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Abstract

The aim of this work is to obtain approximate analytical solution
to the two dimensional laminar compressible boundary layer flow with
an adverse pressure gradient in the presence of heat and mass transfer.
The method applied is homotopy analysis method. It is shown that this
solution agrees very well with numerical solution which is obtained by
Runge-Kutta Merson method and results are shown graphically for dif-
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elaborately by using Domb Syke Plots.
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1 Introduction

Compressed air and gases are used in many industries such as automobile,

chemical, food processing and mining industry for monitoring of pressurized

spray lines and pumping of wheels in automobile industry. It is used for pneu-

matic conveying of granulate and powder, instrumentation, process air in the

production, flushing processes and measurement of nitrogen in chemical indus-

try and processing industries, and also for packaging and filling in food supply.

It is used for pneumatic tooling in mining industries. Compressible fluid flow

theory is used in the design of high speed aircraft, gas turbines, stream tur-

bines, reciprocating engines, natural gas transmission lines and combustion

chambers.

Chan et al.[6] developed an integral method for calculating the properties

of compressible boundary layers with heat transfer and arbitrary pressure gra-

dients. Venkatachala et al.[17] studied the flow and heat transfer for both

cylinder and sphere moving in a compressible fluid at the stagnation point and

was solved with quasilinearization technique on IBM 360 computer. Muthanna

et al. [12] investigated the effect of surface mass and heat transfer velocities on

the steady laminar, compressible boundary layer at a three dimensional stag-

nation point for both nodal and saddle points of attachment. Sau et al.[13]

studied numerically the flow and heat transfer process on the unsteady flow of

a compressible fluid which is viscous and with variable gas properties in the

vicinity of the stagnation line of an infinite swept cylinder by quasilineariza-

tion technique with an implicit finite difference scheme. Ardeshir et al. [2]

studied the transient growth in compressible boundary layers. Ali et al. [5]

formulated and studied the problem of steady, laminar, compressible flow and

heat transfer of a particulate suspension past a semi-infinite horizontal flat

surface using finite-difference scheme. Hossain et al. [11] studied the effect of

heat transfer on the steady laminar compressible boundary layer flow past a

horizontal circular cylinder numerically by finite-difference scheme.

Kuerti [10] and Young [18] have given extensive review about compressible

boundary layers. Curle [7] and Stewartson [16] have reported the details of

special mathematical methods used by various authors. Some of the numerical

approaches for solving compressible boundary value problems were discussed

in the texts by Cebeci and Smith [4], Schreier [15] and Anderson [1]. In
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Howarth’s linearly retarded flow [8] strong adverse pressure gradient exists

which will contribute to the increase in boundary layer and its thickness in

the downstream flow. This will cause boundary-layer separation entails large

energy losses. Therefore it is desired to prevent boundary-layer separation

which can be done by suction [3], [4], [14]. Kafoussias et al. [9] studied the

two dimensional laminar compressible boundary layer flow over a flat plate,

with an adverse pressure gradient in the presence of heat and mass transfer

numerically by Keller box method. We apply HAM and AHAM to Kafoussias

model [9] and compare the results extensively by graphs.

2 Mathematical formulation of the problem

Figure 1: Flow Diagram

The equations governing the steady, compressible, two-dimensional bound-

ary layer flow of a heat conducting perfect gas, which, in the absence of body

forces, using Prandtl Boundary layer assumptions are [4], [9]

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0, (1)

ρu
∂u

∂x
+ ρv

∂u

∂y
= −dp

dx
+

∂

∂y

(
µ
∂u

∂y

)
, (2)
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ρu
∂H

∂x
+ ρv

∂H

∂y
=

∂

∂y

(
µ

Pr

∂H

∂y
+ µ

(
1− 1

Pr

)
u
∂u

∂y

)
, (3)

where H is the total enthalpy of the fluid defined for a perfect gas by the

expression H = CpT + 1
2
u2, P r is the Prandtl number defined as Pr = µCp

k
and

the other quantities have their usual meaning.

Equations (1), (2) and (3) have five unknowns ρ, u, v, H and p. Thus we

have three equations for five unknowns. p can be eliminated by using u = ue(x)

and ρ = ρe(x) in equation (2),

−dp
dx

= ρeue
due

dx
, (4)

where the subscript ’e’ refers to the conditions at the edge of the boundary

layer. Equation (2) can be written now as

ρu
∂u

∂x
+ ρv

∂u

∂y
= ρeue

due

dx
+

∂

∂y

(
µ
∂u

∂y

)
. (5)

The boundary conditions of the problem, including a transpiration velocity

vw at the wall are

y = 0 : u = 0, v = vw(x), H = Hw(x), (6)

y −→ δ : u = ue(x), H = He, (7)

where δ is the boundary layer thickness.

We introduce the compressible Falkner - Skan transformation and stream

function defined by

η =

∫ y

0

(
ue(x)

νe(x)x

)1/2
ρ(x, y)

ρe(x)
dy, ψ(x, y) = (ρeµeuex)

1/2 f(x, η), (8)

Equations (1), (3) and (5) have four unknowns ρ, u, v and H. Equation (8)

is used to eliminate one more unknown. ρ, u, v are absorbed in the stream

function ψ, for a compressible flow given by

ρu =
∂ψ

∂y
, ρv = −∂ψ

∂x
, (9)

which satisfy the continuity equation (1) exactly. Now we have two equations

for two unknowns f and S. Equations (3), (5) and boundary conditions (6) and

(7) reduce to

b
∂3f

∂η3
+m1f

∂2f

∂η2
+m2

(
c−

(
∂f

∂η

)2
)

= x

(
∂f

∂η

∂2f

∂η∂x
− ∂2f

∂η2

∂f

∂x

)
, (10)
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e
∂2S

∂η2
+ d

∂f

∂η

∂3f

∂η3
+ d

(
∂2f

∂η2

)2

+m1f
∂S

∂η
= x

(
∂f

∂η

∂S

∂x
− ∂S

∂η

∂f

∂x

)
, (11)

η = 0 :
∂f

∂η
= 0, fw = f(0, x) = − 1

(ueµeρex)
1/2

∫ x

0

ρwvw(x)dx, S = Sw(x),

(12)

η = ηe :
∂f

∂η
= 1, S = 1, (13)

where the quantities b, c, d, e, m1 and m2 are defined as follows

b = C, C =
ρµ

ρeµe

, c =
ρe

ρ
, d =

Cu2
e

He

(
1− 1

Pr

)
, e =

b

Pr
, S =

H

He

, (14)

m1 =
1

2

[
1 +m2 +

x

ρeµe

d

dx
(ρeµe)

]
, m2 =

x

ue

due

dx
. (15)

So the problem under consideration is described by system of equations (10)

and (11), with the boundary conditions (12) and (13), where as the coefficients

in the equations are defined in (14) and (15). To apply homotopy analysis

method, initially we do few assumptions for quantities in (14) and (15) which

are treated as constants [14].

The influence of compressibility is contained directly in the density term ρ

in the continuity equation (1), contained more indirectly as a variable coeffi-

cient in the momentum equation (2) and energy equation (3) and to produce

temperature variations that are too large to permit the assumption of constant

properties µ and k. The Prandtl number (Pr) is assumed nearly constant for

most gases over a wide range of temperature. The pressure is assumed con-

stant across the boundary layer. Therefore, the density can be assumed to be

a function of temperature only.

We establish that
∂f

∂η

∂2f

∂η∂x
− ∂2f

∂η2

∂f

∂x
= 0, (16)

∂f

∂η

∂S

∂x
− ∂S

∂η

∂f

∂x
= 0, (17)

Using (16) and (17), the right hand sides of equations (10) and (11) vanish

and x 6= 0. Thus these equations become

b
∂3f

∂η3
+m1f

∂2f

∂η2
+m2

(
c−

(
∂f

∂η

)2
)

= 0, (18)
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e
∂2S

∂η2
+ d

∂f

∂η

∂3f

∂η3
+ d

(
∂2f

∂η2

)2

+m1f
∂S

∂η
= 0, (19)

with boundary conditions

η = 0; f ′(x, 0) = 0, fw = f(0, x) = − 1

(ueµeρex)
1
2

x∫
0

ρwvw(x)dx, S = ω (20)

η = ηe; f ′(x, ηe) = 1, S = 1. (21)

3 Homotopy Analysis Method (HAM)

We solve equation (18) and (19) by homotopy analysis method by writing

the given non linear equation as

N [f(η)] = b
∂3f

∂η3
+m1f

∂2f

∂η2
+m2

(
c−

(
∂f

∂η

)2
)
. (22)

Homotopy for this equation is constructed as below

(1− p)L [f(η, p)− f0(η)] = hp

{
b
∂3f

∂η3
+m1f

∂2f

∂η2
+m2

(
c−

(
∂f

∂η

)2
)}

,

(23)

where

L =
∂3

∂η3
+

∂2

∂η2
, (24)

with boundary conditions

F (0, p) = λ = fw,
∂F

∂η
(0, p) = 0,

∂F

∂η
(∞, p) = 1, (25)

where p ε [0, 1] is the embedding parameter, h 6= 0 is a non zero parameter. The

initial guess approximation f0(η) of f(η) chosen in accordance with boundary

condition (12) and satisfying equation Lf = 0.

When p = 0, we have the solution

F (η, 0) = f0(η). (26)
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When p = 1,

F (η, 1) = f(η). (27)

Thus as p increases from 0 to 1, the solution varies from the initial guess

f0(η) to the exact solution f(η). The initial guess approximation f0(η), the

linear operator L and the parameter h are to be selected such that the equation

(22) and (23) have solutions at each point p ε [0, 1] and the order of L must be

same as that of N.

Using Maclaurin series for F(η,p) as

F (η, p) = F (η, 0) +
∞∑

k=1

pk

k!

∂k

∂pk
(F (η, p)), (28)

and defining

φ0(η) = F (η, 0) = f0(η), (29)

we get

F (η, p) = φ0(η) +
∞∑

k=1

φk(η)p
k. (30)

The convergence region of the above series depends upon the non-zero

parameter h which is to be selected such that solution converges at p = 1.

The values of h are chosen by drawing h graph by plotting f ′′(0) versus h.

Using equations (27), (29) and (30) for p = 1, we get

F (η, 1) = f(η) = φ0(η) +
∞∑

m=1

φm(η), (31)

where φm(η) are the unknowns to be determined.

Differentiating equation (23) m times about the embedding parameter p,

using Leibnitz theorem, setting p = 0 and dividing by m!, we get

L [φm − χmφm−1] = hRm(η), (32)

where

χm =

{
0 when m ≤ 1

1 when m > 1,
(33)

Rm[η] = bφ
′′′

m−1 +m1

m−1∑
k=0

φm−1−kφ
′′

k −m2

m−1∑
k=0

φ
′

m−1−kφ
′

k +m2c(1− χm), (34)
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with boundary conditions

φm(0) = φ
′

m(0) = φ
′

m(∞) = 0. (35)

We solve these linear equations given by (32) for φm by MATHEMATICA

and draw the graphs for different parameters.

Initial approximate solution, f0(η) is obtained as below by L and satisfying

boundary conditions as

f0(η) = φ0 = −1 + e−η + η + λ, (36)

and we get other φ’s from (32) by using (36).

Equation (19) is also solved by homotopy analysis method by writing

N [S(η)] = e
∂2S

∂η2
+ d

(
∂f

∂η

∂3f

∂η3

)
+ d

(
∂2f

∂η2

)2

+m1f
∂S

∂η
, (37)

and the Homotopy for this equation is constructed as below

(1−p)Ls [S(η, p)− S0(η)] = hp

{
e
∂2S

∂η2
+ d

(
∂F

∂η

∂3F

∂η3

)
+ d

(
∂2F

∂η2

)2

+m1F
∂S

∂η

}
,

(38)

where

Ls =
∂2

∂η2
+

∂

∂η
, (39)

with boundary conditions

S(0, p) = ω = Sw, S(∞, p) = 1. (40)

Initial approximate solution, S0(η) is chosen in accordance with boundary

conditions (40) and satisfying Ls(S0) = 0. Thus we get

S0(η) = 1 + (ω − 1)e−η. (41)

Repeating as in case of f by using

S(η, p) = ψ0(η) +
∞∑

k=1

ψk(η). (42)

By using ψ0(η) = S0(η), we get all values of ψ’s and the graphs are drawn

for different values of physical parameter.
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Figure 2: h curve for suction Figure 3: h curve for no suction

Figure 4: h curve for injection Figure 5: Velocity curves for (1) no suction ,

(2)suction,(3)injection

Figure 6: Temperature profiles for Figure 7: Temperature Profile HAM λ = −2, 0, 2

(1) no suction,(2)suction, (3)injection
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Figure 8: Domb Syke Plot for velocity, Figure 9: Domb Syke Plot for velocity,

R = 12.60 R = 51.44
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Figure 10: Domb Syke Plot for velocity, Figure 11: Domb Syke Plot for temperature,

R = 29.12 R = 12.49
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Figure 12: Domb Syke Plot for velocity, Figure 13: Domb Syke Plot for temperature,

R = 12.49 R = 12.49
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4 Pade Approximation

When we have only first few terms of an infinite series and the general form

of series coefficient say an is not transparent, Pade approximants are a good

way to approximate the series. Therefore we apply Pade for HAM solution,

[4/4] pade for injuction is given by

fpade =
−2.2204× 10−16 − 9.0836× 10−17η + 0.4999η2 + 0.0355η3 + 0.00713η4

1.0 + 0.406η + 0.06576η2 + 0.0048η3 + 0.0001η4
,

(43)

[4/4] pade for no suction is given by

fpade =
−2.2204× 10−16 − 9.0836× 10−17η + 0.4999η2 + 0.0355η3 + 0.0071η4

1.0 + 0.4061η + 0.0657η2 + 0.0048η3 + 0.0001η4
,

(44)

[4/4] pade for suction is given by

fpade =
−2.− 0.8201η + 0.3708η2 + 0.0262η3 + 0.0071η4

1.0 + 0.4100η + 0.0670η2 + 0.0049η3 + 0.00012η4
, (45)

Pade approximants are able to overcome the finite radius of convergence

of the series. The Pade approximants are better than the original series is a

common feature. It is based on the assumption that the original function was

smoothly varying.

5 Alternate Homotopy Analysis Method (AHAM)

We set h = −1 in the zeroth-order deformation equation (12) and introduc-

ing a parameter β in the Linear operator L = ∂3

∂η3 +β ∂2

∂η2 to obtain a alternate

Homotopy as

(1− p)[f ′′′ + βf ′′] + p
{
bf ′′′ +m1ff

′′ + m2

(
c− (f ′)

2
)}

= 0, (46)

subject to the boundary conditions:

f(0) = λ, f ′(0) = 0, f ′(∞) = 1, (47)

It is easy to notice that as p deforms from 0 to 1, equation (46) changes from

the initial linear equation f ′′′(η) + β f ′′(η) = 0 to the nonlinear equation
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bf ′′′ +m1ff
′′ + m2

(
c− (f ′)2) = 0. Then putting

f(η) = f0(η) +
+∞∑
k=1

fk(η)p
k (48)

in (46) and equating the same powers of p , we have:

Zero order:

f ′′′o (η) + βf ′′0 (η) = 0, (49)

f0(0) = λ, f ′0(0) = 0, f ′0(∞) = 1, (50)

First order :

f ′′′1 + βf ′′1 − f ′′′0 − βf ′′0 + b f ′′′0 +m1f0f
′′
0 +m2c−m2f

′
0f

′
0 = 0, (51)

Second order :

f ′′′2 + βf ′′2 − f ′′′1 − βf ′′1 + b f ′′′1 +m1 (f0f
′′
1 + f1f

′′
0 )−m2 (f ′0f

′
1 + f ′1f

′
0) = 0, (52)

Third order:

f ′′′3 +βf ′′3−f ′′′2 −βf ′′2 +b f ′′′2 +m1 (f0f
′′
2 + f1f

′′
1 + f2f

′′
0 )−m2 (f ′0f

′
2 + f ′1f

′
1 + f ′2f

′
0) = 0,

(53)

Fourth order :

f ′′′4 + βf ′′4 − f ′′′3 − βf ′′3 + b f ′′′3 +m1 (f0f
′′
3 + f1f

′′
2 + f2f

′′
1 + f3f

′′
0 )

−m2 (f ′0f
′
3 + f ′1f

′
2 + f ′2f

′
1 + f ′3f

′
0) = 0

, (54)

and so on, with general boundary condition

fn(0) = 0, f ′n(0) = 0, f ′n(∞) = 0, n = 1, 2, 3, 4, 5, . . . . . . .

we find the proper values of β in order to make our series solution con-

vergent. Let us consider a physical parameter f ′′(0) , of the problem, which

corresponds to wall skin friction.

f ′′(0) =
∞∑
0

f ′′n(0), (55)

If the solution of original nonlinear equation is unique and if the series

solution given in equation (48) converges, it should always converge to the

same value. Both the series solutions for f(η) and f ′′(0) contain β . Therefore,
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we have a family of solutions in terms of β among which we may find the most

convergent one using the best value of β . In fact, plotting f ′′(0) versus β,

there should exist a horizontal segment in this plot as long as the solution

series given in equation (48) is convergent. Hence, we may find the proper

values of β which correspond to this horizontal segment to ensure that our

solution is convergent. Using the estimated value of β (fig 14 and fig 15)

Graphs of velocity is drawn in fig 16 and it is observed that the curves show

same behaviour as in HAM.

Figure 14: Beta Curves( second order )for Figure 15: Beta Curves ( sixth order ) for

velocity for λ < 0, λ = 0, λ > 0 velocity for λ < 0, λ = 0, λ > 0
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Figure 16: Velocity Profile for Figure 17: Domb Syke Plot for AHAM velocity,

AHAM λ < 0, λ = 0, λ > 0 R = 12.90
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Figure 18: Domb Syke Plot for AHAM velocity, Figure 19: Domb Syke Plot for AHAM velocity,

R = 68.13 R = 59.73
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0 2 4 6 8
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

 W i t h  S u c t i o n
  N o  S u c t i o n
W i t h  I n j e c t i o nf ’(

η)

η

0 2 4 6 8

1 . 0

1 . 2

1 . 4

1 . 6

1 . 8

2 . 0

 W i t h  S u c t i o n
  N o  S u c t i o n
W i t h  I n j e c t i o n

S(η
)

η

Figure 20: Velocity Profile by RKM Figure 21: Velocity Profile by RKM λ = −1, λ = 0, λ = 1
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7 Results and Discussions

In this paper, we have studied two dimensional laminar compressible bound-

ary layer flow with an adverse pressure gradient in the presence of heat and

mass transfer. The governing equations are nonlinear PDE and are converted

into nonlinear ODE by Falkner Skan transformations. These equations are

solved by HAM and AHAM and also numerically by R-K Merson method for

the case of heating of wall which corresponds to Sw = 2. For HAM solution

h-curves are drawn in Figures 2, 3, 4. The range of values are determined and

we observe that for h = -0.065 the velocity and temperature curves are giving

good congruent solutions. In Figure 5, velocity curves are drawn with suction,

no suction, with injection for HAM solution which is comparable with graph

of numerical solution obtained by R.K. Merson method and is shown in Figure

20. The velocity expression obtained by HAM is matching with R.K. Merson

method. We have also obtained convergence region and radius of convergence

by Domb-Sykes Plot (Figure 8 - 10) and it is shown that radius of convergence

is R=12.60, 51.44 and 29.12 for λ = −2, 0, 2 simultaneously. Similarly radius

of convergence for suction, no suction and injection is obtained for tempera-

ture profile in Figures 11, 12, 13 with R = 12.49. The value of convergence

parameter β in AHAM method is obtained by β curves (Figure 14, 15) and

using this estimated value of β , velocity curves are drawn in Figure 16 for

suction, no suction and injection. The series solution obtained by AHAM is

shown to be convergent with radius of convergence as R=12.90 for λ = −2,

R=68.13 for λ = 0, R=59.73 for λ = 2 as seen from Figures 17, 18 and 19.

We observe that the region of convergence is large AHAM solution than HAM

solution. Thus we can conclude that both HAM and AHAM are almost exact

solutions. This is also confirmed by comparing them with numerical solution

obtained by Runge-Kutta Merson method, (Figure 20, 21, 22).
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