On Extension of Borel-Caratheodory theorem

Deborah Olufunmilayo Makinde ${ }^{1}$ and S. Adewale ${ }^{2}$

Abstract

In this paper, we investigated the closure of addition and multiplication of functions in the Borel-Caratheodory theorem.

Mathematics Subject Classification: 30C45
Keywords: Analytic; Borel-Caratheodory; Maximum modulus principle

1 Introduction

A function of complex variable is said to be analytic at a point if the derivative exist not only at a point but also at every point in the neighbourhood of that point.

Let $x+i y$ be a complex number then the real part of the complex number is x. that is $R(x+i y)=x$.
Let $w=f(z)$ be a complex function, where $z=x+i y$ and $w=u+i v$ then $u=u(x, y)$ and $v=v(x, y)$. Hence $w=f(z)=u(x, y)+i v(x, y)$ and the function $f(z)$ is said to have a real u, denoted by $u=\operatorname{Re} f$.

[^0]Lemma 1 [1] Let a function be analytic on a closed disc of radius R centered at the origin. Suppose that $r<R$. Then we have the following inequality;

$$
\|f\|_{r} \leq \frac{2 r}{R-r} \sup _{|z| \leq r} \operatorname{Re} f(z)+\frac{R+r}{R-r}|f(0)|
$$

Here, the norm on the left hand side denotes the maximum value of f in the closed disc;

$$
\|f\|_{r}=\max _{|z| \leq r}|f(z)|=\max _{|z|=r}|f(z)|,
$$

where the last equality is due to the maximum modulus principle.

2 Main Results

Theorem 2.1. Let functions f_{1} and f_{2} be analytic on a closed disc of radius R centered at the origin. Suppose that $r<R$. Then, we have the following inequality;

$$
\left|f_{1}(z)+f_{2}(z)\right| \leq \frac{R+r}{R-r}\left(f_{1}(0)+f_{2}(0)\right)+\frac{2 r}{R-r} A_{1}+\frac{2 r}{R-r} A_{2}
$$

Where

$$
\|f\|_{r}=\max _{|z| \leq r} \quad|f(z)|=\max _{|z|=r}|f(z)|
$$

Proof. Define A_{1} and A_{2} by

$$
\begin{array}{ll}
A_{1}=\sup _{|z| \leq R} & \operatorname{Re} f_{1}(z) \\
A_{2}=\sup _{|z| \leq R} & \operatorname{Re} f_{2}(z)
\end{array}
$$

First, assume that $f(0)=0$
Let $f_{1}(z)+f_{2}(z)=F(z) \quad$ and $\quad A_{1}+A_{2}=A^{\prime}$
Define the function $g(z)$ by

$$
\begin{aligned}
g(z) & =\frac{f_{1}(z)+f_{2}(z)}{z\left[2\left(A_{1}+A_{2}\right)\right]-\left\{f_{1}(z)+f_{2}(z)\right\}} \\
g(z) & =\frac{F(z)}{z\left[2 A^{\prime}-F(z)\right]}
\end{aligned}
$$

This function has a removable singularity at $z=0$. The factor $2 A^{\prime}-F(z) \neq 0$ because

$$
\operatorname{Re}\left\{2 A^{\prime}-F(z)\right\}=2 A^{\prime}-\operatorname{Re} F(z) \geq A^{\prime}
$$

Therefore, we have that g is analytic in the disc $\{z \in C ;|z| \leq R\}$. If z is on the boundary of the disc, then

$$
\begin{gather*}
|g(z)|=\left|\frac{F(z)}{z\left(2 A^{\prime}-F(z)\right)}\right| \\
|g(z)|=\left|\frac{1}{z}\right|\left|\frac{F(z)}{\left(2 A^{\prime}-F(z)\right)}\right| \tag{1}
\end{gather*}
$$

But

$$
\begin{equation*}
\left|2 A^{\prime}-F(z)\right|=\left|F(z)-2 A^{\prime}\right| \geq|F(z)| \tag{2}
\end{equation*}
$$

Using (2) in (1) we obtain

$$
|g(z)|=\left|\frac{1}{z}\right|\left|\frac{F(z)}{F(z)}\right|
$$

using the principle of maximum modulus, we have

$$
|g(z)| \leq \frac{1}{R}
$$

for any complex number w with $|w|=r$

$$
\begin{aligned}
|g(w)| & =\left|\frac{F(w)}{w\left(2 A^{\prime}-F(w)\right)}\right| \leq \frac{1}{R} \\
|g(w)| & =\frac{1}{r}\left|\frac{F(w)}{2 A^{\prime}-F(w)}\right| \leq \frac{1}{R} \\
\left.\frac{|F(w)|}{\left|2 A^{\prime}-F(w)\right|} \right\rvert\, & \leq \frac{r}{R} \\
|F(w)| & \leq \frac{r}{R}\left|2 A^{\prime}-F(w)\right| \leq \frac{r}{R}\left[2 A^{\prime}+|F(w)|\right] \\
|F(w)| & \leq \frac{r}{R}\left[2 A^{\prime}+|F(w)|\right] \\
R|F(w)| & -r|F(w)| \leq 2 A^{\prime} r \\
(R-r)|F(w)| & \leq 2 A^{\prime} r \\
|F(w)| & \leq \frac{2 A^{\prime} r}{R-r} \\
\|F(w)\| r & \leq \frac{2 A^{\prime} r}{R-r}
\end{aligned}
$$

In general case, where $f(0)$ does not necessarily vanish, then

$$
h_{1}(z)=f_{1}(z)-f_{1}(0) \text { and } h_{2}(z)=f_{2}(z)-f_{2}(0)
$$

by the law of triangular inequality, we have

$$
\begin{align*}
& \operatorname{Sup}_{|z| \leq R} \operatorname{Re} h_{1}(z) \leq \operatorname{Sup}_{|z| \leq R} \operatorname{Re} f_{1}(z)+\left|f_{1}(0)\right| \tag{3}\\
& \operatorname{Sup}_{|z| \leq R} \operatorname{Re} h_{2}(z) \leq \operatorname{Sup}_{|z| \leq R} \operatorname{Re} f_{2}(z)+\left|f_{2}(0)\right| \tag{4}
\end{align*}
$$

Adding (3) and (4)

$$
\text { Sup }_{|z| \leq R} \operatorname{Re}\left[h_{1}(z)+h_{2}(z)\right] \leq S u p_{|z| \leq R} \operatorname{Re}\left[f_{1}(z)+f_{2}(z)\right]+f_{1}(0)+f_{2}(0)
$$

Let $h_{1}(z)+h_{2}(z)=H(z)=f_{1}(z)-f_{1}(0)+f_{2}(z)-f_{2}(0)=\left(f_{1}+f_{2}\right)(z)-\left(f_{1}+\right.$ $\left.f_{2}\right)(0)$

$$
\operatorname{Sup}_{|z| \leq R} \operatorname{Re} H(z) \leq \operatorname{Sup}_{|z| \leq R} \operatorname{Re} F(z)+|F(0)|
$$

Where $f_{1}(0)+f_{2}(0)=F(0)$
Because $H(0)=h_{1}(0)+h_{2}(0)=0$, we can say that

$$
|F(z)-F(0)| \leq \frac{2 r}{R-r}\left(A^{\prime}+|F(0)|\right)
$$

If $|z| \leq r$, furthermore

$$
\begin{gathered}
|F(z)-F(0)| \geq|F(z)|-|F(0)| \\
|F(z)|-|F(0)| \leq|F(z)-F(0)| \\
|F(z)|-|F(0)| \leq \frac{2 r}{R-r}\left(A^{\prime}+|F(0)|\right) \\
|F(z)| \leq|F(0)|+\frac{2 r}{R-r}\left(A^{\prime}+|F(0)|\right) \\
|F(z)| \leq\left(1+\frac{2 r}{R-r}\right)|F(0)|+\frac{2 r}{R-r} A^{\prime}
\end{gathered}
$$

simplifying, we obtain

$$
|F(z)| \leq \frac{R+r}{R-r}|F(0)|+\frac{2 r}{R-r} A^{\prime}
$$

and by hypothesis, we have

$$
\left|F_{1}(z)\right| \leq \frac{R+r}{R-r}\left(\left|f_{1}(0)+f_{2}(0)\right|\right)+\frac{2 r}{R-r} A_{1}+\frac{2 r}{R-r} A_{2}
$$

This completes the proof proof of Theorem 1.

Theorem 2.2. Let functions f_{1} and f_{2} be analytic on a closed disc of radius R centered at the origin. Suppose that $r<R$. Then, we have the following inequality;

$$
\left\|f_{1} f_{2}\right\| r \leq \frac{2 r}{R-r} A+\frac{R+r}{R-r}|f(0) f(0)|
$$

Where

$$
\|f\| r=\max _{|z| \leq r}|f(z)|=\max _{|z|=r}|f(z)|
$$

Proof. Let $A=\operatorname{Sup}_{|z| \leq R} \operatorname{Re}\left\{\left(f_{1}(z) f_{2}(z)\right)\right\}$
First assume that $f(0)=0$
We define the function g by

$$
g(z)=\frac{f_{1}(z) f_{2}(z)}{z\left[2 A-\left\{f_{1}(z) f_{2}(z)\right\}\right]}
$$

where $K(z)=f_{1}(z) f_{2}(z)$
The function has a removable singularity at $z=0$ then the factor
$2 A-K(z) \neq 0$ because
$\operatorname{Re}\{2 A-K(z)\}=2 A-\operatorname{Re}\{K(z)\} \geq A$
Therefore, $2 A-\operatorname{Re}\{K(z)\} \geq A$
Therefore, we have that g is analytic in the disc $[z \in C:|z| \leq R]$. If z is on the boundary of this disc then

$$
\begin{array}{r}
|g(z)|=\left|\frac{K(z)}{z[2 A-[k(z)]}\right| \\
|g(z)|=\left|\frac{1}{z}\right|\left|\frac{K(z)}{[2 A-k(z)]}\right| \\
|2 A-K(z)|=|K(z)-2 A| \geq K(z) \tag{6}
\end{array}
$$

Using 5 and 6 we obtain

$$
\left.|g(z)|=\left|\frac{1}{z}\right| \frac{K(z)}{K(z)} \right\rvert\,
$$

By the principle of maximum modulus

$$
|g(z)| \leq \frac{1}{R}
$$

and following the proof of Theorem 1 we obtain

$$
|K(z)| \leq \frac{2 r}{R-r} A+\frac{R+r}{R-r}|K(0)|
$$

$$
\begin{gathered}
K(z)=f_{1}(z) f_{2}(z) \\
\left|f_{1}(z) f_{2}(z)\right| \leq \frac{2 r}{R-r} A+\frac{R+r}{R-r}|f(0) f(0)| \\
\left\|f_{1} f_{2}\right\| r \leq \frac{2 r}{R-r} A+\frac{R+r}{R-r}|f(0) f(0)|
\end{gathered}
$$

this completes the proof of Theorem 2.

3 Conclusion

We conclude that the Borel-Caratheodory theorem is closed under the operation of addition and multiplication of analytic functions.

Results 1 and 2 generalize the lemma above.

References

[1] Borel-Catheodory theorem-Wikipedia free Encyclopedia.
[2] Mark J.A. and Athanassios S.F., Complex Variables Introduction and Application, Cambridge University Press, 1977.

[^0]: ${ }^{1}$ Department of Mathematics, Obafemi Awolowo University, Ile-Ife 220005, Nigeria.
 E-mail: domakinde.comp@gmail.com; dmakinde@oauife.edu.ng
 ${ }^{2}$ Department of Mathematics, Obafemi Awolowo University, Ile-Ife 220005, Nigeria.

