New characterizations of vector fields on Weil bundles

Borhen Vann Nkou ${ }^{1}$, Basile Guy Richard Bossoto ${ }^{2}$ and Eugene Okassa ${ }^{3}$

Abstract

Let M be a paracompact smooth manifold, A a Weil algebra and M^{A} the associated Weil bundle. In this paper, we give another definition and characterization of vector field on M^{A}.

Mathematics Subject Classification: 58A20; 58A32
Keywords: Weil bundle; near point; weil algebra; vector fields

1 Introduction

In what follows we denote A, a Weil algebra i.e a local algebra in the sense of André Weil, M a smooth manifold, $C^{\infty}(M)$ the algebra of smooth functions on M, M^{A} the manifold of infinitely near points of kind A and $\pi_{M}: M^{A} \longrightarrow M$ be

[^0]the projection which assigns every infinitely near point to $x \in M$ to its origin x. The triplet $\left(M^{A}, \pi_{M}, M\right)$ defines a bundle called bundle of infinitely near points on M of kind A or simply weil bundle[13],[7], [8], [5],[12]. If $f: M \longrightarrow \mathbb{R}$ is a smooth function, then the application
$$
f^{A}: M^{A} \longrightarrow A, \xi \longmapsto \xi(f)
$$
is also smooth. The set, $C^{\infty}\left(M^{A}, A\right)$ of smooth functions on M^{A} with values on A, is a commutative algebra over A with unit and the application
$$
C^{\infty}(M) \longrightarrow C^{\infty}\left(M^{A}, A\right), f \longmapsto f^{A}
$$
is an injective homomorphism of algebras. Then, for $f, g \in C^{\infty}(M)$ and $\lambda \in \mathbb{R}$, we have:
\[

$$
\begin{aligned}
(f+g)^{A} & =f^{A}+g^{A} \\
(\lambda \cdot f)^{A} & =\lambda \cdot f^{A} \\
(f \cdot g)^{A} & =f^{A} \cdot g^{A}
\end{aligned}
$$
\]

The map

$$
A \times C^{\infty}\left(M^{A}\right) \longrightarrow C^{\infty}\left(M^{A}, A\right),(a, F) \longmapsto a \cdot F: \xi \longmapsto a \cdot F(\xi)
$$

is bilinear and induces one and only one linear map

$$
\sigma: A \otimes C^{\infty}\left(M^{A}\right) \longrightarrow C^{\infty}\left(M^{A}, A\right)
$$

When $\left(a_{\alpha}\right)_{\alpha=1,2, \ldots, \operatorname{dim} A}$ is a basis of A and when $\left(a_{\alpha}^{*}\right)_{\alpha=1,2, \ldots, \operatorname{dim} A}$ is a dual basis of the basis $\left(a_{\alpha}\right)_{\alpha=1,2, \ldots, \operatorname{dim} A}$, the application

$$
\sigma^{-1}: C^{\infty}\left(M^{A}, A\right) \longrightarrow A \otimes C^{\infty}\left(M^{A}\right), \varphi \longmapsto \sum_{\alpha=1}^{\operatorname{dim} A} a_{\alpha} \otimes\left(a_{\alpha}^{*} \circ \varphi\right)
$$

is an isomorphism of A-algebras. That isomorphism does not depend of a choisen basis and the application

$$
\gamma: C^{\infty}(M) \longrightarrow A \otimes C^{\infty}\left(M^{A}\right), f \longmapsto \sigma^{-1}\left(f^{A}\right)
$$

is a homomorphism of algebras.
If (U, φ) is a local chart of M with coordinate system $\left(x_{1}, \ldots, x_{n}\right)$, the map

$$
\varphi^{A}: U^{A} \longrightarrow A^{n}, \xi \longmapsto\left(\xi\left(x_{1}\right), \ldots, \xi\left(x_{n}\right)\right)
$$

is a bijection from U^{A} onto an open set of A^{n}. In addition, if $\left(U_{i}, \varphi_{i}\right)_{i \in I}$ is an atlas of M^{A}, then $\left(U_{i}^{A}, \varphi_{i}^{A}\right)_{i \in I}$ is also an atlas of M^{A} [2].

2 Another definition of a vector field on Weil bundles

Let M be a smooth manifold of dimension n, A a Weil algebra and M^{A} a Weil bundle associated. In this paper, we give another chatacterization of vector fields on M^{A}. We show that, the tangent bundle $T M^{A}$ is locally trivial with typical fiber A^{n}; we also give a writing of a vector field on M^{A}, in coordinate neighborhood system. Moreover, we verify easily that the $C^{\infty}\left(M^{A}, A\right)$-module $\mathfrak{X}\left(M^{A}\right)$ of vecvector field on M^{A} is a Lie algebra over A.

2.1 Tangent vectors at M^{A}

Let $\left(a_{\alpha}\right)_{\alpha=1, \ldots, \operatorname{dim} A}$ be a basis of the Weil algebra A. For any $\varphi \in C^{\infty}\left(M^{A}, A\right)$, we have

$$
\varphi=\sum_{\alpha=1}^{\operatorname{dim} A} a_{\alpha}^{*} \circ \varphi \cdot a_{\alpha} .
$$

When $\xi \in M^{A}$, the map

$$
\widetilde{\xi}: C^{\infty}\left(M^{A}, A\right) \longrightarrow A, \varphi \longmapsto \varphi(\xi),
$$

is a homomorphism of A-algebras.
We denote $\operatorname{Der}_{A, \tilde{\xi}}\left[C^{\infty}\left(M^{A}, A\right), A\right]$ the set of $\widetilde{\xi}$-derivations which are A-linear i.e. the set of maps

$$
v: C^{\infty}\left(M^{A}, A\right) \longrightarrow A
$$

such that

1. v is A-linear;
2. $v(\varphi \cdot \psi)=v(\varphi) \cdot \widetilde{\xi}(\psi)+\widetilde{\xi}(\varphi) \cdot v(\psi)=v(\varphi) \cdot \psi(\xi)+\varphi(\xi) \cdot v(\psi)$, for any $\varphi, \psi \in C^{\infty}\left(M^{A}, A\right)$.

Proposition 2.1. For any $\xi \in M^{A}$, $\operatorname{Der}_{A, \xi}\left[C^{\infty}\left(M^{A}, A\right), A\right]$ is a module over A.

Theorem 2.2. For any $\xi \in M^{A}$, the following assertions are equivalent:

1. A tangent vector at $\xi \in M^{A}$ is a \mathbb{R}-linear map

$$
u: C^{\infty}\left(M^{A}\right) \longrightarrow \mathbb{R}
$$

such that for any $F, G \in C^{\infty}\left(M^{A}\right)$,

$$
u(F \cdot G)=u(F) \cdot G(\xi)+F(\xi) \cdot u(G) ;
$$

2. A tangent vector at $\xi \in M^{A}$ is an A-linear map

$$
v: C^{\infty}\left(M^{A}, A\right) \longrightarrow A
$$

such that for any $\varphi, \psi \in C^{\infty}\left(M^{A}, A\right)$,

$$
v(\varphi \cdot \psi)=v(\varphi) \cdot \psi(\xi)+\varphi(\xi) \cdot v(\psi)
$$

3. A tangent vector at $\xi \in M^{A}$ is a \mathbb{R}-linear map

$$
w: C^{\infty}(M) \longrightarrow A
$$

such that for any $f, g \in C^{\infty}(M)$,

$$
w(f \cdot g)=w(f) \cdot \xi(g)+\xi(f) \cdot w(g)
$$

Proof. 1. $(1) \Longrightarrow$ (2)
Let $u: C^{\infty}(M) \longrightarrow A$ be a tangent vector at M^{A} and

$$
v: C^{\infty}\left(M^{A}, A\right) \xrightarrow{\sigma^{-1}} A \otimes C^{\infty}\left(M^{A}\right) \xrightarrow{i d_{A} \otimes u} A \otimes \mathbb{R}=A .
$$

For any $\varphi, \psi \in C^{\infty}\left(M^{A}, A\right)$, and for $a \in A$, we have:

$$
\begin{aligned}
v(\varphi+\psi) & =\left[\left(i d_{A} \otimes u\right) \circ \sigma^{-1}\right](\varphi+\psi)=\left[\left(i d_{A} \otimes u\right)\right]\left(\sigma^{-1}(\varphi+\psi)\right) \\
& =\left[\left(i d_{A} \otimes u\right)\right]\left(\sigma^{-1}(\varphi)+\sigma^{-1}(\psi)\right) \\
& =\left[\left(i d_{A} \otimes u\right)\right]\left(\sigma^{-1}(\varphi)\right)+\left[\left(i d_{A} \otimes u\right)\right]\left(\sigma^{-1}(\psi)\right) \\
& =\left[\left(i d_{A} \otimes u\right) \circ \sigma^{-1}\right](\varphi)+\left[\left(i d_{A} \otimes u\right) \circ \sigma^{-1}\right](\psi) \\
& =v(\varphi)+v(\psi),
\end{aligned}
$$

$$
\begin{aligned}
v(a \cdot \varphi) & =\left[\left(i d_{A} \otimes u\right) \circ \sigma^{-1}\right](a \cdot \varphi) \\
& =\left[\left(i d_{A} \otimes u\right)\right]\left(\sigma^{-1}(a \cdot \varphi)\right) \\
& =\left[\left(i d_{A} \otimes u\right)\right]\left(a \cdot \sigma^{-1}(\varphi)\right) \\
& =a \cdot\left[\left(i d_{A} \otimes u\right)\right]\left(\sigma^{-1}(\varphi)\right) \\
& =a \cdot\left[\left(i d_{A} \otimes u\right) \circ \sigma^{-1}\right](\varphi) \\
& =a \cdot v(\varphi)
\end{aligned}
$$

and

$$
\begin{aligned}
v(\varphi \cdot \psi) & =\left[\left(i d_{A} \otimes u\right) \circ \sigma^{-1}\right](\varphi \cdot \psi)=\left[\left(i d_{A} \otimes u\right)\right]\left(\sigma^{-1}(\varphi \cdot \psi)\right) \\
& =\left[\left(i d_{A} \otimes u\right)\right]\left(\sigma^{-1}(\varphi) \cdot \sigma^{-1}(\psi)\right) \\
& =\left[\left(i d_{A} \otimes u\right)\right]\left(\sigma^{-1}(\varphi)\right) \cdot \psi(\xi)+\varphi(\xi) \cdot\left[\left(i d_{A} \otimes u\right)\right]\left(\sigma^{-1}(\psi)\right) \\
& =\left[\left(i d_{A} \otimes u\right) \circ \sigma^{-1}\right](\varphi) \cdot \psi(\xi)+\varphi(\xi) \cdot\left[\left(i d_{A} \otimes u\right) \circ \sigma^{-1}\right](\psi) \\
& =v(\varphi) \cdot \psi(\xi)+\varphi(\xi) \cdot v(\psi)
\end{aligned}
$$

2. $(2) \Longrightarrow(3)$ Let $v: C^{\infty}\left(M^{A}, A\right) \longrightarrow A$ be a tangent vector at $\xi \in M^{A}$. Let

$$
w: C^{\infty}(M) \longrightarrow C^{\infty}\left(M^{A}, A\right), f \longmapsto v\left(f^{A}\right)
$$

For any $f, g \in C^{\infty}(M)$, and for $\lambda \in \mathbb{R}$, we have:

$$
\begin{gathered}
\begin{aligned}
w(f+g)= & v\left[(f+g)^{A}\right]=v\left(f^{A}+g^{A}\right)=v\left(f^{A}\right)+v\left(g^{A}\right) \\
= & w(f)+w(g) \\
w(\lambda f) & =v\left[(\lambda \cdot f)^{A}\right]=v\left(\lambda \cdot f^{A}\right)=\lambda \cdot v\left(f^{A}\right) \\
= & \lambda \cdot w(f)
\end{aligned} \\
\begin{aligned}
w(f \cdot g)= & v\left[(f \cdot g)^{A}\right]=v\left(f^{A} \cdot g^{A}\right)=v\left(f^{A}\right) \cdot g^{A}(\xi)+f^{A}(\xi) \cdot w\left(g^{A}\right) \\
= & w(f) \cdot \xi(g)+\xi(f) \cdot w(g)
\end{aligned}
\end{gathered}
$$

3. $(3) \Longrightarrow(1)$ The implication holds from the following result: the map

$$
\operatorname{Der}_{\xi}\left[C^{\infty}\left(M^{A}\right), \mathbb{R}\right] \longrightarrow \operatorname{Der}_{\xi}\left[C^{\infty}(M), A\right], v \longmapsto\left(i d_{A} \otimes v\right) \circ \gamma
$$

is an isomorphism of vector spaces see [8].

In what follows, we denote $T_{\xi} M^{A}$ the set of A-linear maps

$$
v: C^{\infty}\left(M^{A}, A\right) \longrightarrow A
$$

such that for any $\varphi, \psi \in C^{\infty}\left(M^{A}, A\right)$,

$$
v(\varphi \cdot \psi)=v(\varphi) \cdot \psi(\xi)+\varphi(\xi) \cdot v(\psi)
$$

that is to say

$$
T_{\xi} M^{A}=\operatorname{Der}_{A, \tilde{\xi}}\left[C^{\infty}\left(M^{A}, A\right), A\right] .
$$

Remark 2.3. For $v \in T_{\xi} M^{A}$, we have $v\left[C^{\infty}\left(M^{A}\right)\right] \subset \mathbb{R}$.

2.2 Vector fields on M^{A}

The set, $\operatorname{Der}_{A}\left[C^{\infty}\left(M^{A}, A\right)\right]$, of derivations which are A-linear is a $C^{\infty}\left(M^{A}, A\right)$ module.

Theorem 2.4. The following assertions are equivalent:

1. A vector field on M^{A} is a differentiable section of the tangent bundle $\left(T M^{A}, \pi_{M^{A}}, M^{A}\right)$.
2. A vector field on M^{A} is a derivation of $C^{\infty}\left(M^{A}\right)$.
3. A vector field on M^{A} is a derivation of $C^{\infty}\left(M^{A}, A\right)$ which is A-linear.
4. A vector field on M^{A} is a linear map $X: C^{\infty}(M) \longrightarrow C^{\infty}\left(M^{A}, A\right)$ such that

$$
X(f \cdot g)=X(f) \cdot g^{A}+f^{A} \cdot X(g), \quad \text { for any } f, g \in C^{\infty}(M)
$$

Proof. (1) $\Longrightarrow(2)$ Let $U: M^{A} \longrightarrow T M^{A}$ be a differential section of the tangent bundle $\left(T M^{A}, \pi_{M^{A}}, M^{A}\right)$.

1. Let

$$
W: C^{\infty}\left(M^{A}\right) \longrightarrow C^{\infty}\left(M^{A}\right)
$$

such that $[W(F)](\xi)=[U(\xi)](F)$ for any $F \in C^{\infty}\left(M^{A}\right)$ and $\xi \in M^{A}$.

- For any $F, G \in C^{\infty}\left(M^{A}\right)$, and for $\lambda \in \mathbb{R}$, we have:

$$
\begin{aligned}
{[W(F+G)](\xi) } & =[U(\xi)](F+G)=[U(\xi)](F)+[U(\xi)](G) \\
& =[W(F)](\xi)+[W(G)](\xi) \\
& =[W(F)+W(G)](\xi))
\end{aligned}
$$

for any $\xi \in M^{A}$, then $W(F+G)=W(F)+W(G)$;

$$
\begin{aligned}
{[W(\lambda \cdot F)](\xi) } & =[U(\xi)](\lambda \cdot F)=\lambda \cdot[W(F)](\xi) \\
& =[\lambda \cdot W(F)](\xi)
\end{aligned}
$$

for any $\xi \in M^{A}$, then $W(\lambda \cdot F)=\lambda \cdot W(F)$;

$$
\begin{aligned}
{[W(F \cdot G)](\xi) } & =[U(\xi)](F \cdot G)=[U(\xi)](F) \cdot G(\xi)+F(\xi) \cdot[U(\xi)](G) \\
& =[W(F)(\xi)] \cdot G(\xi)+F(\xi) \cdot[W(G)](\xi) \\
& =[W(F) \cdot G+F \cdot W(G)](\xi))
\end{aligned}
$$

for any $\xi \in M^{A}$, then $W(F \cdot G)=W(F) \cdot G+F \cdot W(G)$.
2. $(2) \Longrightarrow(3)$ Let W be a vector field on M^{A} considered as a derivation of $C^{\infty}\left(M^{A}\right)$. Let

$$
X: C^{\infty}\left(M^{A}, A\right) \xrightarrow{\sigma^{-1}} A \otimes C^{\infty}\left(M^{A}\right) \xrightarrow{i d_{A} \otimes W} A \otimes C^{\infty}\left(M^{A}\right) \xrightarrow{\sigma} C^{\infty}\left(M^{A}, A\right) .
$$

For any $\varphi, \psi \in C^{\infty}\left(M^{A}\right)$, we have:

$$
\begin{aligned}
X(\varphi+\psi) & =\left[\sigma \circ\left(i d_{A} \otimes W\right) \circ \sigma^{-1}\right](\varphi+\psi)=\left[\sigma \circ\left(i d_{A} \otimes W\right)\right]\left(\sigma^{-1}(\varphi+\psi)\right) \\
& =\left[\sigma \circ\left(i d_{A} \otimes W\right)\right]\left(\sigma^{-1}(\varphi)+\sigma^{-1}(\psi)\right) \\
& =\left[\sigma \circ\left(i d_{A} \otimes W\right)\right]\left(\sigma^{-1}(\varphi)\right)+\sigma \circ\left[\left(i d_{A} \otimes W\right)\right]\left(\sigma^{-1}(\psi)\right) \\
& =\left[\sigma \circ\left(i d_{A} \otimes W\right) \circ \sigma^{-1}\right](\varphi)+\left[\sigma \circ\left(i d_{A} \otimes W\right) \circ \sigma^{-1}\right](\psi) \\
& =X(\varphi)+X(\psi) ; \\
X(\lambda \cdot \varphi) & =\left[\sigma \circ\left(i d_{A} \otimes W\right) \circ \sigma^{-1}\right](\lambda \cdot \varphi)=\left[\sigma \circ\left(i d_{A} \otimes W\right)\right]\left(\sigma^{-1}(\lambda \cdot \varphi)\right) \\
& =\left[\sigma \circ\left(i d_{A} \otimes W\right)\right]\left(\lambda \cdot \sigma^{-1}(\varphi)\right)=\lambda \cdot\left[\sigma \circ\left(i d_{A} \otimes W\right)\right]\left(\sigma^{-1}(\varphi)\right) \\
& =\lambda \cdot\left[\sigma \circ\left(i d_{A} \otimes W\right) \circ \sigma^{-1}\right](\varphi) \\
& =\lambda \cdot X(\varphi) ;
\end{aligned}
$$

and

$$
\begin{aligned}
X(\varphi \cdot \psi) & =\left[\sigma \circ\left(i d_{A} \otimes W\right) \circ \sigma^{-1}\right](\varphi \cdot \psi) \\
& =\left[\sigma \circ\left(i d_{A} \otimes W\right)\right]\left(\sigma^{-1}(\varphi \cdot \psi)\right) \\
& =\left[\sigma \circ\left(i d_{A} \otimes W\right)\right]\left(\sigma^{-1}(\varphi) \cdot \sigma^{-1}(\psi)\right) \\
& =\left[\sigma \circ\left(i d_{A} \otimes W\right)\right]\left(\sigma^{-1}(\varphi)\right) \cdot \psi+\varphi \cdot\left[\left(i d_{A} \otimes W\right)\right]\left(\sigma^{-1}(\psi)\right) \\
& =\left[\sigma \circ\left(i d_{A} \otimes W\right) \circ \sigma^{-1}\right](\varphi) \cdot \psi+\varphi \cdot\left[\sigma \circ\left(i d_{A} \otimes W\right) \circ \sigma^{-1}\right](\psi) \\
& =X(\varphi) \cdot \psi+\varphi \cdot X(\psi) .
\end{aligned}
$$

3. $(3) \Longrightarrow(4)$ Let X be a vector field on M^{A} considered as a derivation of $C^{\infty}\left(M^{A}, A\right)$ which is A-linear. Let

$$
Y: C^{\infty}(M) \longrightarrow C^{\infty}\left(M^{A}, A\right), f \longmapsto f^{A}
$$

- For any $f, g \in C^{\infty}(M)$, we have:

$$
\begin{aligned}
Y(f+g) & =X\left[(f+g)^{A}\right] \\
& =X\left(f^{A}+g^{A}\right) \\
& =X\left(f^{A}\right)+X\left(g^{A}\right) \\
& =Y(f)+Y(g) .
\end{aligned}
$$

- For any $f, g \in C^{\infty}(M)$, we have:

$$
\begin{aligned}
Y(f \cdot g) & =X\left[(f \cdot g)^{A}\right] \\
& =X\left(f^{A} \cdot g^{A}\right) \\
& =X\left(f^{A}\right) \cdot g^{A}+X\left(g^{A}\right) \cdot f^{A} \\
& =Y(f) \cdot g^{A}+Y(g) \cdot f^{A} \\
& =Y(f)+Y(g) .
\end{aligned}
$$

4. $(4) \Longrightarrow(1)$ For that implication see, corollary 6 in [2].

$$
\operatorname{Der}_{\xi}\left[C^{\infty}\left(M^{A}\right), \mathbb{R}\right] \longrightarrow \operatorname{Der}_{\xi}\left[C^{\infty}(M), A\right], v \longmapsto\left(i d_{A} \otimes v\right) \circ \gamma
$$

is an isomorphism of vector spaces see [8].

Remark 2.5. For any $X \in \mathfrak{X}\left(M^{A}\right)$, we have $X\left[C^{\infty}\left(M^{A}\right)\right] \subset C^{\infty}\left(M^{A}\right)$.
Theorem 2.6. The map

$$
\mathfrak{X}\left(M^{A}\right) \times \mathfrak{X}\left(M^{A}\right) \longrightarrow \mathfrak{X}\left(M^{A}\right),(X, Y) \longmapsto[X, Y]=X \circ Y-Y \circ X
$$

is skew-symmetric A-bilinear and defines a structure of A-Lie algebra over $\mathfrak{X}\left(M^{A}\right)$ 。

In all what follows, we denotes $\mathfrak{X}\left(M^{A}\right)$, the set of A-linear maps

$$
X: C^{\infty}\left(M^{A}, A\right) \longrightarrow C^{\infty}\left(M^{A}, A\right)
$$

such that

$$
X(\varphi \cdot \psi)=X(\varphi) \cdot \psi+\varphi \cdot X(\psi), \quad \text { for any } \varphi, \psi \in C^{\infty}\left(M^{A}, A\right)
$$

that is to say

$$
\mathfrak{X}\left(M^{A}\right)=\operatorname{Der}_{A}\left[C^{\infty}\left(M^{A}, A\right)\right] .
$$

2.3 Prolongations to M^{A} of vector fields on M

Proposition 2.7. If $\theta: C^{\infty}(M) \longrightarrow C^{\infty}(M)$, is a vector field on M, then there exists one and only one A-linear derivation

$$
\theta^{A}: C^{\infty}\left(M^{A}, A\right) \longrightarrow C^{\infty}\left(M^{A}, A\right)
$$

such that

$$
\theta^{A}\left(f^{A}\right)=[\theta(f)]^{A}
$$

for any $f \in C^{\infty}(M)$.
Proof. If $\theta: C^{\infty}(M) \longrightarrow C^{\infty}(M)$, is a vector field on M, then the map

$$
C^{\infty}(M) \longrightarrow C^{\infty}\left(M^{A}, A\right), f \longmapsto[\theta(f)]^{A}
$$

is a vector field on M^{A}. Thus, according to the equivalent $(2) \Longleftrightarrow(3)$ of the theorem 2.1.2, there exists one and only one vector field on M^{A}

$$
\theta^{A}: C^{\infty}\left(M^{A}, A\right) \longrightarrow C^{\infty}\left(M^{A}, A\right)
$$

such that

$$
\theta^{A}\left(f^{A}\right)=[\theta(f)]^{A}
$$

for any $f \in C^{\infty}(M)$.

Proposition 2.8. If $\theta, \theta_{1}, \theta_{2}$ are vector fields on M and if $f \in C^{\infty}(M)$, then we have:

1. $\left(\theta_{1}+\theta_{2}\right)^{A}=\theta_{1}^{A}+\theta_{2}^{A}$;
2. $(f \cdot \theta)^{A}=f^{A} \cdot \theta^{A}$;
3. $\left[\theta_{1}, \theta_{2}\right]^{A}=\left[\theta_{1}^{A}, \theta_{2}^{A}\right]$.

Corollary 2.9. The map

$$
\mathfrak{X}(M) \longrightarrow \operatorname{Der}_{A}\left[C^{\infty}\left(M^{A}, A\right)\right], \theta \longmapsto \theta^{A}
$$

is an injective homomorphism of \mathbb{R}-Lie algebras.
Proposition 2.10. If $\mu: A \longrightarrow A$, is a \mathbb{R}-endomorphism, and $\theta: C^{\infty}(M) \longrightarrow$ $C^{\infty}(M)$ a vector field on M, then

$$
\theta^{A}\left(\mu \circ f^{A}\right)=\mu \circ[\theta(f)]^{A},
$$

for any $f \in C^{\infty}(M)$.

2.3.1 Vector fields on M^{A} deduced from derivations of A

Proposition 2.11. If d is a derivation of A, then there exists one and only, one A-linear derivation

$$
d^{*}: C^{\infty}\left(M^{A}, A\right) \longrightarrow C^{\infty}\left(M^{A}, A\right)
$$

such that

$$
d^{*}\left(f^{A}\right)=(-d) \circ f^{A}
$$

for any $f \in C^{\infty}(M)$.

Proof. If d is a derivation of A, then the map

$$
C^{\infty}(M) \longrightarrow C^{\infty}\left(M^{A}, A\right), f \longmapsto(-d) \circ f^{A}
$$

is a vector field on M^{A}. Thus, according to the equivalent $(2) \Longleftrightarrow(3)$ of the theorem 2.1.2, there exists one and only, one A-linear derivation

$$
d^{*}: C^{\infty}\left(M^{A}, A\right) \longrightarrow C^{\infty}\left(M^{A}, A\right)
$$

such that

$$
d^{*}\left(f^{A}\right)=(-d) \circ f^{A}
$$

for any $f \in C^{\infty}(M)$.
Proposition 2.12. For any $f \in C^{\infty}(M)$,

$$
d^{*}\left(\mu \circ f^{A}\right)=-\mu \circ-d \circ f^{A} .
$$

Proposition 2.13. If d, d_{1}, d_{2} are vector fields on M and if $f \in C^{\infty}(M)$, then we have:

1. $\left(d_{1}+d_{2}\right)^{*}=d_{1}^{*}+d_{2}^{*}$;
2. $(a \cdot d)^{*}=a \cdot d^{*}$;
3. $\left[d_{1}, d_{2}\right]^{*}=\left[d_{1}^{*}, d_{2}^{*}\right]$.
4. $\left[d^{*}, \theta^{A}\right]=0$.

2.4 Vector field on M^{A} in local coordinate system

Let U is a coordinate neighborhood of M at x with coordinate system $\left(x_{1}, \ldots, x_{n}\right)$. Then according to [7], $\left(\frac{\partial}{\partial x_{1}}\right)^{A}(\xi),\left(\frac{\partial}{\partial x_{2}}\right)^{A}(\xi), \ldots,\left(\frac{\partial}{\partial x_{n}}\right)^{A}(\xi)$ is an A-basis of an A-free module $T_{\xi} M^{A}$ of dimension n. For $v \in T_{\xi} M^{A}$, we have:

$$
v=\sum_{i=1}^{n} \lambda_{i}\left(\frac{\partial}{\partial x_{i}}\right)^{A}(\xi)
$$

Proposition 2.14. There exists a canonical diffeomorphism

$$
\Theta: T\left(M^{A}\right) \longrightarrow T M^{A}, v \longmapsto \Theta(v)
$$

such that, for any $f \in C^{\infty}(M)$, we have:

1. $[\Theta(v)]\left(f \circ \pi_{M}\right)=\left[\pi_{M^{A}}(v)\right](f)$.
2. $[\Theta(v)](d f)=v\left(f^{A}\right)$.

Proof. Let

$$
\Theta: T\left(M^{A}\right) \xrightarrow{\Theta_{1}}\left(M^{A}\right)^{\mathbb{D}} \xrightarrow{\Theta_{2}} M^{A \otimes \mathbb{D}} \xrightarrow{\Theta_{3}}\left(M^{\mathbb{D}}\right)^{A} \xrightarrow{\Theta_{4}}\left(M^{A}\right)^{\mathbb{D}} \xrightarrow{\Theta_{5}} T M^{A},
$$

where

$$
\begin{gathered}
\Theta_{1}(v): C^{\infty}\left(M^{A}\right) \longrightarrow \mathbb{D}, F \longmapsto F(\xi)+v(F) \cdot \varepsilon ; \\
\Theta_{2}: \Theta_{1}(v) \longmapsto\left(i d_{A} \otimes \Theta_{1}(v)\right) \circ \gamma_{A} ; \\
\Theta_{3}:\left(i d_{A} \otimes \Theta_{1}(v)\right) \circ \gamma_{A} \longmapsto \Theta_{3}\left[\left(i d_{A} \otimes \Theta_{1}(v)\right) \circ \gamma_{A}\right]: f \longmapsto \sum_{\alpha=1}^{\operatorname{dim} A}\left[\Theta_{1}(v)\right]\left(a_{\alpha}^{*} \circ f^{A}\right) \otimes a_{\alpha} ; \\
\Theta_{4}: \Theta_{3}\left[\left(i d_{A} \otimes \Theta_{1}(v)\right) \circ \gamma_{A}\right] \longmapsto \eta
\end{gathered}
$$

such that

$$
\left(i d_{\mathbb{D}} \otimes \eta\right) \circ \gamma_{\mathbb{D}}=\Theta_{3}\left[\left(i d_{A} \otimes \Theta_{1}(v)\right) \circ \gamma_{A}\right] .
$$

Thus for any $f \in C^{\infty}(M)$, we have:

$$
\left[\left(i d_{\mathbb{D}} \otimes \eta\right) \circ \gamma_{\mathbb{D}}\right](f)=\Theta_{3}\left[\left(i d_{A} \otimes \Theta_{1}(v)\right) \circ \gamma_{A}\right](f)
$$

and

$$
\begin{aligned}
1 \otimes \eta\left(1^{*} \circ f^{\mathbb{D}}\right)+\varepsilon \otimes \eta\left(\varepsilon^{*} \circ f^{\mathbb{D}}\right)= & \sum_{\alpha=1}^{\operatorname{dim} A}\left[\Theta_{1}(v)\right]\left(a_{\alpha}^{*} \circ f^{A}\right) \otimes a_{\alpha} \\
= & \sum_{\alpha=1}^{\operatorname{dim} A} a_{\alpha} \otimes\left(a_{\alpha}^{*} \circ f^{A}\right)(\xi)+\sum_{\alpha=1}^{\operatorname{dim} A} a_{\alpha} \otimes v\left[\left(a_{\alpha}^{*} \circ f^{A}\right) \cdot \varepsilon\right] \\
= & 1 \otimes\left(\sum_{\alpha=1}^{\operatorname{dim} A} a_{\alpha}^{*}\left[f^{A}(\xi)\right] \cdot a_{\alpha}\right)+\varepsilon \otimes \sum_{\alpha=1}^{\operatorname{dim} A} v\left[\left(a_{\alpha}^{*} \circ f^{A}\right) \cdot a_{\alpha}\right] \\
& 1 \otimes\left(\sum_{\alpha=1}^{\operatorname{dim} A} a_{\alpha}^{*}[\xi(f)] \cdot a_{\alpha}\right)+\varepsilon \otimes v\left(f^{A}\right),
\end{aligned}
$$

then the identification

$$
\eta\left(1^{*} \circ f^{\mathbb{D}}\right)=\xi(f)
$$

and

$$
\eta\left(\varepsilon^{*} \circ f^{\mathbb{D}}\right)=v\left(f^{A}\right)
$$

It follows that

$$
\begin{aligned}
\Theta(v) & =\left[\Theta_{5} \circ \Theta_{4} \circ \Theta_{3} \circ \Theta_{2} \circ \Theta_{1}\right](v) \\
& =\Theta_{5}(\eta) \\
& =\eta \circ \varphi^{*}
\end{aligned}
$$

with $\varphi: M^{\mathbb{D}} \longrightarrow T M, \xi \longmapsto v$, such that for $f \in C^{\infty}(M), \xi(f)=f(p)+v(f)$ where $p \in M, v \in T_{p} M$ and $\xi \in M_{p}^{A}$. The map φ is a diffeomorphism. Then, Θ is a diffeomorphism as composition of diffeomorphisms. Moreover,

$$
[\Theta(v)]\left(f \circ \pi_{M}\right)=\eta\left[\varphi^{*}\left(f \circ \pi_{M}\right)\right]=\eta\left(1^{*} \circ f^{\mathbb{D}}\right)=\xi(f)=\pi_{M^{A}}(v)
$$

and

$$
[\Theta(v)](d f)=\eta\left[\varphi^{*}(d f)\right]=\eta\left(\varepsilon^{*} \circ f^{\mathbb{D}}\right)=v\left(f^{A}\right)
$$

Proposition 2.15. The map

$$
\theta: T U^{A} \longrightarrow U^{A} \times A^{n}, v \longmapsto\left(\pi_{M^{A}}(v), v\left(x_{1}^{A}\right), \ldots, v\left(x_{n}^{A}\right)\right)
$$

is a diffeomorphism. For $\xi \in U^{A}$,

$$
\theta_{\mid T_{\xi} U^{A}}: T_{\xi} U^{A} \longrightarrow\{\xi\} \times A^{n}
$$

is an isomorphism of A-modules.
Proof. Let $\pi_{M}: T M \longrightarrow M$ and $\pi_{M^{A}}: T M^{A} \longrightarrow M^{A}$ be the projections of $T M$ and $T M^{A}$ on M, M^{A} respectively.
The bundle $T M$ being locally trivial then for any $x \in M$ there exists an open coordinate neighborhood U of x in M and a local diffeomorphism h_{U} : $\pi_{M}^{-1}(U) \longrightarrow U \times \mathbb{R}^{n}$ such that the following diagram

$$
\begin{array}{cll}
\pi_{M}^{-1}(U) & \xrightarrow{h_{U}} & U \times \mathbb{R}^{n} \\
\pi_{\mid \pi_{M}^{-1}(U)} \downarrow & \swarrow p r_{1} & \\
U & &
\end{array}
$$

commute i.e $p r_{1} \circ h_{U}=\pi_{M \mid \pi_{M}^{-1}(U)}$. Thus, let
$T\left(U^{A}\right) \xrightarrow{\Theta}(T U)^{A} \xrightarrow{\left(h_{U}\right)^{A}}\left[U \times \mathbb{R}^{n}\right]^{A} \xrightarrow{\phi_{1}} U^{A} \times\left(\mathbb{R}^{n}\right)^{A} \xrightarrow{\phi_{2}} U^{A} \times\left(\mathbb{R}^{n} \otimes A\right) \xrightarrow{\phi_{3}} U^{A} \otimes A^{n}$
where

$$
\begin{aligned}
& \Theta: v \mapsto \Theta(v) ; \\
& \quad\left(h_{U}\right)^{A}: \Theta(v) \mapsto \Theta(v) \circ h_{U}^{*} ; \\
& \phi_{1}: \Theta(v) \circ h_{U}^{*} \mapsto\left(\left(p r_{1}\right)^{A}\left[\Theta(v) \circ h_{U}^{*}\right],\left(p r_{2}\right)^{A}\left[\Theta(v) \circ h_{U}^{*}\right]\right) ; \\
& \quad \phi_{2}:\left(\left(p r_{1}\right)^{A}\left[\Theta(v) \circ h_{U}^{*}\right],\left(p r_{2}\right)^{A}\left[\Theta(v) \circ h_{U}^{*}\right]\right) \mapsto \\
& \left(\left(p r_{1}\right)^{A}\left[\Theta(v) \circ h_{U}^{*}\right], \sum_{i=1}^{n} e_{i} \otimes\left[\left(p r_{2}\right)^{A}\left[\Theta(v) \circ h_{U}^{*}\right]\right]\left(e_{i}^{*}\right)\right) ; \\
& \quad \phi_{3}:\left(\left(p r_{1}\right)^{A}\left[\Theta(v) \circ h_{U}^{*}\right], \sum_{i=1}^{n} e_{i} \otimes\left[\left(p r_{2}\right)^{A}\left[\Theta(v) \circ h_{U}^{*}\right]\right]\left(e_{i}^{*}\right)\right) \mapsto \\
& \left(\pi_{M^{A}}(v),\left(v\left(x_{1}^{A}\right), \ldots, v\left(x_{n}^{A}\right)\right)\right) \text { with } e_{i}^{*} \circ p r_{2} \circ h_{U}=d x_{i} .
\end{aligned}
$$

It follows that,

$$
\theta(v)=\left[\phi_{3} \circ \phi_{2} \circ \phi_{1} \circ\left(h_{U}\right)^{A} \circ \Theta\left(v\left(x_{1}^{A}\right), \ldots, v\left(x_{n}^{A}\right)\right)\right](v)=\left(\pi_{M^{A}}(v),\right)
$$

hence θ is a diffeomorphism as composition of diffeomorphisms.
Besides, for $\xi \in U^{A}, \theta_{\mid T_{\xi} U^{A}}$ is an isomorphism of A-modules. Indeed: it follows from θ that $\theta_{\mid T_{\xi} U^{A}}$ is bijective and in addition, if $v=\sum_{i=1}^{n} \lambda_{i}\left(\frac{\partial}{\partial x_{i}}\right)^{A}(\xi)$ and $w=\sum_{i=1}^{n} \mu_{i}\left(\frac{\partial}{\partial x_{i}}\right)^{A}(\xi)$ are element of $T_{\xi} U^{A}$ and $a \in A$, we have first

$$
\begin{aligned}
\theta_{\mid T_{\xi} U^{A}}(v+w) & =\theta_{\mid T_{\xi} U^{A}}\left(\sum_{i=1}^{n}\left(\lambda_{i}+\mu_{i}\right)\left(\frac{\partial}{\partial x_{i}}\right)^{A}(\xi)\right) \\
& =\left(\lambda_{1}+\mu_{1}, \ldots, \lambda_{n}+\mu_{n}\right) \\
& =\left(\lambda_{1}, \ldots, \lambda_{n}\right)+\left(\mu_{1}, \ldots, \mu_{n}\right) \\
& =\theta_{\mid T_{\xi} U^{A}}(v)+\theta_{\mid T_{\xi} U^{A}}(w)
\end{aligned}
$$

and secondly, we have

$$
\theta_{\mid T_{\xi} U^{A}}(a \cdot v)=\left(a \cdot \lambda_{1}, \ldots, a \cdot \lambda_{n}\right)=a \cdot\left(\lambda_{1}, \ldots, \lambda_{n}\right)=a \cdot \theta_{\mid T_{\xi} U^{A}}(v)
$$

That result leads to state:
Corollary 2.16. The tangent bundle $T M^{A}$ is locally trivial with typical fiber A^{n}.

Proposition 2.17. If $X: M^{A} \longrightarrow T M^{A}$ is a vector field on M^{A} and if U is a coordinate neighborhood of M with coordinate neighborhood $\left(x_{1}, \ldots, x_{n}\right)$, then there exists some functions $f_{i} \in C^{\infty}\left(U^{A}, A\right)$ for $i=1, \ldots$, n such that

$$
X_{\mid U^{A}}=\sum_{i=1}^{n} f_{i}\left(\frac{\partial}{\partial x_{i}^{A}}\right)^{A}
$$

Suggestion for notations

When (U, φ) is local chart and $\left(x_{1}, \ldots, x_{n}\right)$ his local coordinate system. The map

$$
U^{A} \longrightarrow A^{n}, \xi \longmapsto\left(\xi\left(x_{1}\right), \ldots, \xi\left(x_{n}\right)\right)
$$

is a diffeomorphism from U^{A} onto an open set on A^{n}. As

$$
\left(\frac{\partial}{\partial x_{i}}\right)^{A}: C^{\infty}\left(U^{A}, A\right) \longrightarrow C^{\infty}\left(U^{A}, A\right)
$$

is such that

$$
\left(\frac{\partial}{\partial x_{i}}\right)^{A}\left(x_{j}^{A}\right)=\delta_{i j}
$$

we can denote

$$
\frac{\partial}{\partial x_{i}^{A}}=\left(\frac{\partial}{\partial x_{i}}\right)^{A} .
$$

If $v \in T_{\xi} M^{A}$, we can write

$$
v=\left.\sum_{i=1}^{n} v\left(x_{i}^{A}\right) \frac{\partial}{\partial x_{i}^{A}}\right|_{\xi} .
$$

If $X \in \mathfrak{X}\left(M^{A}\right)=\operatorname{Der}_{A}\left[C^{\infty}\left(M^{A}, A\right)\right]$, we have

$$
X_{\mid U^{A}}=\sum_{i=1}^{n} f_{i} \frac{\partial}{\partial x_{i}^{A}}
$$

with $f_{i} \in C^{\infty}\left(U^{A}, A\right)$ for $i=1,2, \ldots, n$.

Acknowledgement: The first author thanks Deutscher Akademischer Austauschdientst(DAAD) for their financial support.

References

[1] B.G.R. Bossoto and E. Okassa, A-Poisson structures on Weil bundles, Int. J. Contemp. Math. Sciences, 7(16), (2012), 785-803.
[2] B.G.R. Bossoto and E. Okassa, Champs de vecteurs et formes différentielles sur une variété des points proches, Archivum mathematicum (BRNO), 44, (2008), 159-171.
[3] C. Ehresmann, Les prolongements d'un espace fibré différentiable, C.R.Acad.Sci. Paris, 240, (1955), 1755-1757.
[4] S. Helgason, Differential Geometry and symmetric spaces, New York, Academic Press, 1962.
[5] I. Kolar, P.W. Michor and J. Slovak, Natural Operations in Differential Geometry, Springer Verlag, 1993.
[6] J.L. Koszul, S. Ramanan, Lectures On Fibre Bundles and Differential Geometry, Tata Institute of Fundamental Research, Bombay, 1960.
[7] A. Morimoto, Prolongation of connections to bundles of infinitely near points, J. Diff. Geom, 11, (1976), 479-498.
[8] E. Okassa, Relèvements de structures symplectiques et pseudoriemanniennes à des variétés de points proches, Nagoya Math. J., 115, (1989), 63-71.
[9] E. Okassa, Prolongement des champs de vecteurs à des variétés des points prohes, Ann. Fac. Sci. Toulouse Math., VIII(3), (1986-1987), 346-366.
[10] A.P. Shirokov, A note on structures in tangent bundles, Itogi Nauki Tekh. Ser. Probl. Geom. Tr.Geom. Sem., 5, (1974), 311-318.
[11] A.P. Shirokov, The geometry of tangent bundles and spaces over algebras, Itogi Nauki Tekh. Ser. Probl. Geom. Tr. Geom. Sem., 12, (1981), 61-95.
[12] V.V. Shurygin, Manifolds over algebras and their application in the geometry of jet bundles, Usp. Mat. Nauk, 48(2), (290), (1993), 75-106.
[13] A. Weil, Théorie des points proches sur les vari étés différentiables, Colloq. Géom. Diff. Strasbourg, (1953), 111-117.

[^0]: ${ }^{1}$ Marien NGOUABI University, Faculty of science and technology, BP: 69, BrazzavilleCongo. E-mail: vannborhen@yahoo.fr
 ${ }^{2}$ Marien NGOUABI University, Faculty of science and technology, BP: 69, BrazzavilleCongo. E-mail: bossotob@yahoo.fr
 ${ }^{3}$ Marien NGOUABI University, Faculty of science and technology, BP: 69, BrazzavilleCongo. E-mail: eugeneokassa@yahoo.fr

