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Abstract 

This paper examined the application of influence function as a criterion for lag 

truncation in unit root tests. Lag selection in unit root tests has been dominated by 

standard information criteria and application of influence function as a means of 

determining truncation lag parameter for unit root tests is a new innovation within 

the context of augmented Dickey-Fuller (ADF) family of unit root tests and 

generalized least squares Dickey-Fuller (DF-GLS) test. Influence functions were 

generated for different lag-lengths and the choice of optimal lag-length was based on 

the particular lag with the largest influence. This methodology uses autocorrelation 

of time series data to identify the most influential lag among a set of possible 

truncation lags which is designated as optimal lag for the purpose of lag truncation 

in unit root tests. We demonstrated that influence function criterion out-performed 

the standard information in choosing appropriate lag structure for the unit root tests. 
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1  Introduction  

An important aspect of unit root testing involves identification of the most 

influential lag in the unit root test regression. In this paper we consider application 

of influence function for the identification of optimal truncation lag within the 

context of ADF family of unit root tests and DF-GLS test introduced by [1] and [2] 

respectively. The idea of influence function was first mooted by [3] where influence 

function was used for detecting influential points or outliers. There are various 

applications of influence function in model selection in time series analysis. [4]  

developed an ingenious method of outlier detection using a plot of  influence 

function of datum points on the theoretical autocorrelation function. [5] and [6] 

applied influence function for outlier detection and model order determination in 

time series data.[7] utilized influence function for model selection in kernel-based 

regressions, to mention just a few.  

The remainder of this paper is organized as follows: Section 2 deals with 

specification of influence function. Section 3 discusses flowchart for the 

computation of influence function for lag truncation in unit root tests. Section 4 

covers data description and preliminary analysis. Section 5 discusses unit root 

testing using lag selected by information-based lag selection criteria and influence.  

 

 

2  Influence function and lag specification 

For a general parameter ( )T Fθ =  expressed as a function of the 

distribution F ; the influence function ( ) ;I y θ  at y  is according to [3] in [5] is 
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given by  

( )
0

 ; limI y
ε

θ θθ
ε→

 −
=  

 



                                               (1) 

( )T Fθ =    and ( )1F F yε ε= − + ∂  is a perturbation of F  by y∂ ,the distribution 

function for a point mass of one at y .[8] has demonstrated that the influence 

function of ρ  for any univariate distribution with finite second moment is 

( ) ( )2 2
1 2 1 2 1 2

1,y ;
2

I y y y y yρ ρ= − + +                                         (2) 

Where 1y  and 2y  are standardized forms of variates 1y  and 2y  say. If 1z  and 

2z  denote respectively the standardized sum of and difference between 1y  and 

2y . 

Also if  ( )1 2
1 2

z z
V

+
=   and  ( )1 2

2 2
z z

V
−

= .  Then equation (2) may be written as 

( ) ( )2
1 2 1 2,y ; 1I y VVρ ρ= −                                             (3) 

 [9] gave a first order approximation to the function and it was noted that a sample 

analogue of (3) is 

( ) ( )( ) ( )2
1 2 1 2

ˆ ˆ,y ; 1 1ˆi i i i iI y r n r r r V V−= − − = −                                (4) 

Where ( )( )1 2, 1, 2,....,i iy y i n=  are the n  bivariate observations, ir−  is the 

correlation based on all but the  i th−  observation, 1̂iV  and 2̂iV  are sample 

analogues of 1V  and 2V . [4] have considered the influence function for the 

estimation of time series autocorrelation. Extending the work of [4] and [9], [6] 

considered the use of influence function to detect the presence of outliers and model 

order determination for time series data. Equation (4) (see [6] ) provides a procedure 

for model order determination which is particularly useful to check for lag truncation 

in the ADF and DF-GLS regression models of the form: 
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Where  ( )1
ty  is  ADF model I with no constant and no trend ; ( )2

ty is ADF model 

II with constant but no trend; ( )3
ty is  ADF model III with both constant and  trend 

and ( )4
ty  is  DF-GLS model  with both constant and  trend 

, 1, 2,3, 4it iε =  are white noise error terms, jγ  and jδ  are coefficients of 

differenced lagged values, k is the truncation lag to be determined empirically using 

influence function. Suppose that ( )R k  is autocorrelation function at lag 

1,......,k p=  for a p-periodic data; then the influence function (see [5] ) is 

( ) ( ) ( )2
, ,1 , ,2, , 1i i k i k i kI R k z z k V Vρ+    = −                                    (6) 

Where ( )R k  is the autocorrelation of lag k  for any L.H.S 'y s  in equation (5) 

and  

( ) ( )
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                                     (7)               

The procedure for lag truncation according to [5] is to construct the influence 

function matrix n l× .Where n  is the number of observations and l  is a fixed 

number equals to the periodicity of the data (for quarterly data 4l =  and for 
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monthly data  12l = ). The construction of this matrix is based on critical value of    

( )

1
2

2
n k

n n
 − 
 +  

. The influence function estimates exceeding the chosen critical value 

(in magnitude) are designated plus or minus depending on the sign of the estimates, 

while others are left blank indicating low influence of particular lag. The ( )lag l  

with the highest number of blanks and for which ( )1lρ + cut-off is the possible 

order of the model. 

 

 

3 Flowchart for the computation of influence function for lag 

truncation in unit root tests 

The following steps are used in preparation of R-package code for the 

computation of influence function for different lags 

Step1: Find the first difference of the series under investigation and represent it as 

tY ∗  

Step 2: Compute the autocorrelation for series tY ∗ at lag k  for k =1,2,……,12  

Step 3 : Compute ( )1 1kr R k= +  and  ( )2 1kr R k= −    for all k =1,2,……,12  

Step 4 : Compute for  t

t

t Y
i

Y

Y
Z

µ

σ
∗

∗

∗ −
=   where 

tY
µ ∗  and 

tY
σ ∗  are the mean and  

standard deviation for the series  tY ∗   respectively. 

Step 5: Compute i kZ +  for  all  k =1,2,……,12 

Step 6: Compute 
( )1

i i kZ Z
R k

++

+
  and  

( )1
i i kZ Z

R k
+−

−
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Step7: Compute 
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Step 8: Compute the critical value  
( )2
n k

n n
−
+

 

Step 9: Compute ( )21 R k −   

Step 10: Compute the influence function denoted by I, where 

( )2
, ,1 , ,21 i k i kI R k V V = −   

 

 

 4  Lag selection by influence function criterion  

For empirical illustration, we considered US 10-month Government security 

(USMGS) for long-term interest rate series and US 3-month Treasury Bills(USMTB) 

for short-term money market interest rate series. The data cover the period from 

January, 1962 to February, 2014. For simulated data, we used SPSS random number 

generator to simulate two different sets of normally distributed series. The first set 

has 50µ =  and 2 10σ =  whilst the second set has 40µ =  and 2 5σ = . Using 

these real and simulated datasets, we apply influence function criterion for the 

selection of optimal lag-length required for the implementation of unit root test and 

our results are presented in Tables 1, 2, 3 and 4 below:  

Tables 1 and 2 present the summary of lag selection by influence function 

criterion (IFC) for USMGS and USMTB series respectively. The optimal lags 

suggested by IFC for USMGS and USMTB series are 5 and 10 respectively being 

the most influential lags .The critical values for the optimal lags are 0.03996622 and 
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0.0399610 for USMGS and USMTB respectively. 

 

 

             Table1: Lag selection for USMGS Data 

Lag No of Observations Critical Value IFC 

1 623 0.03996788 385 

2 622 0.03996763 362 

3 621 0.03996726 363 

4 620 0.03996679 366 

5 619 0.03996622 390** 

6 618 0.03996553 346 

7 617 0.03996474 337 

8 616 0.03996384 358 

9 615 0.03996282 371 

10 614 0.03996170 375 

11 613 0.03996046 354 

12 612 0.03995910 353 

        ** indicates optimal lag 

 
                 Table 2: Lag selection for USMTB data 

Lag No of Observations Critical Value IFC 

1 623 0.03996788 431 

2 622 0.03996763 389 

3 621 0.03996726 378 

4 620 0.03996679 400 

5 619 0.03996622 422 

6 618 0.03996553 398 

7 617 0.03996474 389 
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8 616 0.03996384 426 

9 615 0.03996282 444 

10 614 0.03996170 448** 

11 613 0.03996046 425 

12 612 0.03995910 375 

             ** indicates optimal lag 

 

              

                                       

Table 3: Lag selection for simulated data 1 

Lag No of Observations Critical Value IFC 

1 998 0.03160693 548** 

2 997 0.03160685 536 

3 996 0.03160674 553 

4 995 0.03160659 539 

5 994 0.03160642 546 

6 993 0.03160621 533 

7 992 0.03160597 540 

8 991 0.03160569 535 

9 990 0.03160538 544 

10 989 0.03160504 534 

11 988 0.03160467 526 

12 987 0.03160426 547 

             ** indicates optimal lag 
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Table 4: Lag selection for simulated data 2 

Lag No of Observations Critical Value IFC 

1 998 0.03160693 552 

2 997 0.03160685 568** 

3 996 0.03160674 524 

4 995 0.03160659 546 

5 994 0.03160642 548 

6 993 0.03160621 544 

7 992 0.03160597 541 

8 991 0.03160569 522 

9 990 0.03160538 534 

10 989 0.03160504 537 

11 988 0.03160467 541 

12 987 0.03160426 544 

              ** indicates optimal lag 

 

Tables 3 and 4 present the summary of lag selection by influence function 

criterion (IFC) for simulated data 1 and 2 respectively. The optimal lags suggested 

by IFC for simulated data I and II are 1 and 2 respectively being the most influential 

lags. The critical values for the optimal lags are 0.03160693 and 0.03160685 for 

simulated data I and 2 respectively. 

 

 

5 Empirical evaluation of unit root testing using lag selected by 

information-based lag selection criteria               

We run a battery of unit root tests using the various optimal lag lengths 

suggested by different information-based lag selection criteria such as AIC and FPE 

proposed by [10] and [11] as well as BIC and HQIC introduced by [12] and [13] 
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respectively. For USMGS series, the optimal lag-lengths suggested by AIC, MAIC, 

BIC and HQIC are 11, 0, 1 and 1 respectively. Similarly, for USMTB series, the 

optimal lag-lengths suggested by AIC, MAIC, BIC and HQIC are 12, 0, 12 and 12 

respectively. The empirical results are presented in Tables 5, 6, 7 and 8 below: 

 

Table 5 : Unit root test for the level of USMGS and USMTB series using ADF  

        model I   

 ADF I 
AICk  ADF I 

MAICk  ADF I 
BICk  ADF I HQICk  

USMGS -0.8024 11 -0.7003* 0 -0.8553* 1 -0.8553 1 

USMTB -1.0598* 12 -0.7003* 0 -1.0598* 12 -1.0598 12 

*null hypothesis rejected at 0.05 level of significance 

 

 

Table 6 : Unit root test for the level of USMGS and USMTB series using ADF  

        model II   

 ADF II 
AICk  ADF II 

MAICk  ADF II 
BICk  ADF II HQICk  

USMGS -0.9913* 11 -0.5683* 0 -1.0509* 1 -1.0509* 1 

USMTB -1.7072* 12 -1.5458* 0 -1.7072* 12 -1.7072* 12 

*null hypothesis rejected at 0.05 level of significance 

 

Table 7 : Unit root test for the level of  USMGS and USMTB series using ADF  

        model III   

 ADF III 
AICk  ADF III 

MAICk  ADF III 
BICk  ADF III HQICk  

USMGS -1.7504* 11 -1.3415* 0 -1.7353* 1 -1.7353* 1 

USMTB -2.5131* 12 -2.2999* 0 -1.5131* 12 -2.5131* 12 

*null hypothesis rejected at 0.05 level of significance 
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Table 8 : Unit root test for the level of USMGS and USMTB series using DF- GLS  

       Test  

 DF-GLS 
AICk  DF-GLS 

MAICk  DF-GLS 
BICk  DF-GLS HQICk  

USMGS -0.8522 10 -0.8522 10 -0.8522 10 -0.8522 10 

USMTB -1.5292* 12 -1.4060* 0 -1.5292* 12 -1.5292* 12 

*null hypothesis rejected at 0.05 level of significance 

 

 

Table 5 through table 8 present the outcome of unit root tests conducted for 

testing the stationarity properties of the level of USMGS and USMTB series using 

the optimal lag-lengths suggested by conventional lag selection criteria. The null 

hypotheses of unit root for the level of USMGS and USMTB cannot be rejected 

across the various optimal truncation lag-lengths considered since the test statistic is 

greater than the critical value at 5% level of significance for the three versions of 

ADF tests considered as well as DF-GLS test. These results indicate that both 

USMGS and USMTB series are non-stationary at level 

 

 

Table 9 : Unit root test for the first difference of USMGS and USMTB series using  

         ADF model I   

 ADF I 
AICk  ADF I 

MAICk  ADF I 
BICk  ADF I HQICk  

USMGS -6.3316 11 -16.7993 0 -17.0449 1 -17.0449 1 

USMTB -6.1472 12 -17.6117 0 -6.1472 12 -6.1472 12 

*null hypothesis rejected at 0.05 level of significance 
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Table 10 : Unit root test for the first difference of USMGS and USMTB series using  

         ADF model II   

 ADF II 
AICk  ADF II 

MAICk  ADF II 
BICk  ADF II HQICk  

USMGS -6.3377* 11 -16.7919* 0 -17.0384* 1 -17.0384* 1 

USMTB -6.1459* 12 -17.5988 0 -6.1459* 12 -6.1459* 12 

*null hypothesis rejected at 0.05 level of significance 

 

Table 11 : Unit root test for the first difference of USMGS and USMTB series using  

         ADF model III   
 ADF III 

AICk  ADF III 
MAICk

 

ADF III 
BICk

 

ADF III 
HQICk

 

USMGS -6.5958* 11 -16.8841* 0 -17.1743* 1 -17.1743* 1 

USMTB -6.2115* 12 -17.6114* 0 -6.2115* 12 -6.2115* 12 

*null hypothesis rejected at 0.05 level of significance 

 

Table 12 : Unit root test for the first difference of USMGS and USMTB series using 

DF-GLS Test   

 DF-GLS 
AICk  DF-GLS 

MAICk  DF-GLS 
BICk  DF-GLS HQICk  

USMGS -2.0461 10 -2.0461 10 -2.0461 10 -2.0461 10 

USMTB -6.2048* 12 -17.6336* 0 -6.2048* 12 -6.2048* 12 

*null hypothesis rejected at 0.05 level of significance 

 

 

Table 9 through table 12 present the outcome of unit root tests conducted for 

testing the stationarity properties of the first difference of USMGS and USMTB 

series using the optimal lag-lengths suggested by conventional lag selection criteria. 

The null hypotheses of unit root for the first difference of USMGS and USMTB 

were rejected across the various optimal truncation lag-lengths considered since the 
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test statistic is less than the critical value at 5% level of significance for the three 

versions of ADF tests considered as well as DF-GLS test. This indicates that both 

USMGS and USMTB series are stationary after first difference indicating that each 

series is integrated of order 1. 

 

 

6  Empirical Evaluation of Unit Root Testing Using Lag  

   Selected by IFC 

Based on influence function criterion (IFC), the optimal truncation lag required 

for the implementation of unit root test for USMGS is lag 5 being the most 

influential lag among a set of candidate truncation lags. We run unit root test on 

USMGS series for lag 1 and lag 5 to evaluate possibility of discrepancy in the 

outcome of unit testing under these two influential lags as shown in table 1 above. 

Similarly, the optimal truncation lag suggested by IFC for USMTB series is lag 10 

being the most influential lag. Consequently we run unit root test on USMTB for lag 

1, lag 9 and lag 10 to evaluate the behavior of the test across these three influential 

lags and the empirical results are presented in Tables 13 and 14 below: 

 

Table 13: Unit root test for the level of USMGS using IFC 

ADF I 
IFCk  ADF II 

IFCk  ADF III 
IFCk  DF-GLS 

IFCk  

-0.8553* 1 -1.0509* 1 -1.7353* 1 -1.0109* 1 

-0.7820* 5 -0.8515* 5 -1.5991* 5 -0.8393* 5 

*null hypothesis rejected at 0.05 level of significance 
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Table 14: Unit root test for the level of USMTB using IFC 

ADF I 
IFCk  ADF II 

IFCk  ADF III 
IFCk  DF-GLS 

IFCk  

-1.3901* 1 -2.3995* 1 -3.0979* 1 -2.1273* 1 

-1.2015* 9 -2.0511* 9 -2.8207* 9 -1.8112* 9 

-1.1525* 10 -1.9260* 10 -2.7011* 10 -1.7106* 10 

*null hypothesis rejected at 0.05 level of significance 
 

Tables 13 and 14 present the outcome of unit root tests conducted for testing 

the stationarity properties of the first difference of USMGS and USMTB series using 

the optimal lag-lengths suggested by IFC. The null hypotheses of unit root for the 

level of USMGS and USMTB cannot be rejected series across the various optimal 

truncation lag-lengths considered since the test statistic is greater than the critical 

value at 5% level of significance for the three versions of ADF tests considered as 

well as DF-GLS test. This indicates that both USMGS and USMTB series are 

non-stationary at level.  

 

Table 15: Unit root test for the first difference of USMGS using IFC 

ADF I 
IFCk  ADF II 

IFCk  ADF III 
IFCk  DF-GLS 

IFCk  

-17.0449* 1 -17.0384* 1 -17.1743* 1 -9.4135* 1 

-9.7895* 5 -9.7901* 5 -9.9824* 5 -4.1234* 5 

*null hypothesis rejected at 0.05 level of significance 

 

Table 16: Unit root test for the first difference of USMTB using IFC 

ADF I 
IFCk  ADF II 

IFCk  ADF III 
IFCk  DF-GLS 

IFCk  

-17.9198* 1 -17.9072* 1 -17.9345* 1 -17.9538* 1 

-7.3429* 9 -7.3403* 9 -7.4022* 9 -7.3982* 9 

-6.6370* 10 -6.6348* 10 -6.6964* 10 -6.6909* 10 

*null hypothesis rejected at 0.05 level of significance 
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Tables 15 and 16 present the outcome of unit root tests conducted for testing 

the stationarity properties of the first difference of USMGS and USMTB series using 

the optimal lag-lengths suggested by IFC. The null hypotheses of unit root for the 

first difference of USMGS and USMTB were rejected across the various optimal 

truncation lag-lengths considered since the test statistic is less than the critical value 

at 5% level of significance for the three versions of ADF tests considered as well as 

DF-GLS test.This indicates that both USMGS and USMTB series are stationary 

after first difference indicating that each series is integrated of order 1.  

 

 

7 Conclusion 

This paper has examined application of influence function as an alternative 

criterion for lag specification in ADF and DF-GLS unit root tests. This methodology 

provided a hierarchical order of influence for different candidate optimal lag-lengths 

and this hierarchical structure could serve as standard guide for applied researchers 

in avoiding the problem of over-estimation and under-estimation of truncation 

lag-length that is commonly associated with conventional lag selection criteria. 
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Appendix 

R-Package Code for the Computation of Influence Function for Lag Truncation 

in Unit Root Tests 

The following R code was used for the computation of influence function for 

different lags using both real and simulated data : 

IFC=function(y,k){ 

             delta_y=diff(y) 

             z=(delta_y-mean(delta_y))/sd(delta_y) 

             rho=acf(delta_y, lag.max=k, plot=F)$acf[-1] 

             r_1=sqrt(1+rho) 

             r_2=sqrt(1-rho) 

             r [1]  = 1-rho^2 

                           n = rep(0,k) 

                          c.pt = rep(0,k) 

                          IF = rep(0,k) 

             for (i in 1:k){ 

a = (z+lag(z,i))/r_1[i] , b = (z-lag(z,i))/r_2[i] 

V_1=(a+b)/2;   V_2=(a-b)/2;  

IF=V= r[1]*V_1*V_2 

V = c(V) 

n[i]=length(V) 

c.pt[i]=sqrt(n[i]-i)/(n[i]*(n[i]+2))) 

          for (j in 1:n[i]) { 

                       if(V[j]<c.pt){V[j]=1} 

                      else {V[j]=0} 

                  } 

IF[i] =sum(V) 

        } 

Critical .pt=c.pt; IFC=IF 
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max.IFC=max(IFC) 

for(i  in 1:length(IF)){ 

                           if (IF[i]=max.IFC){IF[i]=”***”} 

                                                    else{IF[i]=””} 

                                                    } 

result = data.frame(n,critical.pt,IFC,optimal.lag=IF) 

return(result) 

} 
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