjugate of  1 − x − i · t is 1 − x + i · t , the 

function F(s) will also have a zero at 1 − x + i · t .  

From the assumptions of the theorem, the function φ(σ) is convex for 0 <  𝜎 < 1. 

For any x1 and x2 we have: 

φ(σ) ≤  x2−σ
x2−x1

 · φ(x1) +  σ−x1
x2−x1

 · φ(x2)  for x1 <  𝜎 <  x2. 

We take x1 to be the real part of a zero of F(s) , and x2 = 1 −  x1 (which is the 

real part of another zero, for a fixed t). That means that φ(σ) ≤ 0 for x1 <  𝜎 <

 x2  . Since by definition  φ(σ) is nonnegative, that means that φ(σ) ≥ 0  for 
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x1 <  𝜎 <  x2  . The conclusion is that for that fixed t, we have φ(σ) =

 |F(σ + i · t)|2 = 0  for x1 <  𝜎 <  x2 .  

We know that if a function is holomorphic in a region, and vanishes at all points 

of any smaller region included in the given region, or along any arc of a 

continuous curve in the region, then it must vanish identically (the identity 

theorem).  Since we see that F(σ + i · t) vanishes on the segment joining the two 

zeroes of F(s), then the function  F(s)  would have to vanish identically on the 

domain under consideration.  We reached a contradiction, since we assumed that 

F(s)  does not vanish identically. Our assumption, that the function F(s) has a zero 

at x + i · t , where x <  1
2
  is false.  

The function F(s) has all its zeroes on the vertical Re(s) =  σ =  1
2
 . The horizontal 

segment joining the two zeroes must collapse to a point.                                        □ 

 

 

3 The main method of approach and basic calculations 

We consider the Riemann Xi function defined as: 

ξ(s) ≔  1
2

 · s · (s − 1)  ·  Γ �1
2

s�  ·  π−
s
2  ·  ζ(s)  

For the Riemann Xi function ξ(s) we have the following series expansion:  

ξ(s) =  a0 +  a2 · (s − 1
2
)2 + a4 · (s − 1

2
)4 + a6 · (s− 1

2
)6 + ⋯… … ….,          (1) 

where all the coefficients   a2n are positive real numbers. This statement is proved 

in [1] , page 17.  

We define the following functions. We define: 

F2N(s) ≔   a0 +  a2 · �s −
1
2
�
2

+ a4 · �s −
1
2
�
4

+  a6 · �s −
1
2
�
6

+ ⋯… .. 

                              + a2N · �s − 1
2
�
2N

                                                            (2) 

We have then:  |F2N(σ + it)|2  →  |ξ(σ + it)|2 , when N → ∞  (more general, we 

have F2N(σ + it)  → ξ(σ + it)  when N → ∞ ).  
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We also define (for a fixed t): 

f2N(σ) ≔  |F2N(σ + it)|2  .                 (3) 

In the following, we write β =  σ −  1
2
 . 

We start with the identities: 

(β + it)2 =  �20�  ·  β2 −  �22�  ·  t2 + i ·  �21�  ·  βt   

(β + it)4 =  �40�  ·  β4 −  �42�  ·  β2t2 +  �44�  ·  t4 + i · (�41�  ·  β3t −  �43�  ·  βt3 )  

(β + it)6 =  �60�  ·  β6 −  �62�  ·  β4t2 +  �64�  ·  β2t4 + �66�  ·  t6 +   i · (�61�  ·  β5t −

 �63�  ·  β3t3  +   �65�  ·  βt5 )  

(β + it)8 =  �80�  ·  β8 −  �82�  ·  β6t2 +  �84�  ·  β4t4 + �86�  ·  β2t6 + �88�  ·  t8 +   i ·

��81�  ·  β7t −  �83�  ·  β5t3  +   �85�  ·  β3 · t5  −  �87�  ·  βt7�    

………………………………………………………………………………………

………… 

It is clear how to continue this sequence of identities up to  (β + it)2N. 

We write for the real and imaginary part of F2N(σ + it) as Re(F2N(σ + it)) and 

Im(F2N(σ + it)) . 

It is clear that we have: 

Re�F2N(σ + it)� =  B0 +  B2  ·  β2 +  B4  ·  β4 + B6  ·  β6 + ⋯+ B2N  ·  β2N .   (4)  

Im�F2N(σ + it)� =  B1  ·  β +  B3  ·  β3 +  B5  ·  β5 + ⋯+  B2N−1  ·  β(2N−1) .    (5) 

The coefficients will depend on t and they will have the form: 

B0 =  a0 −  a2  ·  �22�  ·  t2 +  a4  ·  �44�  ·  t4  ± ⋯+  (−1)N ·  a2N  ·  �2N2N�  ·  t2N   

B2 =  a2 · �20� −  a4  ·  �42�  ·  t2 +  a6  ·  �64�  ·  t4  ± ⋯                     

                                          + (−1)N+1 ·  a2N  ·  � 2N
2N−2�  ·  t2N−2  

B4 =  a4 · �
4
0
� −  a6  ·  �

6
2
�  ·  t2 + a8  ·  �

8
4
�  ·  t4  ± ⋯                                                

                                       + (−1)N+2 ·  a2N  ·  � 2N
2N−4�  ·  t2N−4  

B6 =  a6 · �
6
0
� −  a8  ·  �

8
2
�  ·  t2 +  a10  ·  �

10
4
�  ·  t4  ± ⋯                                              



Cristian Dumitrescu                                                                                                            17 
 

                                     + (−1)N+3 ·  a2N  ·  � 2N
2N−6�  ·  t2N−6  

………………………………………………………………………………………

……………….. 

B2N−2 =  a2N−2 · �2N−20 � −  a2N · �2N2 �  · t2   

B2N =  a2N · �2N0 �  

In general we have: 

B2i =  ∑  (−1)k+i  ·  a2k ·  � 2k
2k−2i�  ·  t2k−2iN

k=0               (6) 

In the same way, the odd order coefficients will have the form: 

B1 =  a2 · �21� · t − a4 · �43� · t3 + a6 · �65� · t5  ± ⋯                                                

                                       + (−1)N+1 · a2N  · � 2N
2N−1�  ·  t2N−1   

B3 =  a4 · �
4
1
�  ·  t −  a6  ·  �

6
3
�  ·  t3  +  a8 ·  �

8
5
�  ·  t5  ± ⋯                                        

                                   + (−1)N+2 ·  a2N  ·  � 2N
2N−3�  ·  t2N−3  

B5 =  a6 · �61�  ·  t −  a8  ·  �83�  ·  t3  +  a10 ·  �105 �  ·  t5  ± ⋯                    

                        + (−1)N+3 ·  a2N  ·  � 2N
2N−5�  ·  t2N−5  

………………………………………………………………………………………

…………………. 

B2N−3 =  a2N−2 · �2N−21 �  · t −  a2N · �2N3 �  · t3   

B2N−1 =  a2N · �2N1 �  · t  

In general we have: 

B2i+1 =  ∑  (−1)k+i+1  ·  a2k ·  � 2k
2k−2i−1�  ·  t2k−2i−1N

k=0             (7) 

In relations (6) and (7) except for the usual conventions, we make the following 

conventions about the binomial coefficients: 

Conventions. For x, y > 0  we have �00� =  �x0� = 1 , � 0
−y� =  � x

−y� =

0 , and if x < 𝑦 𝑡ℎ𝑒𝑛 �xy� = 0 .  

Relations (6) and (7) can be written in the unified form: 
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Bm =  ∑  (−1)k+m−�
m
2 �  ·  a2k ·  � 2k

2k−m�  ·  t2k−mN
k=0              (8) 

Here �m
2
� represents the integer part of m

2
 and we use the conventions about the 

binomial coefficients above. Also m takes values from 0 to 2N. It would be better 

if we wrote Bm,2N instead of Bm but we use the latter notation for simplicity.  

We have then: 

|F2N(σ + it)|2 =   �B0 +  B2  ·  β2 +  B4  ·  β4 +  B6  ·  β6 + ⋯… . . + B2N  ·

 β2N�
2

+  (B1  ·  β +  B3  ·  β3 +  B5  ·  β5 + ⋯… . . + B2N−1  ·  β(2N−1))2   

      

|F2N(σ + it)|2 =  B0
2 +  β2 · � B12 +  2 ·  B0  ·  B2� +   β4 · � B2

2 +  2 ·  B0  ·

 B4 +  2 ·  B1  ·  B3 ) +   β6 · � B3
2 +  2 ·  B0  ·  B6 +  2 ·  B1  ·  B5 +  2 ·  B2  ·

 B4 ) + ⋯… . . + β4N ·  B2N
2                                                                         (9) 

We remember that  β = �σ −  1
2
 � .  

From relation (8), we have then: 
d2

dσ2
 f2N(σ) =  d

2

dσ2
 |F2N(σ + it)|2 = 2 · � B12 +  2 ·  B0  ·  B2� +   12 ·

 �σ − 1
2
 � 2 · � B2

2 +  2 ·  B0  ·  B4 +  2 ·  B1  ·  B3 � +  30 ·  �σ −  1
2
 � 4 ·

� B3
2 +  2 ·  B0  ·  B6 +  2 ·  B1  ·  B5 +  2 ·  B2  ·  B4 � + ⋯… . . + (4N)  ·

(4N − 1) · �σ −  1
2
 � 4N−2 ·  B2N

2                (10) 

From (10) we see that we have to calculate the quantities: 

D′2n,2N ≔  ∑ Bp ·  Bqp+q=2n,   0≤p,q≤2N . 

Using relation (8) we have: 

D′2n,2N =  ∑ Bp ·  Bqp+q=2n,   0≤p,q≤2N =

 ∑ � ∑ ∑ (−1)k−�
p
2�−�

q
2�  ·  a2i  ·  a2j  ·  � 2i

2i−p�  ·  � 2j
2j−q�p+q=2n,   0≤p,q≤2Ni+j=k �  ·2N

k=0

 t2k−2n                            (11) 

We also define the quantities: 
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D2n,2N ≔  ∑ Bp ·  Bqp+q=2n =  ∑ � ∑ ∑ (−1)k−�
p
2�−�

q
2�  ·  a2i  ·  a2j  ·p+q=2ni+j=k

2N
k=0

 � 2i
2i−p�  ·  � 2j

2j−q��  ·  t2k−2n               (12) 

We see that 0 ≤ 2n ≤ 4N, and we have: 

|F2N(σ + it)|2 =  D′
0,2N  +  β2 · D′

2,2N +   β4 · D′
4,2N +  β6 · D′

6,2N + ⋯ 

                                             + β4N ·  D′4N,2N                                                            (13) 

We also note that when n is greater than N the quantities D′2n,2N  will be 

incomplete (will not contain all its terms), but as N increases the number of 

complete D′2n,2N ’s in (13) will increase.  The difference between D′2n,2N  and 

D2n,2N is that in the third sum the condition 0 ≤ p, q ≤ 2N is discarded. For large 

N, the quantities  D′2n,2N will be equal to D2n,2N for 2n ≤ 2N , but will start to 

differ for  2n ≥ 2N.  As N increases though, more and more terms in (13) will 

have their coefficients D′2n,2N equal to D2n,2N . 

We write D2n for the quantities: 

D2n ≔  ∑ � ∑ ∑ (−1)k−�
p
2�−�

q
2�  ·  a2i  ·  a2j  ·  � 2i

2i−p�  ·  � 2j
2j−q�p+q=2ni+j=k �  ·∞

k=0

                 t2k−2n                                                                                 (14) 

 We write then: 

C2k,2n ≔   ∑ ∑ (−1)k−�
p
2�−�

q
2�  ·  a2i  ·  a2j  ·  � 2i

2i−p�  ·  � 2j
2j−q�p+q=2ni+j=k          (15) 

Relation (14) can then be written as: 

D2n =  ∑ C2k,2n  ·  t2k−2n∞
k=0               (16) 

We note that in (16) we used the conventions mentioned before, in fact (16) can 

also be written: 

D2n =  ∑ C2k,2n  ·  t2k−2n∞
k=n               (16)’ 

 We see that the important relation seems to be (15). This is a relation that 

involves only the coefficients a2n that are involved in (1).  

We also define 
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 α2n  ≔  a2n  · (2n)! =  ξ(2n)(1
2
).              (17)

   

After these calculations and definitions we are ready to state the main theorem on 

which the rest of the results will be based. 

Theorem 2. If for any 𝑛 ≥ 0 we have α2n  ≤  (ln(n + 2))2n   (in other words, if  

ξ(2n) �1
2
�  ≤  (ln(n + 2))2n ) , then the following series are absolutely convergent 

(also the series (16) and (16)’) and the following relations are well defined and 

valid: 

|ξ(σ + it)|𝟐 =  D0  + ( σ − 1
2
 )2 · D2 +  ( σ − 1

2
 )4 · D4 +  ( σ − 1

2
 )6 · D6 +

⋯… … … … … + � σ − 1
2
 �
2n

·  D2n + ⋯… … … ….                (18) 

d
dσ

  |ξ(σ + it)|2 =  2 ·  � σ − 1
2
 � · D2 +   4 · � σ − 1

2
 �
3

· D4 +  6 · � σ − 1
2
 �
5

·

D6 + ⋯… … … … +  2n · � σ − 1
2
 �
2n−1

·  D2n + ⋯… … …           (19) 

d2

dσ2
 |ξ(σ + it)|2 =  2 ·  D2 +   12 · ( σ − 1

2
 )2 · D4 +   30 · ( σ − 1

2
 )4 · D6 +

⋯… … … … … … + 2n · (2n − 1) · � σ − 1
2
 �
2n−2

·  D2n + ⋯… … ..        (20)  

Proof.  We start from relation (15) and we use the definition (17). 

 Relation (15) can then be written: 

 C2k,2n =   ∑ ∑ (−1)k−�
p
2�−�

q
2�  ·  α2i  ·  α2j  ·   1

(2i)!
 · 1

(2j)!
 · � 2i

2i−p�  ·p+q=2ni+j=k

 � 2j
2j−q� 

Now we calculate (we take into account the fact that i + j = k and p + q = 2n): 

 1
(2i)!

 · 1
(2j)!

 · � 2i
2i−p�  ·  � 2j

2j−q� =  1
(2i−p)! ·(2j−q)!

 ·  1
p! ·q!

= 1
(2k)!

 (2k)!
(2k−2n)! ·(2n)!

 ·

(2k−2n)!
(2i−p)! ·(2j−q)!

 · (2n)!
p! ·q!

=  1
(2k)!

 ·  �2k2n�  · �2k−2n2i−p �  · �2np �. 

Using the relations above, we can write (15) in the form (where i + j = k and p +

q = 2n ): 
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C2k,2n =   1
(2k)!

 ·  �2k2n�  ·  ∑ ∑ (−1)k−�
p
2�−�

q
2�  ·  α2i  ·  α2j  ·  �2k−2n2i−p �  ·0≤p≤2n0 ≤i≤k

�2np � .                                                                                                           (21) 

From hypothesis we note that we have 

α2i  ·  α2j  ≤  (ln(i + 2))2i  ·  (ln(j + 2))2j  ≤  (ln(k + 2))4k 

From (21) we have then ( for s ≥ 0 ): 

 |C2n+2s ,2n | ≤  (ln(n+s+2))4n+4s 
(2n)! ·(2s)!

 ·  ∑ ∑  � 2s
2i−p�  · �2np �0≤p≤2n0 ≤i≤n+s  ≤

   (ln(n+s+2))4n+4s  
(2n)! ·(2s)!

 ·  22s−1 · 22n =  2
2n

(2n)!
 · 2

2s−1

(2s)!
 · (ln(n + s + 2))4n+4s          (22) 

 As a consequence, using (16) , (16)’ and the relation above we have: 

|D2n| = | ∑ C2n+2s ,2n  ·  t2s∞
s=0  |  ≤  2

2n

(2n)!
 · ∑ 22s−1

(2s)!
∞
s=0  ·  (ln(n + s + 2))4n+4s ·

t2s =  2
2n−1

(2n)!
 · ∑ 22s

(2s)!
∞
s=0  ·  (ln(n + s + 2))4n+4s · t2s           (23) 

From (22) we see that the series defined by (16) and (16)’ are absolutely 

convergent (the coefficients  C2n+2s ,2n  decrease very fast as a function of s), so 

the series on the right side of relations (18), (19) and (20) are well defined.  

We write the proof for (18), the other two are similar. We consider the expression: 

 H(σ + it) =  D0  + ( σ − 1
2
 )2 · D2 +  ( σ − 1

2
 )4 · D4 +  ( σ − 1

2
 )6 · D6 +

⋯… . . + � σ − 1
2
 �
2n

·  D2n + ⋯… … … …  

We know that for any ε ≥  0 there is a n0 such that for all n ≥  n0 we have: 

|D0 −  D′
0,2n� ≤  ε  , |D2 −  D′

2,2n� ≤  ε  ,   |D4 −  D′
4,2n� ≤  ε  , … … … , |D4n −

 D′
4n,2n| ≤  ε  ,    |D4n+2 | ≤  ε   , |D4n+4 | ≤  ε  ,   |D4n+6 | ≤  ε   , … … … … … …  

We also know that �σ −  1
2
� ≤  1

2
 . As a consequence, using (13) we can write: 

| H(σ+ it) −  |F2N(σ+ it)|2 | ≤  ε +  1
22

 ·  ε +  1
24

 ·  ε + ⋯… . . + 1
24n

 ·  ε +

 1
24n+2

 ·  ε + ⋯… … … . . =  ε · �1 +  1
22

 +  1
24

 + ⋯… . . + 1
24n

 +  1
24n+2

 +

⋯… … … . . � < 2𝜀  .  
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In other words, we have proved that  | H(σ+ it) −  |F2N(σ + it)|2 |  →  0   as 

N → ∞.  

That basically means that H(σ + it) =  |ξ(σ + it)|2   

Relations (19) and (20) can be proved in a similar manner.                                  □  

 

Proposition 1. We consider the analytic function f(s)  defined on the strip 

0 ≤ Re(s) ≤ 1,  given by series of the type (Taylor series at 1
2
  ): 

f(s) =  b0 + b2 · (s− 1
2
)2 +  b4 · (s− 1

2
)4 +  b6 · (s − 1

2
)6 + ⋯… + b2n ·

�s − 1
2
�
2n

+ ⋯….  , 

We also define µ2n ≔   b2n  · (2n)! =  f (2n)(1
2
) 

If for any n ≥ 0, the coefficients  b2n are real and satisfy the relations b2n ≥ 0 

and for any  n ≥ 1 we have : 

f �1
2
� · f (2n) �1

2
� =  f (2) �1

2
� · f (2n−2) �1

2
� =  f (4) �1

2
� · f (2n−4) �1

2
� =  … … . . =

 f (2u) �1
2
� · f (2n−2u) �1

2
� = ⋯… … … … … … … … … …  ,     

then the function f(s) has all its zeros on the vertical Re(s) =  1
2
 .  

Proof. We define, as in the case of the Xi function the following quantities (the 

calculations are similar): 

C2k,2n =   1
(2k)!

 ·  �2k2n�  ·  ∑ ∑ (−1)k−�
p
2�−�

q
2� ·  µ2i ·  µ2j ·  �2k−2n2i−p � · �2np �0≤p≤2n0 ≤i≤k   

D2n =  ∑ C2k,2n  ·  t2k−2n∞
k=n   

Let’s see how the expression  �p
2
� + �p

2
� behaves, for various values for n, 

 (where  p + q = 2n). 

For n = 0. 

P q �
p
2
�+ �

p
2
� 

0 0 0 

For n = 1. 
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P q �
p
2
� + �

p
2
� 

0 2 1 

1 1 0 

2 0 1 

For n = 2. 

P q �
p
2
�+ �

p
2
� 

0 4 2 

1 3 1 

2 2 2 

3 1 1 

4 0 2 

 

We note that when p is even, then   n −  �p
2
� −  �q

2
� = 0 

In general, we get the general pattern (the alternating even–odd when p takes 

values from 0 to 2n is important ).  

We consider n ≥ 1 .  

We consider the case 2k = 2n. In this case, the expression 2i − p in (21, or the 

similar relation applied for our function) can only take the value 0 (with the 

conventions mentioned before, all the other  terms are 0). 

In this case we have then: 

C2n,2n =  1
(2n)!

 · (µ0  · µ2n  ·  �2n0 �  +  µ2  · µ2n−2  ·  �2n2 �  +  µ4  · µ2n−4  ·  �2n4 �  +

⋯+ µ2n  · µ0  ·  �2n2n�  ) .          

We note that if all the quantities  µ2i  · µ2j   with i + j = k = n ,  take a constant 

value   µ0  · µ2n =  µ2  · µ2n−2 =  µ4  · µ2n−4 =. . . . =  Mn   , then  C2n,2n  would 

take the value: 

 C2n,2n =    Mn
(2n)!

 · ��2n0 �  +  �2n2 � + �2n4 �  +  �2n6 � + ⋯… . . + �2n2n� � =  Mn·22n−1

(2n)!
  . 
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We consider now the case 2k = 2n + 2 . In this case we have 0 ≤ 2i − p ≤ 2 .  

In this case we have: 

C2n+2,2n =  1
(2n+2)!

 ·  �2n+22n � · � −  �µ0  · µ2n+2  ·  �20�  +  µ2  · µ2n  ·  �22�� · �2n0 �  +

 µ2  · µ2n  ·  �21�  · �2n1 �  −  �µ2  · µ2n  ·  �20�  +  µ4  · µ2n−2  ·  �22�� · �2n2 �  +  µ4  ·

µ2n−2  ·  �21�  · �2n3 � + ⋯… … … … … +  µ2n  · µ2  ·  �21�  · � 2n
2n−1� −  �µ2n  · µ2  ·

 �20�  +  µ2n+2  · µ0  ·  �22�� · �2n2n� �      

We note that if all the quantities  µ2i  · µ2j   with i + j = k = n + 1  take a constant 

value µ0  · µ2n+2 =  µ2  · µ2n =  µ4  · µ2n−2 =. . . . =  Mn+1  , then  C2n+2,2n  would 

be zero, because in this case C2n+2,2n =  1
(2n+2)!

 ·  �2n+22n � · 2 · Mn+1 ·

�−�2n0 �  +  �2n1 �  −  �2n2 �  +  �2n3 �  ± ⋯… . . + � 2n
2n−1�  −  �2n2n� � = 0 .  

We consider now the case 2k = 2n + 4 . In this case we have 0 ≤ 2i − p ≤ 4 .  

In this case we have: 

C2n+4,2n =  1
(2n+4)!

 ·  �2n+42n � · � �µ0  · µ2n+4  ·  �40�  +  µ2  · µ2n+2  ·  �42� +  µ4  ·

µ2n  ·  �44�� · �2n0 � − � µ2  · µ2n+2  ·  �41�  +  µ4  · µ2n  ·  �43�� · �2n1 � +  �µ2  · µ2n+2  ·

 �40�  +  µ4  · µ2n  ·  �42� +  µ6  · µ2n−2  ·  �44�� · �2n2 � −  � µ4  · µ2n  ·  �41�  +  µ6  ·

µ2n−2  ·  �43�� · �2n3 � ± ⋯… …− � µ2n  · µ4  ·  �41�  +  µ2n+2  · µ2  ·  �43�� · � 2n
2n−1�  +

 �µ2n  · µ4  ·  �40�  +  µ2n+2  · µ2  ·  �42� +  µ2n+4  · µ0  ·  �44�� · �2n2𝑛�� .  

         

We note that if all the quantities  µ2i  · µ2j   with i + j = k = n + 2  take a constant 

value µ0  · µ2n+4 =  µ2  · µ2n+2 =  µ4  · µ2n =. . . . =  Mn+2  , then  C2n+4,2n would 

be zero, because in this case C2n+4,2n =  1
(2n+4)!

 ·  �2n+42n � · 8 · Mn+2  ·

��2n0 � −  �2n1 � +  �2n2 � −  �2n3 �  ± ⋯… . .− � 2n
2n−1� +  �2n2n� � = 0 . 

 The calculations for  C2n+6,2n  , C2n+8,2n  , … … . . , C2n+2s,2n  , … … can be done in 

a similar way. I will not write the general form because the calculations are similar 
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(and the general form will look like (21)). We note that if all the quantities  

µ2i  · µ2j   with i + j = k = n + s  take a constant value µ0  · µ2n+2s =  µ2  ·

µ2n+2s−2 =  µ4  · µ2n+2s−4 =. . . . =  Mn+s   , then  C2n+2s,2n  would be zero , for 

s ≥ 1 .  

We reach the conclusion that D2n  ≥  0 for any n ≥ 1 .   

From the relation (similar to (20) but applied for our function): 
d2

dσ2
 |f(σ+ it)|2 =  2 ·  D2 +   12 · ( σ − 1

2
 )2 · D4 +   30 · ( σ − 1

2
 )4 · D6 +

⋯… … … … … … + 2n · (2n − 1) · � σ − 1
2
 �
2n−2

·  D2n + ⋯… … .. , 

we see that d
2

dσ2
 |f(σ + it)|2  ≥ 0  for 0 ≤  σ ≤ 1.  

Our function |f(σ + it)|2, seen as a function of  σ is a convex function, and from 

theorem 1 we conclude that all its zeros are on the vertical σ =  1
2
 .                        □  

 

Proposition 2. We consider the analytic function  f(s) , where s =  σ + i · t  , 

defined on the strip 0 ≤ Re(s) ≤ 1,  given by series of the type (Taylor series at 
1
2
  ): 

f(s) =  b0 + b2 · (s− 1
2
)2 +  b4 · (s− 1

2
)4 +  b6 · (s − 1

2
)6 + ⋯… + b2n ·

�s − 1
2
�
2n

+ ⋯….  , 

We define  µ2n ≔   b2n  · (2n)! =  f (2n)(1
2
) . 

We define the quantities: 

C2k,2n =   1
(2k)!

 ·  �2k2n�  ·  ∑ ∑ (−1)k−�
p
2�−�

q
2�  ·  µ2i ·  µ2j ·  �2k−2n2i−p � · �2np �0≤p≤2n0 ≤i≤k   

D2n =  ∑ C2k,2n  ·  t2k−2n∞
k=n   

If for any 𝑛 ≥ 0 we have µ2n  ≤  (ln(n + 2))2n , and if  D2n  ≥ 0 for any n ≥ 1 

and for any t, then our function has all its zeros on the vertical  Re(s) =  1
2
 .  

Proof. The proof is immediate from Theorem 1 and the relation : 
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d2

dσ2
 |f(σ+ it)|2 =  2 ·  D2 +   12 · ( σ − 1

2
 )2 · D4 +   30 · ( σ − 1

2
 )4 · D6 + ⋯+

2n · (2n − 1) · � σ − 1
2
 �
2n−2

·  D2n + ⋯….                                                            □  

 

Many other interesting results can be based on Theorem 2, our main result.  

Proposition 3. We consider the analytical function f(s) on the whole complex 

plane with the Taylor series at 1
2
 of the form: 

f(s) =  c0 +  c2 · (s − 1
2
)2 +  c4 · (s− 1

2
)4 +  c6 · (s− 1

2
)6 + ⋯… … ….,  

We also define:   

µ2n ≔   c2n  · (2n)! =  f (2n)(1
2
)  

We consider  the series: 

S(t) =  b0 +  b2 · t2 +  b4 · t4 + b6 · t6 + ⋯… … ….,  where we take: 

b0 =  µ02  , b2 =  −
1
2!

 · ��
2
0
�  · µ0 · µ2 +  �

2
2
�  · µ2 · µ0� ,              

b4 =  
1
4!

 · ��
4
0
�  · µ0 · µ4 +  �

4
2
� · µ22  + �

4
4
�  · µ4 · µ0�   , … … … ..   

in general    

b2k =  (−1)k · 1
(2k)!

 · ��2k0 � · µ0 · µ2k +  �2k2 � · µ2 · µ2k−2  + ⋯… �2k2k�  · µ2k · µ0�     

Then S(t) ≥ 0  for any real t , in other words, S(t) takes only positive values. We 

note here that when the coefficients c2n  are positive, the series S(t) will have 

terms alternating in sign (and the proof of the proposition is not obvious). 

Proof.  The proof is immediate from: 

|f(σ + it)|2 =  D0  + ( σ − 1
2
 )2 · D2 +  ( σ − 1

2
 )4 · D4 +  ( σ − 1

2
 )6 · D6 +

⋯… … … … … + � σ − 1
2
 �
2n

·  D2n + ⋯… … … ….     ,  

when observing that our series S(t) is exactly D0. That means that: 

S(t) =  D0 =  �f �1
2

+ it��
2

 ≥ 0.                                                                              □ 
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Proposition 4. (see reference [2] for the proof). Let ξ(z) be the Riemann Xi 

function and n a appositive integer. Then, as  n →  ∞ we have: 

ln �ξ(2n) �1
2
�� = 2n · ln(ln(n)) − 2 �ln2 +  1

ln(n)� · n + 9
4

 · ln(2n) −  3
4

 ·

ln(ln(n)) + O(1).                                                                                             (24) 

We also know that (Stirling): 

ln�(2n)!� = �2n −  1
2
� · ln(2n) − 2n + ln√2π + o(1).          (25)  

From (24) and (25) we conclude that: 

ln
ξ(2n)(12)

(2n)!
=  −2n · (ln(2n) − ln(ln(n)))− 2n · �ln2 + 1

ln(n) − 1� + 11
4

 ·

ln(2n) −  3
4

 · ln(ln(n)) + O(1).              (26) 

From (24) we see that the conditions of Theorem 2 are satisfied by the Riemann 

Xi function, so the Riemann Xi function indeed satisfied relations  (18), (19) and 

(20). 

 

Proposition 5. In relations (18), (19) and (20) the quantities D2n (which depend 

on t, as defined by (14) and (16)) take positive values for all values of t, in other 

words D2n(t) ≥ 0  for all any t.  

Incomplete Proof. We write D2n in the form: 

D2n = D2n(t) =  ∑ C2n+2s,2n  ·  t2s∞
s=0 . 

We will use Proposition 3, and we claim that there are real numbers 

µ0 ,µ2, µ4, … … . . , µ2n … …,   such that the following system of equations is 

satisfied: 

C2n,2n =  µ02  ;   C2n+2,2n = − 1
2!

 · ��20�  · µ0 · µ2 +  �22�  · µ2 · µ0�   ;    C2n+4,2n =

 1
4!

 · ��40�  · µ0 · µ4 +  �42� · µ22  + �44�  · µ4 · µ0�   ;   … … … . ;   C2n+2s,2n =  (−1)s ·

1
(2s)!

 · ��2s0 �  · µ0 · µ2s +  �2s2 � · µ2 · µ2s−2  + ⋯… … … �2s2s�  · µ2s · µ0�… … ..      (27) 

The proof of the claim follows from recursively solving this system of equations. 
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µ0 =  �C2n,2n  . We note that  µ0  is a real number because we can prove that 

C2n,2n is a positive quantity. 

µ2 =  1
2 �𝐶2𝑛,2𝑛

 · (−2 ·  𝐶𝟐𝒏+𝟐,2𝑛)                           (28) 

µ4 =  1
2 · C2n,2n · �C2n,2n

 · �24 ·  C𝟐𝐧,2n ·  C𝟐𝐧+𝟒,2n − 6 ·  C2𝟐𝐧+𝟐,2n �          (29) 

µ6 =  1
2 · C22n,2n · �C2n,2n

 · �−720 ·  C2𝟐𝐧,2n ·  C𝟐𝐧+𝟔,2n + 360 ·  C𝟐𝐧,2n · C𝟐𝐧+𝟐,2n ·

 C𝟐𝐧+𝟒,2n − 90 ·  C3𝟐𝐧+𝟐,2n )               (30)                                                                                           

………………………………………………………………………………………

…………………… 

In general we see that from the relations C2n+2s,2n =  (−1)s · 1
(2s)!

 · ��2s0 �  · µ0 ·

µ2s + �2s2 � · µ2 · µ2s−2  + ⋯… … … �2s2s�  · µ2s · µ0�  we can recursively find the 

value of  µ2s as a function of the 

C2n,2n , C2n+2,2n  , C2n+4,2n  , . . . . . . . . ,   C2n+2k−2,2n , C2n+2s,2n . 

I also present the following known results which will probably be needed in the 

proof. First an inequality: 

2𝑛·𝐻(𝑟𝑛)

𝑛+1
 ≤  �𝑛𝑟�  ≤  2𝑛·𝐻(𝑟𝑛) , 

where H(x) is the entropy  

𝐻(𝑥) =  −𝑥 · log(𝑥) − (1 − 𝑥) · log (1 − 𝑥).            (31) 

Second, we will need the following estimation (using (22)): 

 |(2s)!  ·  C2n+2s ,2n | ≤ (2s)!  ·  (ln (n+s+2))4n+4s

(2n)! ·(2s)!
 ·  ∑ ∑  � 2s

2i−p�  ·0≤p≤2n0 ≤i≤n+s

�2np �  ≤   2
2n

(2n)!
 ·  22𝑠−1  · (ln(n + s + 2))4n+4s .           (32) 

The expressions that depend on n can be considered as a constant in this case, 

because we are interested in the absolute convergence of the series  µ0 +  µ2
2!

·

(z − 1
2
)2 +  µ4

4!
· (z − 1

2
)4 +  µ6

6!
· (z − 1

2
)6 + ⋯… . +  µ2s(2s)!

· �z − 1
2
�
2s

+ ⋯… ..  , so 

we are interested in the factor that depends on s.  
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In other words, the system of equations mentioned above always has a solution. In 

order to apply Proposition 3 we only have to prove that the series  µ0 +  µ2
2!

·

(z − 1
2
)2 +  µ4

4!
· (z − 1

2
)4 +  µ6

6!
· (z − 1

2
)6 + ⋯… . +  µ2s(2s)!

· �z − 1
2
�
2s

+ ⋯… ..  is 

absolutely convergent on the whole complex plane (for any z). At this  point I 

have not been able to reach a closed form expression for the coefficients involved 

in the expression for µ2𝑠  (even if the calculations are straightforward and 

recursive). I leave this problem as a challenge for a mathematician (probably aided 

by some symbolic computation software) willing to finalize these calculations.  I 

suspect that we need to consider the Taylor series of the Riemann’s Xi function at 

other points on the critical line, in order to finalize the calculations (see 

conclusions). 

If the calculations can be finalized, from Proposition 3 we could conclude that all 

the quantities  D2n are positive, in other words  D2n(t) ≥ 0  for all any t . !!!. 

In the following, I will give an example that would also be a verification that the 

calculations (and Theorem 2 in particular) are correct. 

 

Example. We consider the values  b2n =  1
(2n)!

   , n ≥ 0   for the coefficients  

b2n . Then we have : 

cosh �z − 1
2
� = 1 +  1

2!
· (z − 1

2
)2 +  1

4!
· (z − 1

2
)4 +  1

6!
· (z − 1

2
)6 + ⋯… … …  , 

 where we take   z = σ + i ·  t .  

When we make the calculations we find : 

|cosh (σ − 1
2

 + i · t )|2 =  1
4

 · �e2�σ−
1
2� +  e−2�σ−

1
2� � + 1

2
 · (cos2t −  sin2t)  

We can then write: 

|cosh (σ − 1
2

 + i · t )|2 =  1
2

 · cosh (2 · (σ −  1
2
)) +  1

2
 · cos (2t)) =  1

2
 · (1 +

cos (2t)) +   �σ − 1
2
�
2

 +  1
3

· �σ − 1
2
�
4

+ ⋯… …. .   
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We see that in this case we have D0 =  1
2

 · (1 + cos(2t)) ,   D2 = 1  ,   D4 =

  1
3

 , and so on … ....If we use our formulas  (15), (16), (16)’ and (21) for this 

particular case, we see that we find the right values.  

4 A different approach, Turan-type inequalities 

Theorem 3. Let F(z)  be a function of complex variable defined on the critical 

strip. We assume that F satisfies the following conditions. 

1. F(z)  is a holomorphic function on the critical strip. 

2. F satisfies  the functional equation F(𝑧) = F(1− z)  for all z on the critical 

strip. 

3. For any s real,  𝑠 >  1
2
   and for any natural n , the n-th derivatives at s are 

positive  F(n)(s) > 0.  

4. For any real  s with 1
2

<  𝑠 <  1  and for any natural numbers m, n with 

m < 𝑛 , the following inequalities are satisfied: 

F(m)(s) ·  F(n)(s) >   𝑚
𝑛+1

 ·  F(m−1)(s) ·  F(n+1)(s) . Of course, we assume 

here that m ≥ 1 .  

5. For any real  s with 1
2

<  𝑠 <  1  and for any natural number n ≥ 1 the 

following inequalities are satisfied: 

(𝐹(𝑛)(𝑠))2  >   2𝑛
𝑛+1

 ·  F(n−1)(s) ·  F(n+1)(s)  

If conditions  1 –  5 are satisfied, then all the zeros of the function F(z) are situated 

on the critical line Re(z) =  1
2
 .  

Proof.  We assume that there is a zero  z0 =  σ0 + i · t of the function F(z) with 

σ0 >  1
2
 .  We will then reach a contradiction, and this will prove the theorem (the 

assumption that such a zero exists is false). We also note that from the functional 

equation for any zero with real part less than  1
2
  we would have a corresponding 
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zero with real part greater than  1
2
  , so it is sufficient to prove that there are no 

zeros with real part greater than   1
2
  .  

We consider the Taylor series of the function F(z) around the real point  𝜎0 >  1
2
 .  

We take =  𝜎 + 𝑖 · 𝑡 .  

F(z) = F(σ + i · t) = F(σ0) +  F(1)(σ0)  · (σ −  σ0 + i · t) +  F
(2)(σ0)
2!

 ·

 (σ −  σ0 + i · t)2 +  F
(3)(σ0)
3!

 ·  (σ −  σ0 + i · t)3 +   F
(4)(σ0)
4!

 ·  (σ −  σ0 + i ·

t)4 + ⋯… … … ….                                                             (32) 

Relation (32) for  𝑧0 =  𝜎0 + 𝑖 · 𝑡 will have the form: 

0 =  F( σ0 + i · t) = F(σ0) + F(1)(σ0)  · (i · t) + F
(2)(σ0)
2!

 ·  (i · t)2 +   F
(3)(σ0)
3!

 ·

 (i · t)3 +   F
(4)(σ0)
4!

 ·  (i · t)4 + ⋯… … … ….             (33) 

We define the quantities:  an =  F
(n)(σ0)
n!

   for all n ≥ 0 .  From condition 3 we 

conclude that an > 0 for all n ≥ 0 .  

Relation (33) will become then: 

0 =   F( σ0 + i · t) =    a0 + a1  · (i · t) +  a2  ·  (i · t)2 +   a3  ·  (i · t)3 +   a4  ·

 (i · t)4 + ⋯… … … … . =   (a0  −  a2  · t2 +  a4  · t4 −  a6  · t6 +  a8  · t8 +

⋯… . . ) +  i · (a1 ·  t −  a3  · t3 +  a5  · t5 −  a7  · t7 + a9  · t9 + ⋯… . . )         (34) 

From (34) we can write: 

0 =   |F( σ0 + i · t)|2 =  (a0  −  a2  · t2 +  a4  · t4 −  a6  · t6 +  a8  · t8 +

⋯… . . )2 +  (a1 ·  t −  a3  · t3 +  a5  · t5 −  a7  · t7 +  a9  · t9 + ⋯… . . )2 =  𝑎02 +

(𝑎12 −  2 ·  𝑎0  ·  𝑎2) ·  𝑡2 + (𝑎22 −  2 ·  𝑎1  ·  𝑎3  +   2 ·  𝑎0  ·  𝑎4 ) ·  𝑡4 +

 (𝑎32 −  2 ·  𝑎2  ·  𝑎4  +   2 ·  𝑎1  ·  𝑎5 −  2 ·  𝑎0  ·  𝑎6 ) ·  𝑡6 +   (𝑎42 −  2 ·  𝑎3  ·

 𝑎5  +   2 ·  𝑎2  ·  𝑎6 −  2 ·  𝑎1  ·  𝑎7 +  2 ·  𝑎0  ·  𝑎8 ) ·  𝑡8 + ⋯… …         (35) 

In relation (35) the coefficient of the term containing 𝑡2𝑛  will be  an2 −  2 ·

 an−1  ·  an+1  +   2 ·  an−2  ·  an+2 −  2 ·  an−3  ·  an+3 + ⋯… … +  (−1)n  ·  2 ·

 a0  ·  a2n .  

 
 



32                                        New methods of approach related to the Riemann Hypothesis 

For m < 𝑛 the condition  am  ·  an >   am−1  ·  an+1  is equivalent to the condition  

F(m)(s) ·  F(n)(s) >   𝑚
𝑛+1

 ·  F(m−1)(s) ·  F(n+1)(s) .  

Also the condition  an2 −  2 ·  an−1  ·  an+1 > 0  is equivalent to the condition  

(𝐹(𝑛)(𝑠))2  >   2𝑛
𝑛+1

 ·  F(n−1)(s) ·  F(n+1)(s) .  

Conditions  4 and 5 will imply that all the following quantities are positive  

(involved in the coefficients  in relation (35)): 

an2 −  2 ·  an−1  ·  an+1 > 0  ;    2 ·  an−2  ·  an+2 −  2 ·  an−3  ·  an+3  > 0 ;   

 2 ·  an−4  ·  an+4 −  2 ·  an−5  ·  an+5 > 0   ; … … … … and so on.  

That means that each term in the last series in (35) is positive, so the sum of these 

terms cannot be zero.  That means that the assumption that  σ0 + i · t is a zero of 

F with  σ0 >  1
2
  is false.                                                                                           □ 

 

Observation 1. We note that conditions 4 and 5 in Theorem 3 can be replaced 

with the following general condition (which is stronger, more restrictive): 

For any real  s with 1
2

<  𝑠 <  1  and for any natural numbers m, n with m ≤ n , 

the following inequalities are satisfied: 

F(m)(s) ·  F(n)(s) >   2𝑚
𝑛+1

 ·  F(m−1)(s) ·  F(n+1)(s) . Of course, we assume here 

that m ≥ 1 . 

Under these two conditions Theorem 3 holds with a very similar proof.   

 

Observation 2. We know that Riemann’s Xi function satisfies  conditions 1. and 2. 

In reference [3] Mark Coffey proves that condition 3 is also satisfied. We are left 

to prove that Riemann’s  Xi  function also satisfies  conditions 4 and 5 (or a 

weaker version that makes the coefficients in (35) positive).  

In reference [2] Mark Coffey proves the following proposition. 

 

Proposition 6. For real s and 𝑗 ⟶∞ we have: 
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ξ(j)(s) =  j·(j−1)
2j−1

 ·  (j−2)
s−1
2

(ln (j−2))
s
2

 · �1 +  (−1)j  ·  �ln(j−2)
j−2

�
s−12� ·  (ln �j−2

π
� −

ln �ln �j−2
π
�� + o(1))j−

3
2  · exp (− j−2

ln (j−2)
) .             (36) 

 

Observation 3. We could use Coffey’s result, and using relation (36) we can try 

to prove that conditions 4 and 5 from Theorem 3 are satisfied by the Riemann’s Xi 

function. The calculations are complex, but this would prove that the Riemann 

Hypothesis is true.  We also note that conditions (4) and (5) from Theorem 3 are 

not exactly the Turan  inequalities,  that is the reason why I called them Turan – 

type inequalities.  

         

5 Conclusions 
We do not claim that we proved that the Riemann Hypothesis is true, at this 

point. We do emphasize the following points. Using the asymptotic results of 

Mark Coffey  (Proposition 4) we can prove that Riemann’s Xi function satisfies 

the conditions from Theorem 2.  That means that relations (18), (19) and (20) are 

valid. Using Proposition 3, we sketched the incomplete proof in Proposition 5 that 

all the quantities  D2n(t) are positive for any value of t (the absolute convergence 

of the series  µ0 +  µ2
2!

· (z − 1
2
)2 +  µ4

4!
· (z − 1

2
)4 +  µ6

6!
· (z − 1

2
)6 + ⋯… . +  µ2s(2s)!

·

�z − 1
2
�
2s

+ ⋯… .. has to be clearly established ).  From relation (20) we see that 

the function |ξ(σ+ it)|2 (seen as a function of σ) is convex, and from Theorem 1 

we conclude that Riemann’s Xi function has all its zeros (on the strip) on the 

vertical σ =  1
2
 . We could then conclude that Riemann’s Hypothesis is true. 

There is a second way to approach the problem that avoids convexity , but using 

the reformulation of Riemann’s Hypothesis (in reference [4]). We see from 

relation (19) that if all the quantities  D2n(t)  are positive, then the function  
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|ξ(σ + it)|2 , seen as a function of σ is decreasing for 𝜎 <  1
2
  and increasing for 

 >   1
2
 .  Using the result in [4] this would be a proof of Riemann’s Hypothesis.  

We also note that the method described in this paper can be applied for the Taylor 

series of the Riemann’s Xi function around other points. In [3] the derivatives 

𝜉(𝑗)(1
2

+ 𝑖 · 𝑡)  (with t real) of the Riemann’s Xi function on the critical line are 

calculated, and we can give asymptotic estimations  (actually upper bounds) for 

these derivatives similar to those known for 𝜉(2𝑗)(1
2
)  .  By considering the Taylor 

series of the Riemann’s Xi function around points 1
2

+ 𝑖 · 𝑡 , where t is very close 

to the imaginary part of a zero and using the methods described in this article, the 

calculations can be managed properly. Basically, we work with a Taylor series 

developed around a point (on the critical line) close to a zero (in imaginary parts), 

and we prove that the particular zero under consideration can only have real part 

equal to 1
2
 .  The problem that I could not solve in this article is the absolute 

convergence of the series that appears in Proposition 5 (for any value for the 

imaginary part t). The corresponding problem that we will have when considering 

the Taylor series around points on the critical line (following similar methods as 

here)  will involve proving the absolute convergence of a series only for arbitrary 

small values of the imaginary part t, and this is a considerably easier problem 

(even if the initial calculations are more complex since in this case the odd order 

derivatives will not be zero). In this case, the problem that I could not solve in this 

article (the absolute convergence of the series mentioned in Proposition 5) might 

be properly managed.  

Related to Section 4, and the Turan – type inequalities, the problem here is to use 

Coffey’s result, Proposition 6 in order to prove that conditions 4 and 5 from 

Theorem 3 are satisfied.  That would be a proof that Riemann’s Hypothesis is 

indeed true. To start, we can prove that conditions 4 and 5 are satisfied 

asymptotically.  
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As a general conclusion, I suspect that this is a matter of complex calculations, 

and this is the conclusion of the present article. 
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