Theoretical Mathematics & Applications, vol.5, no.2, 2015, 19-29

ISSN: 1792-9687 (print), 1792-9709 (online)

Scienpress Ltd, 2015

Induced Gurevich pressure of almost-additive potentials for countable state Markov shifts

Zhitao Xing¹²

Abstract

In this paper, we study the induced Gurevich pressure of almostadditive potentials for countable state Markov shifts and obtain its variational principle.

Mathematics Subject Classification: 37D25; 37D35

Keywords: Induced pressure; Almost-additive; Variational principle

1 Introduction and main result

Let (Σ, σ) be a one-sided topological Markov shift (TMS) over a countable set of states S. This means that there exists a matrix $A = (t_{ij})_{S \times S}$ of zeros or ones(with no row and no column made entirely of zeros) such that

$$\Sigma := \{ \omega := (\omega_0, \omega_1, \ldots) \in S^{\mathbb{N}_0} : t_{\omega_i \omega_{i+1} = 1} \text{ for every } i \in \mathbb{N}_0 \}.$$

Article Info: Received: December 27, 2014. Revised: February 14, 2015.

Published online: April 30, 2015.

¹ School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, P.R.China. E-mail: xzt-303@163.com

 $^{^2}$ School of Mathematics and Statistics, Zhaoqing University, Zhaoqing 526061, Guangdong, P.R.China

The shift map $\sigma: \Sigma \to \Sigma$ is defined by $(\omega_0, \omega_1, \omega_2, \ldots) \mapsto (\omega_1, \omega_2, \ldots)$. We denote the set of A-admissible words of length $n \in \mathbb{N}$ by

$$\Sigma^n := \{ \omega := (\omega_0, \omega_1, \dots, \omega_{n-1}) \in S^n : t_{\omega_i \omega_{i+1} = 1} \text{ for every } i \in \{0, 1, \dots, n-2\} \}.$$

and the set of A-admissible words of arbitrary length by $\sum^* := \bigcup_{n \in \mathbb{N}} \Sigma^n$. For $\omega \in \Sigma^*$, we let $|\omega|$ denote the length of ω , which is the unique $n \in \mathbb{N}$ such that $\omega \in \Sigma^n$. For $\omega \in \Sigma^n$ we call $[\omega] := \{ \gamma \in \Sigma : \gamma|_n = \omega \}$ the cylindrical set of ω . We equip Σ with the topology generated by the cylindrical sets. The topology of the TMS is metrizable. It may be given by the metric $d_{\alpha}(\omega,\omega'):=e^{-\alpha|\omega\wedge\omega'|}, \alpha>0$, where $\omega\wedge\omega'$ denote the longest common initial block of $\omega, \omega' \in \Sigma$. The shift map σ is continuous with respect to this metric. If S is a finite set of states, (Σ, σ) is called a subshift of finite type. We call a function $f: \Sigma \to \mathbb{R}$ is α -Hölder continuous, if there exist an $\alpha > 0$ and a constant $V_{\alpha}(f)$ such that for all $\omega, \omega' \in \Sigma$, $|f(\omega) - f(\omega')| \leq V_{\alpha}(f)d_{\alpha}(\omega, \omega')$. We say f is Hölder continuous, if there exists an $\alpha > 0$ such that f is α -Hölder continuous. Let $H(\Sigma, \mathbb{R})$ be the space of all real-valued Hölder continuous functions of Σ . For $f \in H(\Sigma, \mathbb{R})$ and $n \geq 1$, let $S_n f(\omega) := \sum_{i=0}^{n-1} f(\sigma^i \omega)$. We denote by \mathcal{M} the set of all σ -invariant Borel probability measures on Σ . We will always assume (Σ, σ) to be topologically mixing, that is, for every $a, b \in S$ there exists an $N_{ab} \in \mathbb{N}$ such that for every $n > N_{ab}$ we have $[a] \cap \sigma^{-n}[b] \neq \emptyset$.

Definition 1.1. Let (Σ, σ) be a one-sided countable states Markov shift. For each $n \in \mathbb{N}$, let $f_n : \Sigma \to \mathbb{R}^+$ be a continuous function. A sequence $\mathcal{F} := \{\log f_n\}_{n=1}^{\infty}$ on Σ is called almost-additive if there exists a constant $C \geq 0$ such that for every $n, m \in \mathbb{N}, \omega \in \Sigma$, we have

$$f_n(\omega)f_m(\sigma^n\omega)e^{-C} \le f_{n+m}(\omega). \tag{1}$$

and

$$f_{n+m}(\omega) \le f_n(\omega) f_m(\sigma^n \omega) e^C.$$
 (2)

Definition 1.2. Let (Σ, σ) be a one-sided countable states Markov shift. For each $n \in \mathbb{N}$, let $f_n : \Sigma \to \mathbb{R}^+$ be a continuous function. A sequence $\mathcal{F} =: \{\log f_n\}_{n=1}^{\infty}$ on Σ is called a Bowen sequence if there exists a constant $M \in \mathbb{R}^+$ such that

$$\sup\{A_n : n \in \mathbb{N}\} \le M \tag{3}$$

where

$$A_n := \sup \{ \frac{f_n(\omega)}{f_n(\omega')} : \omega, \omega' \in \Sigma, \omega_i = \omega'_i \text{ for every } i \in \{0, 1, \dots, n-1\} \}.$$

For $\omega = (\omega_0, \omega_1, \dots, \omega_{n-1}) \in \Sigma^*$, let

$$\overline{\omega} := (\omega_0, \omega_1, \dots, \omega_{n-1}, \omega_0, \omega_1, \dots, \omega_{n-1}, \dots)$$

denote the periodic word with period $n \in \mathbb{N}$ and initial block ω . Let

$$\Sigma^{per} := \{ \omega \in \Sigma^* : \overline{\omega} \in \Sigma \}, \Sigma_a^{per} := \{ \omega \in \Sigma^{per} : \omega_0 = a \}.$$

Definition 1.3. Let (Σ, σ) be a one-sided countable states Markov shift, and let $\psi \in H(\Sigma, \mathbb{R})$ with $\psi \geq 0$, $\mathcal{F} := \{\log f_n\}_{n=1}^{\infty}$ on Σ be an almost-additive Bowen sequence. We define for $\eta > 0$ the ψ -induced Gurevich pressure of \mathcal{F} with respect to Σ_a^{per} by

$$\mathcal{P}_{\psi}(\mathcal{F}, \Sigma_{a}^{per}) := \limsup_{T \to \infty} \frac{1}{T} \log \sum_{\substack{\omega \in \Sigma_{a}^{per} \\ T - \eta < S_{|\omega|} \psi(\overline{\omega}) \le T}} f_{|\omega|}(\overline{\omega}),$$

which takes values in $\overline{\mathbb{R}} := \mathbb{R} \cup \{\mp \infty\}$.

In particular, if $\psi = 1$ our definition coincides with the Gurevich pressure of almost-additive potentials[2].

The thermodynamic formalism for countable states Markov shifts has been developed by Mauldin and Urbanski [5,6] and by Sarig [8,9,10,11]. Recently, Gurvich pressure for countable state Markov shifts [8] and the pressure for almost-additive sequences on compact spaces [1,4] were extended to the pressure of almost-additive potentials for countable state Markov shifts and a variational principle was set up [2]. In [3], the authors defined the induced pressure for countable state Markov shifts. Inspired by the articles [2] and [3], we define the induced Gurevich pressure of almost-additive potentials for countable state Markov shifts and obtain its variational principle as follows.

Theorem 1.4. Let (Σ, σ) be a topologically mixing countable state Markov shift, and let $\mathcal{F} := \{\log f_n\}_{n=1}^{\infty}$ on Σ be an almost-additive Bowen sequence on Σ with $\sup f_1 < \infty$, $\psi \in H(\Sigma, \mathbb{R}), \psi \geq c > 0$ with $\sup \psi < \infty$. Then

$$\mathcal{P}_{\psi}(\mathcal{F}, \Sigma_{a}^{per}) = \sup\{\frac{h_{\upsilon}(\sigma)}{\int \psi d\nu} + \frac{\int f_{*}(\omega) d\nu}{\int \psi d\nu} : \nu \in \mathcal{M} \text{ and } \int f_{*}(\omega) d\nu \neq -\infty\}, (4)$$

$$\text{where } f_{*}(\omega) := \lim_{n \to \infty} \frac{1}{n} \log f_{n}(\omega).$$

2 Preliminaries

In this section, we study the relation between the ψ -induced Gurevich pressure of almost-additive potentials and the Gurevich pressure of almost-additive potentials. Making a similar proof as in [3, Theorem 2.1], we can obtain the following statement.

Theorem 2.1. Let $\psi \in H(\Sigma, \mathbb{R})$ with $\psi \geq 0$ and $\mathcal{F} = \{\log f_n\}_{n=1}^{\infty}$ on Σ be an almost-additive Bowen sequence. Then

$$\mathcal{P}_{\psi}(\mathcal{F}, \Sigma_{a}^{per}) = \inf \{ \beta \in \mathbb{R} : \limsup_{T \to \infty} \sum_{\substack{\omega \in \Sigma_{aa}^{per} \\ T < S_{|\omega|} \psi(\overline{\omega})}} f_{|\omega|}(\overline{\omega}) e^{-\beta S_{|\omega|} \psi(\overline{\omega})} < \infty \}.$$

In particular, the definition of $\mathcal{P}_{\psi}(\mathcal{F}, \Sigma_a^{per})$ is independent of the choice of $\eta > 0$.

Lemma 2.2. Let (Σ, σ) be a topologically mixing countable state Markov shift, and let $\mathcal{F} = \{\log f_n\}_{n=1}^{\infty}$ be an almost-additive Bowen sequence on Σ with $\sup f_1 < \infty$, $\psi \in H(\Sigma, \mathbb{R}), \psi > 0$ with $\sup \psi < \infty$. Then for every $\beta \in \mathbb{R}$, $\mathcal{F}^{\beta} := \{\log f_n(\omega)e^{-\beta S_n\psi(\omega)}\}_{n=1}^{\infty}$ is an almost-additive Bowen sequence on Σ and

$$\mathcal{P}_1(\mathcal{F}^{\beta}, \Sigma_a^{per}) := \lim_{n \to \infty} \frac{1}{n} \log \sum_{\substack{\omega \in \Sigma_a^{per} \\ |\omega| = n}} f_{|\omega|}(\overline{\omega}) e^{-\beta S_{|\omega|} \psi(\overline{\omega})}$$

exists; it is not minus infinity and

$$\mathcal{P}_{1}(\mathcal{F}^{\beta}, \Sigma_{a}^{per})$$

$$= \sup\{h_{\nu}(\sigma) + \int \mathcal{F}_{*}^{\beta}(\omega)d\nu : \nu \in \mathcal{M} \text{ and } \int \mathcal{F}_{*}^{\beta}(\omega)d\nu \neq -\infty\}$$

$$= \sup\{h_{\nu}(\sigma) + \int f_{*}(\omega)d\nu - \beta \int \psi d\nu : \nu \in \mathcal{M} \text{ and } \int f_{*}(\omega)d\nu \neq -\infty\},$$

$$where \, \mathcal{F}_{*}^{\beta}(\omega) := \lim_{n \to \infty} \frac{1}{n} \log f_{n}(\omega)e^{-\beta S_{n}\psi(\omega)}, f_{*}(\omega) := \lim_{n \to \infty} \frac{1}{n} \log f_{n}(\omega).$$

Proof. Since \mathcal{F} is a Bowen sequence on Σ , the bounded distortion property (see [3]) shows for every $\psi \in H(\Sigma, \mathbb{R})$ there exists a constant $C_{\psi} > 0$ such that $|S_{|\omega|}\psi(\gamma) - S_{|\omega|}\psi(\gamma')| \leq C_{\psi}$ for all $\omega \in \Sigma^*$ and $\gamma, \gamma' \in [\omega]$. Let $g_n(\omega) := f_n(\omega)e^{-\beta S_n\psi(\omega)}$. For each $n \in \mathbb{N}, \beta \in \mathbb{R}$, we have

$$B_n := \sup \{ \frac{g_n(\omega)}{g_n(\omega')} : \omega, \omega' \in \Sigma, \omega_i = \omega_i' \text{ for } i \in \{0, 1, \dots, n-1\} \} \le e^{|\beta|C_{\psi}} A_n$$

and

$$\sup\{B_n: n \in \mathbb{N}\} \le Me^{|\beta|C_{\psi}}.$$

So \mathcal{F}^{β} is a Bowen sequence on Σ .

Since \mathcal{F} is an almost-additive sequence on Σ we have

$$f_n(\omega)f_m(\sigma^n\omega)e^{-C}e^{-\beta S_n\psi(\omega)}e^{-\beta S_m\psi(\sigma^n\omega)} \le f_{n+m}(\omega)e^{-\beta S_{n+m}\psi(\omega)}$$

and

$$f_{n+m}(\omega)e^{-\beta S_{n+m}\psi(\omega)} \le f_n(\omega)f_m(\sigma^n\omega)e^Ce^{-\beta S_n\psi(\omega)}e^{-\beta S_m\psi(\sigma^n\omega)}.$$

Then \mathcal{F}^{β} is an almost-additive Bowen sequence on Σ with sup $f_1(\omega)e^{-\beta\psi(\omega)} < \infty$.

By [2,Theorem 3.1] and Birkhoff Ergodic Theorem [7], we have $\mathcal{P}_1(\mathcal{F}^{\beta}, \Sigma_a^{per})$ exists; it is not minus infinity and

$$\mathcal{P}_{1}(\mathcal{F}^{\beta}, \Sigma_{a}^{per})$$

$$= \sup\{h_{\nu}(\sigma) + \int \mathcal{F}_{*}^{\beta}(\omega)d\nu : \nu \in \mathcal{M} \text{and } \int \mathcal{F}_{*}^{\beta}(\omega)d\nu \neq -\infty\}$$

$$= \sup\{h_{\nu}(\sigma) + \int f_{*}(\omega)d\nu - \beta \int \psi(\omega)d\nu : \nu \in \mathcal{M} \text{ and } \int f_{*}(\omega)d\nu \neq -\infty\}.$$

Corollary 2.3. Let $\psi \in H(\Sigma, \mathbb{R})$ with $\psi \geq c > 0$ and $\mathcal{F} := \{\log f_n\}_{n=1}^{\infty}$ on Σ be an almost-additive Bowen sequence. We have

$$\mathcal{P}_{\psi}(\mathcal{F}, \Sigma_a^{per}) \ge \inf\{\beta \in \mathbb{R} : \mathcal{P}_1(\mathcal{F}^{\beta}, \Sigma_a^{per}) \le 0\}.$$
 (5)

Proof. Let

$$B := \{ \beta \in \mathbb{R} : \limsup_{T \to \infty} \sum_{\substack{\omega \in \Sigma_{l\omega}^{per} \\ T < S_{|\omega|} \psi(\overline{\omega})}} f_{|\omega|}(\overline{\omega}) e^{-\beta S_{|\omega|} \psi(\overline{\omega})} < \infty \}.$$

For each $\beta \in B$, it is easy to see that

$$\limsup_{T \to \infty} \frac{1}{T} \log \sum_{\substack{\omega \in \Sigma_{|\omega|}^{per} \\ T < S_{|\omega|} \psi(\overline{\omega})}} f_{|\omega|}(\overline{\omega}) e^{-\beta S_{|\omega|} \psi(\overline{\omega})} \le 0$$

and we conclude that

$$\limsup_{n \to \infty} \frac{1}{n} \log \sum_{\substack{\omega \in \Sigma_a^{per} \\ |\omega| = n}} f_{|\omega|}(\overline{\omega}) e^{-\beta S_{|\omega|} \psi(\overline{\omega})} \le 0.$$

Otherwise, we assume that

$$\limsup_{n \to \infty} \frac{1}{n} \log \sum_{\substack{\omega \in \Sigma_a^{per} \\ |\omega| = n}} f_{|\omega|}(\overline{\omega}) e^{-\beta S_{|\omega|} \psi(\overline{\omega})} = 2a > 0.$$

Then there exists a sequence $\{n_j\}_{j\in\mathbb{N}}$ such that for each $j\in\mathbb{N}$

$$\sum_{\substack{\omega \in \Sigma_a^{per} \\ |\omega| = n_j}} f_{|\omega|}(\overline{\omega}) e^{-\beta S_{|\omega|} \psi(\overline{\omega})} > e^{an_j}.$$

For sufficiently large T > 0, let $\{n_{k_i}\} \subset \{n_j\}$ with $S_{n_{k_i}}\psi(\overline{\omega}) > T$. We have

$$\sum_{\substack{\omega \in \Sigma_a^{per} \\ T < S_{|\omega|} \psi(\overline{\omega})}} f_{|\omega|}(\overline{\omega}) e^{-\beta S_{|\omega|} \psi(\overline{\omega})} \geq \sum_{\substack{\omega \in \Sigma_a^{per} \\ |\omega| = n_{k_i}}} f_{|\omega|}(\overline{\omega}) e^{-\beta S_{|\omega|} \psi(\overline{\omega})} > e^{an_{k_i}}.$$

Since $i \to \infty$ when $T \to \infty$, we conclude that

$$\limsup_{T \to \infty} \sum_{\substack{\omega \in \Sigma_{a}^{per} \\ T < S_{|\omega|} \psi(\overline{\omega})}} f_{|\omega|}(\overline{\omega}) e^{-\beta S_{|\omega|} \psi(\overline{\omega})} = \infty.$$

This shows (5) holds.

Corollary 2.4. Let (Σ, σ) be a topologically mixing countable state Markov shift, and let $\mathcal{F} := \{\log f_n\}_{n=1}^{\infty}$ be an almost-additive Bowen sequence on Σ with $\sup f_1 < \infty$, $\psi \in H(\Sigma, \mathbb{R}), \psi \geq c > 0$ with $\sup \psi < \infty$. We have the map $\beta \mapsto \mathcal{P}_1(\mathcal{F}^{\beta}, \Sigma_a^{per})$ is strictly decreasing on $\inf \{\beta \in \mathbb{R} : \mathcal{P}_1(\mathcal{F}^{\beta}, \Sigma_a^{per}) < \infty\}$ and

$$\mathcal{P}_{\psi}(\mathcal{F}, \Sigma_a^{per}) = \inf\{\beta \in \mathbb{R} : \mathcal{P}_1(\mathcal{F}^{\beta}, \Sigma_a^{per}) \le 0\} = \sup\{\beta \in \mathbb{R} : \mathcal{P}_1(\mathcal{F}^{\beta}, \Sigma_a^{per}) \ge 0\}.$$
(6)

In particular, if (Σ, σ) is a subshift of finite type, then the map $\beta \mapsto \mathcal{P}_1(\mathcal{F}^{\beta}, \Sigma_a^{per})$ is a strictly decreasing continuous map on \mathbb{R} . Hence we conclude that $\mathcal{P}_{\psi}(\mathcal{F}, \Sigma_a^{per})$ is unique zero, i.e.

$$\mathcal{P}_1(\mathcal{F}^{\mathcal{P}_{\psi}(\mathcal{F},\Sigma_a^{per})},\Sigma_a^{per}) = 0.$$

Proof. By the Lemma 2.1 we have

$$\mathcal{P}_1(\mathcal{F}^{\beta}, \Sigma_a^{per}) = \sup\{h_{\nu}(\sigma) + \int f_*(\omega) d\nu - \beta \int \psi(\omega) d\nu : \nu \in \mathcal{M} \text{and } \int f_*(\omega) d\nu \neq -\infty\}.$$

Then for any $\beta_1, \beta_2 \in \inf\{\beta \in \mathbb{R} : \mathcal{P}_1(\mathcal{F}^{\beta}, \Sigma_a^{per}) < \infty\}, \beta_1 < \beta_2 \text{ and } 0 < \epsilon < \frac{c(\beta_2 - \beta_1)}{2}$, there exists $\mu \in \mathcal{M}$ such that

$$\sup\{h_{\nu}(\sigma) + \int f_{*}(\omega)d\nu - \beta_{2} \int \psi(\omega)d\nu : \nu \in \mathcal{M} \text{and } \int f_{*}(\omega)d\nu \neq -\infty\}$$

$$< h_{\mu}(\sigma) + \int f_{*}(\omega)d\mu - \beta_{2} \int \psi(\omega)d\mu + \epsilon$$

$$= h_{\mu}(\sigma) + \int f_{*}(\omega)d\mu - \beta_{1} \int \psi(\omega)d\mu + \epsilon - (\beta_{2} - \beta_{1}) \int \psi(\omega)d\mu$$

$$\leq h_{\mu}(\sigma) + \int f_{*}(\omega)d\mu - \beta_{1} \int \psi(\omega)d\mu - (\beta_{2} - \beta_{1})(\int \psi(\omega)d\mu - \frac{c}{2})$$

$$\leq \sup\{h_{\nu}(\sigma) + \int f_{*}(\omega)d\nu - \beta_{1} \int \psi(\omega)d\nu : \nu \in \mathcal{M} \text{and } \int f_{*}(\omega)d\nu \neq -\infty\}$$

$$-(\beta_{2} - \beta_{1})(\int \psi(\omega)d\mu - \frac{c}{2}).$$

Thus, the map $\beta \mapsto \mathcal{P}_1(\mathcal{F}^{\beta}, \Sigma_a^{per})$ is strictly decreasing. Since

$$\inf\{\beta \in \mathbb{R} : \mathcal{P}_{1}(\mathcal{F}^{\beta}, \Sigma_{a}^{per}) < 0\}$$

$$\geq \inf\{\beta \in \mathbb{R} : \limsup_{T \to \infty} \sum_{\substack{\omega \in \Sigma_{a}^{per} \\ T < S_{|\omega|} \psi(\overline{\omega})}} f_{|\omega|}(\overline{\omega}) e^{-\beta S_{|\omega|} \psi(\overline{\omega})} < \infty\}, \tag{7}$$

we have

$$\inf\{\beta \in \mathbb{R} : \mathcal{P}_1(\mathcal{F}^{\beta}, \Sigma_a^{per}) \le 0\} = \inf\{\beta \in \mathbb{R} : \mathcal{P}_1(\mathcal{F}^{\beta}, \Sigma_a^{per}) < 0\}$$
$$= \sup\{\beta \in \mathbb{R} : \mathcal{P}_1(\mathcal{F}^{\beta}, \Sigma_a^{per}) > 0\}. \tag{8}$$

Combining (7) and (8), we obtain (6).

If (Σ, σ) is a subshift of finite type, obviously, for each $\beta \in \mathbb{R}$, $\mathcal{P}_1(\mathcal{F}^{\beta}, \Sigma_a^{per}) < \infty$, we easily obtain the conclusion.

We denote by $C_{\Sigma,\sigma} := \{K \subset \Sigma : K \text{ is compact and } \sigma^{-1}(K) = K\}$ the set of compact σ -invariant subsets on Σ . we say that the *exhaustion principle* holds for $\mathcal{P}_{\psi}(\mathcal{F}, \Sigma_a^{per})$, if there exists a sequence $\{K_n\}_{n \in \mathbb{N}} \subset C_{\Sigma,\sigma}$ such that

$$\lim_{n\to\infty} \mathcal{P}_{\psi,K_n}(\mathcal{F}|_{K_n}, \Sigma_a^{per} \cap K_n^*) = \mathcal{P}_{\psi}(\mathcal{F}, \Sigma_a^{per})$$

where

$$\mathcal{P}_{\psi,K}(\mathcal{F}|_{K}, \Sigma_{a}^{per} \cap K^{*}) := \limsup_{T \to \infty} \frac{1}{T} \log \sum_{\substack{\omega \in \Sigma_{a}^{per} \cap K^{*}, \\ T - \eta < S_{|\omega|} \psi|_{K}(\overline{\omega}) \leq T}} f_{|\omega|}(\overline{\omega}) 1_{K}(\overline{\omega})$$

and $K^* := \{ \omega \in \Sigma^* : [\omega] \cap K \neq \emptyset \}$. Obviously, the conclusions of Theorem 2.1 and Corollary 2.1 are valid for $\mathcal{P}_{\psi,K_n}(\mathcal{F}|_{K_n}, \Sigma_a^{per} \cap K_n^*)$.

Corollary 2.5. Let (Σ, σ) be a topologically mixing countable state Markov shift and and let $\mathcal{F} = \{\log f_n\}_{n=1}^{\infty}$ be an almost-additive Bowen sequence on Σ with $\sup f_1 < \infty$, $\psi \in H(\Sigma, \mathbb{R}), \psi \geq c > 0$ with $\sup \psi < \infty$. We have the exhaustion principle holds for $\mathcal{P}_{\psi}(\mathcal{F}, \Sigma_a^{per})$.

Proof. Let $\delta > 0$, it follows from Corollary 2.2 that $\mathcal{P}_1(\mathcal{F}^{\mathcal{P}_{\psi}(\mathcal{F}, \Sigma_a^{per}) - \delta}, \Sigma_a^{per}) > 0$. By [2, Proposition 3.1], we have the exhaustion principle holds for $\mathcal{P}_1(\mathcal{F}^{\beta}, \Sigma_a^{per})$ with $\beta \in \mathbb{R}$. There exists a subset $K \in C_{\Sigma,\sigma}$ such that

$$\mathcal{P}_{1,K}(\mathcal{F}^{(\mathcal{P}_{\psi}(\mathcal{F},\Sigma_{a}^{per})-\delta)}|_{K},\Sigma_{a}^{per}\cap K^{*})$$

$$:=\lim_{n\to\infty}\frac{1}{n}\log\sum_{\substack{\omega\in\Sigma_{a}^{per}\cap K^{*}\\|\omega|=n}}f_{n}(\overline{\omega})e^{-(\mathcal{P}_{\psi}(\mathcal{F},\Sigma_{a}^{per})-\delta)S_{n}\psi(\overline{\omega})}1_{K}(\overline{\omega})>0.$$

By Corollary 2.1 we have

$$\mathcal{P}_{\psi,K}(\mathcal{F}|_K, \Sigma_a^{per} \cap K^*) \ge \inf\{\beta \in \mathbb{R} : \mathcal{P}_{1,K}(\mathcal{F}^\beta|_K, \Sigma_a^{per} \cap K^*) \le 0\} > \mathcal{P}_{\psi}(\mathcal{F}, \Sigma_a^{per}) - \delta.$$

Hence, for $\mathcal{P}_{\psi}(\mathcal{F}, \Sigma_a^{per})$ the exhaustion principle holds.

Proposition 2.6. Let (Σ, σ) be a topologically mixing countable state Markov shift, and let $\mathcal{F} = \{\log f_n\}_{n=1}^{\infty}$ be an almost-additive Bowen sequence on Σ , $\psi \in H(\Sigma, \mathbb{R}), \psi \geq c > 0$. Then $\mathcal{P}_{\psi}(\mathcal{F}, \Sigma_a^{per})$ is independent of the choice of $a \in S$.

Proof. It is sufficient to prove that

$$\mathcal{P}_{\psi}(\mathcal{F}, \Sigma_{a}^{per}) \le \mathcal{P}_{\psi}(\mathcal{F}, \Sigma_{b}^{per}). \tag{9}$$

Let T > 0 be large. For each $a, b \in S$, and $\omega \in \Sigma_a^{per}$ with $T < S_{|\omega|}\psi(\overline{\omega})$, since (Σ, σ) is topologically mixing, there exists

$$\omega^{1} := (b, \omega_{1}, \dots, \omega_{k-1}), \omega^{2} := (a, \omega'_{1}, \dots, \omega'_{k-1}) \in \Sigma^{k}$$

such that $\omega^1\omega\omega^2\in\Sigma_b^{per}$. Let $x:=\overline{\omega^1\omega\omega^2}$. Making a similar calculation of [2], we can find a constant $C_f>0$, such that $f_{|\omega|}(\overline{\omega})\leq C_f f_{|\omega|+2k}(x)$. Since ψ is Hölder continuous, the bounded distortion property (see [3]) shows there exists a constant $C_{\psi}>0$ such that

$$|S_{|\omega|}\psi(\overline{\omega}) - S_{|\omega|}\psi(\sigma^k x)| \le C_{\psi}, |\beta S_{|\omega|}\psi(\overline{\omega}) - \beta S_{|\omega|}\psi(\sigma^k x)| \le |\beta|C_{\psi}$$

for
$$\overline{\omega}, \sigma^k x \in [\omega], \beta \in \mathbb{R}$$
.

Let
$$C_1 = \inf_{\gamma \in [\omega^1]} S_k \psi(\gamma), C_1 = \inf_{\gamma \in [\omega^2]} S_k \psi(\gamma)$$
, we have

$$T + C_1 + C_2 - C_{\psi} < S_{2k+|\omega|}\psi(x)$$

and

$$e^{-\beta S_{|\omega|}\psi(\overline{\omega})} < e^{|\beta|(C_1 + C_2 + C_{\psi})} e^{-\beta S_{2k+|\omega|}\psi(x)}.$$

Thus, there exists a constant C' > 0 such that

$$\sum_{\stackrel{\omega \in \Sigma_a^{per}}{T < S_{|\omega|} \psi(\overline{\omega})}} f_{|\omega|}(\overline{\omega}) e^{-\beta S_{|\omega|} \psi(\overline{\omega})} \leq C' \sum_{\stackrel{\omega \in \Sigma_b^{per}}{T + C_1 + C_2 - C_\psi < S_{|\omega|} \psi(\overline{\omega})}} f_{|\omega|}(\overline{\omega}) e^{-\beta S_{|\omega|} \psi(\overline{\omega})}.$$

Therefore, we obtain (9).

3 Proof of Theorem 1.1

In this section, we will prove the variational principle of the induced Gurevich pressure of almost-additive potentials for a countable states Markov shift. Our result is a generalization of the Gurevich pressure of almost-additive potentials.

Firstly, we show

$$\mathcal{P}_{\psi}(\mathcal{F}, \Sigma_{a}^{per}) \ge \sup \left\{ \frac{h_{v}(\sigma)}{\int \psi d\nu} + \frac{\int f_{*}(\omega) d\nu}{\int \psi d\nu} : \nu \in \mathcal{M} \text{and } \int f_{*}(\omega) d\nu \ne -\infty \right\}. \tag{10}$$

By Corollary 2.1, for $\beta > \mathcal{P}_{\psi}(\mathcal{F}, \Sigma_a^{per})$, we have $\mathcal{P}_1(\mathcal{F}^{\beta}, \Sigma_a^{per}) \leq 0$. By Lemma 2.1 we have

$$0 \geq \mathcal{P}_{1}(\mathcal{F}^{\beta}, \Sigma_{a}^{per})$$

$$\geq \sup\{h_{\nu}(\sigma) + \int f_{*}(\omega)d\nu - \beta \int \psi d\nu : \nu \in \mathcal{M} \text{and } \int f_{*}(\omega)d\nu \neq -\infty\}$$

$$= \sup\{\int \psi(\omega)d\nu(\frac{h_{\nu}(\sigma)}{\int \psi d\nu} + \frac{\int f_{*}(\omega)d\nu}{\int \psi d\nu} - \beta) : \nu \in \mathcal{M} \text{and } \int f_{*}(\omega)d\nu \neq -\infty\}$$

and we obtain (10).

Nextly, we prove

$$\mathcal{P}_{\psi}(\mathcal{F}, \Sigma_{a}^{per}) \leq \sup \left\{ \frac{h_{v}(\sigma)}{\int \psi d\nu} + \frac{\int f_{*}(\omega) d\nu}{\int \psi d\nu} : \nu \in \mathcal{M} \text{and } \int f_{*}(\omega) d\nu \neq -\infty \right\}.$$
(11)

By Corollary 2.3, there exists a sequence $\{K_n\}_{n\in\mathbb{N}}\subset C_{\Sigma,\sigma}$ such that

$$\lim_{n \to \infty} \mathcal{P}_{\psi, K_n}(\mathcal{F}|_{K_n}, \Sigma_a^{per} \cap K_n^*) = \mathcal{P}_{\psi}(\mathcal{F}, \Sigma_a^{per}).$$

For each $n \in \mathbb{N}$, K_n is the finite alphabet case. Combining Corollary 2.2 and [2,Theorem 3.1], we have

$$0 = \mathcal{P}_{1,K_n}(\mathcal{F}|_{K_n}^{\mathcal{P}_{\psi}|_{K_n}(\mathcal{F}|_{K_n}, \Sigma_a^{per} \cap K_n^*)}, \Sigma_a^{per} \cap K_n^*)$$

$$= \sup\{h_{\nu}(\sigma) + \int f_*(\omega)d\nu - \mathcal{P}_{\psi}|_{K_n}(\mathcal{F}|_{K_n}, \Sigma_a^{per} \cap K_n^*) \int \psi d\nu :$$

$$\nu \in \mathcal{M}_{K_n} \text{ and } \int f_*(\omega)d\nu \neq -\infty\}$$

$$\leq \sup\{\int \psi(\omega)d\nu(\frac{h_{\nu}(\sigma)}{\int \psi d\nu} + \frac{\int f_*(\omega)d\nu}{\int \psi d\nu}) : \nu \in \mathcal{M} \text{ and } \int f_*(\omega)d\nu \neq -\infty\}$$

$$-\mathcal{P}_{\psi}|_{K_n}(\mathcal{F}|_{K_n}, \Sigma_a^{per} \cap K_n^*).$$

Then

$$\begin{split} \mathcal{P}_{\psi}(\mathcal{F}, \Sigma_{a}^{per}) &= \lim_{n \to \infty} \mathcal{P}_{\psi, K_{n}}(\mathcal{F}|_{K_{n}}, \Sigma_{a}^{per} \cap K_{n}^{*}) \\ &\leq \sup\{\frac{h_{v}(\sigma)}{\int \psi d\nu} + \frac{\int f_{*}(\omega) d\nu}{\int \psi d\nu} : \nu \in \mathcal{M} \text{and} \int f_{*}(\omega) d\nu \neq -\infty\}. \end{split}$$

Combining (10) and (11), we obtain (4).

References

[1] Barreira L., Nonadditive thermodynamic formalism: equilibrium and Gibbs measures, *Discrete Contin. Dyn. Sys*, **22**, (2006), 1147–1179.

- [2] Godofredo I. and Yuki Y., Almost-additive thermodynamic formalism for countable Markov shihts, *Nonlinearity*, **25**, (2012), 165–191.
- [3] Johanes J., Marc K. and Sanaz L., Induced topological pressure for countable Markov shifts, *Stochastics. Dyn*, **14**, (2014), 1–31.
- [4] Mummert A., The thermodynamic formalism for almost-additive sequences, *Discrete Contin. Dyn. Syst.*, **16**, (2006), 435–454.
- [5] Mauldin D. and Urbánski M., Dimensions and measures in infinite iterated function systems, *Proc. lond. Math. Soc.*, **73**, (1996), 105–154.
- [6] Mauldin D. and Urbánski M., Gibbs states on the symbolic space over an infinite alphabet, *Israel. J. Math*, **125**, (2001), 93–103.
- [7] Peter W., An Introduction to Ergodic Theory, Spring, 1982.
- [8] Sarig O., Thermodynamic formalism for countable Markov shifts, *Ergodic Theory and Dyn. Sys*, **19**, (1999), 1565–1593.
- [9] Sarig O., Phase transitions for countable Markov shifts, Commun. Math. Phys, 217, (2001), 555–577.
- [10] Sarig O., Existence of Gibbs measures for countable Markov shifts, *Proc. Amer. Math. Soc.*, **131**, (2003),1751–1758.
- [11] Sarig O., Lecture Notes on Thermodynamic Formalism for Topological Markov Shifts, Spring, 2009.