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Abstract 

In this paper, the concept of sub-compatibility and sub-sequential continuity in 

fuzzy metric space has been applied to prove a common fixed point theorem for 

six self maps using implicit relation. Our result generalizes and extends the result 

of Ranadive and Chouhan [13]. 
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1  Introduction  

  As the theory of fuzzy sets, introduced by Zadeh [18] appeared in 1965 it has 

been used in a variety of areas of mathematics.. Zadeh  [19] estimated that 

medical diagnosis would be the most liable application domain of Fuzzy set 

theory. Following Zadeh’s idea, Atanassov [1] introduced the concept of 

intuitionistic fuzzy set to permit grouping elements according to degrees of 

closeness and isolation. Fuzzy topology is another example of use of Zadeh’s 

theory. George and Veeramani [4] and Kramosil and Michalek [7] have 

introduced the concept of fuzzy metric spaces which can be regarded as a 

simplification of the statistical (probabilistic) metric space. 

Afterwards, Grabiec [5] defined the completeness of the fuzzy metric space. 

Following Grabiec’s work, Fang [3] further established some new fixed point 

theorems for contractive type mappings in G-complete fuzzy metric spaces. Soon 

after, Mishra et. al. [8] also obtained numerous common fixed point theorems for 

asymptotically commuting maps in the same space, which generalize a number of 

fixed point theorems in metric, Menger, fuzzy and uniform spaces. 

The concepts of semi-compatibility and weak-compatibility in fuzzy metric 

space were given by Singh and Jain [15] which was simplification of commuting 

and compatible maps. Popa [10, 11] introduced the idea of implicit function to 

prove a common fixed point theorem in metric spaces. Singh and Jain [16] further 

extended the result of Popa [10-11] in fuzzy metric spaces. Using the concept of 

R-weak commutative mappings, Vasuki [17] proved the fixed point theorems for 

fuzzy metric space. In 2009, using the concept of sub-compatible maps, 

Bouhadjera et. al. [2] proved common fixed point theorems. In 2010 and 2011, 

Singh et. al. [14, 16] proved fixed point theorems in fuzzy metric space using the 

concept of semi-compatibility, weak compatibility and compatibility of type (β) 

respectively. Ranadive et.al. [13] introduced the concept of absorbing mapping in 

fuzzy metric space and proved the common fixed point theorem in this space.  

Moreover, Ranadive et.al. [13] observed that the new notion of absorbing map is 
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neither a sub class of compatible maps nor a subclass of non compatible maps.  

Afterwards, Mishra et. al. [9] proved fixed point theorems using absorbing 

mappings in fuzzy metric space. 

 

 

2.  Preliminaries 

Definition 2.1 [7] A binary operation *: [0, 1] × [0, 1] → [0, 1] is continuous 

t-norm if it satisfies the following conditions: 

(1)  * is associative and commutative, 

(2)  * is continuous, 

(3)  a * 1 = a for all a∈ [0,1], 

(4)  a * b ≤ c * d whenever a ≤ c and b ≤ d, for each a, b, c, d∈ [0,1]. 

Two typical examples of continuous t-norm are a * b = ab and a * b = min (a, b). 

 

Definition 2.2 [7] The three tuple (X, M,*) is called a fuzzy metric space if X is 

an arbitrary set,* is a continuous t-norm and M is a fuzzy set in X2×[0,∞) 

satisfying the following conditions: 

for all x, y, z ∈ X and s,t > 0, 

(FM-1)  M(x, y, 0) = 0, 

(FM-2)  M(x, y, t) =1, for all t > 0 if and only if x = y 

(FM-3)  M(x, y, t) = M(y, x, t), 

(FM-4)  M(x, y, t)* M(y, z, s) ≥ M(x, z, t+s) 

(FM-5) M(x, y, .) : [0, ∞) → [0, 1] is left continuous. 

(FM-6) limt→∞M(x, y, t) = 1.  

 

Example 2.1 [7] Let (X,d) be a metric space. Define a*b = min{a,b} and 

tM(x, y, t)
t d(x, y)

=
+

 for all x, y ∈ X and all t > 0. Then (X, M, *) is a fuzzy 
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metric space. It is called the fuzzy metric space induced by d. 

 

Definition 2.3 [7] A sequence {xn} in a Fuzzy metric space (X,M,*) is said to be a 

Cauchy sequence if and only if for each ε > 0 , t > 0 there exists n0 ∈ N such that 

M(xn,xm,t) > 1 - ε for all n, m ≥ n0. 

       The sequence {xn} is said to converge to a point x in X  if and only if for 

each ε > 0,  t > 0 there exists n0 ∈ N such that M(xn, x, t) > 1 - ε for all n  ≥  n0. 

A fuzzy metric space (X, M,*) is said to be complete if every Cauchy 

sequence in it converges to a point in it. 

 

Definition 2.4 A pair (A, B) of self maps of a fuzzy metric space (X, M, *)  is 

said to be reciprocal continuous if limn→∞ABxn = Ax and limn→∞BAxn = Bx 

whenever there exists a sequence {xn} ∈ X such that limn→∞Axn  = limn→∞Bxn = 

x ∈ X. If A and B are both continuous then they are obviously reciprocally 

continuous but the converse need not be true. 

                                              

Definition 2.5 [15] Let A and B be mappings from fuzzy metric space (X, M, *) 

into itself. The mappings A and B are said to be compatible if and only if  

M(ASxn, SAxn, t) → 1, for all t > 0 whenever {xn} is a sequence in X such that  

Sxn, Axn → p for some p in  X as n → ∞. 

 

Definition 2.6 [15] Let A and S be mappings from fuzzy metric space (X,M,*) in 

to itself. Then the mappings A and S are said to be semi-compatible if  

limn→∞ASxn = Sx,  

whenever {xn}is a sequence in X such that limn→∞Axn = limn→∞Sxn = x ∈ X.    

It follows that if (A,S) is semi compatible and Ay = Sy, then ASy = SAy  by 

taking {xn} = y and x = Ay = Sy. 

 

Definition 2.7 [9] A pair of maps A and B is called weakly compatible pair if they 
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commute at their coincidence points i.e. Ax = Bx if and only if ABx = BAx. 

 

Definition 2.8 [13] Let A and B be two self maps on a fuzzy metric space         

(X, M, *) then A is called B-absorbing if there exists a positive integer R > 0 such 

that M(Bx, BAx, t) ≥ M(Bx, Ax, t/R) for all x ∈ X.  

Similarly B is called A-absorbing if there exists a positive integer R > 0 

such that M(Ax, ABx, t) ≥ M(Ax, Bx, t/R) for all x ∈ X. 

 

Proposition 2.1 In a fuzzy metric space (X, M, *) limit of a sequence is unique. 

 

Proposition 2.2 [9] If (A,S) is a semi compatible pair of self maps of a fuzzy 

metric space (X, M, *)  and S is continuous, then (A,S) is compatible. 

 

Lemma 2.1 [8] Let (X, M, *) be a fuzzy metric space. Then for all x, y ∈ X,  

M(x, y, .) is a non-decreasing function. 

 

Lemma 2.2 [8] Let (X, M, *) be a fuzzy metric space. If there exists k ∈ (0, 1) 

such that for all x, y ∈ X,   M(x, y, kt) ≥ M(x, y, t) for all t > 0, then x = y. 

 

Lemma 2.3 [8]  Let {xn} be a sequence in a fuzzy metric space (X, M, *). If 

there exists a number  k ∈ (0, 1) such that M(xn+2, xn+1 , kt) ≥ M(xn+1, xn, t), for 

all t > 0 and n ∈ N. Then {xn} is a Cauchy sequence in X. 

 

Proposition 2.3 [6] Let A and B be mappings from a fuzzy metric space (X, M, *) 

into itself. Assume that (A, B) is reciprocal continuous then (A, B) is 

semi-compatible if and only if (A, B) is compatible. 

 

Definition 2.9 [6] Self mappings A and S of a fuzzy metric space (X, M, *) are 

said to be sub-compatible if  there exists a sequence {xn} in X such that   
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n
lim

→∞
Axn =  

n
lim

→∞
Sxn = z,  z ∈ X and  satisfy  

n
lim

→∞
M(ASxn, SAxn, t) = 1.     

Clearly, semi-compatible maps are sub-compatible maps but converse is not true. 

 

Example 2.2 Let X = [0,∞) with usual metric d and define tM(x, y, t)
t d(x, y)

=
+

 

for all x, y∈ X , t > 0 define the self maps A, S as 

2 x, 0 x 2
Ax

3x 1, 2 x
+ ≤ ≤

=  − < < ∞
  and  2 x, 0 x 2

Sx .
3x 2, 2 x

− ≤ ≤
=  − < < ∞

 

Define a sequence 
n

2{x }
n

=  in X.  Then   

Axn = 22
n

+    and  Sxn = 12
n

− .     

Also,   
n
lim

→∞
M(ASxn, SAxn, t)  =   

n
lim

→∞
M(4, 4, t) = 1. 

Now,   
n
lim

→∞
Axn = 2   and 

n
lim

→∞
Sxn = 2    

This implies 
n
lim

→∞
Axn = 

n
lim

→∞
 Sxn = 2.  But 

n
lim

→∞
ASxn  ≠ Sx.  

Thus, A and S are sub-compatible but not semi-compatible.   

 

Definition 2.10 Self mappings A and S of a fuzzy metric space  (X, M, *) are  

said to be sub-sequentially continuous  if and only if there exists a sequence {xn} 

in X such that   

       
n
lim

→∞
Axn =  

n
lim

→∞
Sxn = z, z ∈ X  and  satisfy  

n
lim

→∞
ASxn = Az and  

n
lim

→∞
SAxn = Sz. 

Clearly,  if A and S are continuous or reciprocally continuous then they are 

obviously sub-sequentially continuous. However, the converse is not true in 

general. 
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Example 2.3 Let X = R, endowed with metric d and Md(x,y, t) = 

tM(x, y, t)
t d(x, y)

=
+

  for all x, y∈ X , t > 0.   Define the self maps A, S as 

2, x 3
Ax

x, x 3
<

=  ≥
     and   2x 4, x 3

Sx
3, x 3
− ≤

=  >
 . 

Consider a sequence 
n

1{x } 3
n

= +   then    

Axn = 13
n

 + 
 

→3 and   SAxn = S 13
n

 + 
 

= 3 ≠ S(3) = 2 as n→∞. 

Thus A and S are not reciprocally continuous but, if we consider a sequence   

{xn} = 13
n

 − 
 

, then Axn = 2, Sxn = 2, ASxn = 2 = A(2), SAxn = 0 = S(2) as 

n→∞. 

Therefore , A and S are sub-sequentially continuous. 

 

Definition 2.11 [13] A class of implicit relation 

Let Φ be the set of all real continuous functions F : (R+)5 → R non-decreasing in 

first argument satisfying the following conditions : 

(i)  For u, v ≥ 0,  F(u, v, v, u, 1) ≥ 0 implies that u ≥ v. 

(ii)  F(u, 1, 1, u, 1) ≥ 0 or F(u, 1, u, 1, u) ≥ 0,  or  F(u, u, 1, 1, u) ≥ 0 implies 

that u ≥ 1. 

 

Example 2.4 Define F(t1, t2, t3, t4, t5) = 16t1 - 12t2 - 8t3 + 4t4 + t5 - 1. Then F ∈ Φ. 

(i)   F(u, v, v, u, 1) = 20(u - v) ≥ 0 ⇒ u ≥  v. 

(ii)   F(u, 1, 1, u, 1) =  20(u - 1) ≥ 0 ⇒ u ≥ 1 or 

F(u, 1, u, 1, u) = 9(u - 1) ≥  0 ⇒ u ≥ 1 

or  F(u, u, 1, 1, u) = 5(u - 1) ≥ 0 ⇒ u ≥ 1. 

 

3.  Main Result 
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Theorem 3.1 Let A, B, S, T, P and Q be self mappings of a complete fuzzy metric 

space (X, M, *) with t-norm defined by a * b = min{a, b}, satisfying : 

(3.1) P(X) ⊆  ST(X),    Q(X)  ⊆  AB(X);  

(3.2) Q is ST-absorbing; 

(3.3) for some F∈ Φ there exists q ∈ (0,1) such that for all x, y ∈ X and  t > 0 

F{M(Px, Qy, qt), M(ABx, STy, t), M(Px, ABx, t), M(Qy, STy, qt),  

M(Px, STy, t)} ≥ 0. 

(3.4) AB = BA, ST = TS, PB = BP, QT = TQ. 

 If the pair of maps (P, AB) is sub-sequential continuous and sub- compatible 

then P, Q, S, T, A and B have a unique common fixed point in X. 

Proof.   Let x0 ∈X be any arbitrary point.  From (3.1), there exist x1, x2 ∈ X 

such that   Px0 = STx1 and  Qx1 = ABx2. 

Inductively, we can construct sequences {xn} and {yn} in X such that 

Px2n-2 = STx2n-1 = y2n-1   and 

Qx2n-1 = ABx2n = y2n   for  n = 1, 2, 3, … . 

Step 1.   Putting x = x2n  and  y = x2n+1  for  t > 0 in (3.3), we get 

F{M (Px2n, Qx2n+1, qt), M (ABx2n, STx2n+1, t), M (Px2n, ABx2n, t),  

                      M (Qx2n+1, STx2n+1, qt), M (Px2n, STx2n+1, t)} ≥ 0, 

i.e., F{M(y2n+1, y2n+2, qt), M(y2n, y2n+1, t), M(y2n+1, y2n, t), M(y2n+2, y2n+1, qt),                                      

M(y2n+1, y2n+1, t)} ≥ 0. 

Using lemmas 2.1 and 2.2, we have  

M (y2n+1, y2n+2, qt) ≥ M (y2n, y2n+1, t). 

Again substituting  x = x2n+2 and y = x2n+3 in (3.3), we get  

M(y2n+2, y2n+3, qt) ≥ M (y2n+1, y2n+2, t). 

Hence by lemma 2.3, {yn} is a Cauchy sequence in X. Since X is complete, 

therefore,  

{yn} →z in X and also its subsequences converges to the same point i.e. z ∈ X, 

i.e.  {Qx2n+1} →z  and {STx2n+1} →z           (1) 

  {Px2n}→z   and {ABx2n} →z              (2) 
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Step 2. (P, AB) is sub-compatible and sub-sequentially continuous then there 

exists a sequence  {xn} in X such that  

n
lim

→∞
Pxn =

n
lim

→∞
ABxn =  z,  z ∈ X     and  satisfy   

n
lim

→∞
M(P(AB)xn, (AB)Pxn, t) = M(Pz, ABz, t) = 1.     

Therefore ,   Pz = ABz.              (3) 

Step 3.  Putting  x = Px2n and y = x2n+1 in condition (3.3), we have 

F{M (PPx2n, Qx2n+1, qt), M (ABPx2n, STx2n+1, t), M (PPx2n, ABx2n, t),  

                 M (Qx2n+1, STx2n+1, qt), M (PPx2n, STx2n+1, t)} ≥ 0 

Taking  n→∞ and using (1), (2), (3),  we get 

F{M (Pz, z, qt), M (Pz, z, t), M (Pz, Pz, t), M (z, z, qt), M (Pz, z, t)} ≥ 0 

       F{M(Pz, z, qt), M (Pz, z, t)} ≥ 0 

i.e.     M(Pz, z, qt) ≥ M (Pz, z, t)                            

Therefore by using lemma 2.2, we have 

z = Pz = ABz 

Step 4.   Putting x = Bz and y = x2n+1 in condition (3.3), we get, 

    F{M (PBz, Qx2n+1, qt), M (ABBz, STx2n+1, t), M (PBz, ABBz, t),  

                     M (Qx2n+1, STx2n+1, qt), M (PBz, STx2n+1, t)} ≥ 0  

As  BP = PB,  AB = BA,  so we have 

P(Bz) = B(Pz) = Bz    and    (AB)(Bz) = (BA)(Bz) = B(ABz) = Bz. 

Taking  n→∞ and using (1),  we get 

F{M (Bz, z, qt), M (Bz, z, t), M(Bz, Bz, t), M(z, z, qt), M(Bz, z, t)} ≥ 0 

       F{M (Bz, z, qt), M (Bz, z, t)} ≥ 0 

i.e.,      M(Bz, z, qt) ≥ M (Bz, z, t).                            

Therefore by using lemma 2.2, we have 

Bz = z  and also we have   ABz = Z 

This implies Az = z  

Therefore Az = Bz = Pz = z.              (4) 

Step 5.  As P(X) ⊆ ST(X), there exist u ∈ X such that 
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 z = Pz = STu.               (5) 

Putting x = x2n and y = u in condition (3.3), we get 

F{M (Px2n, Qu, qt), M(ABx2n, STu, t), M(Px2n, ABx2n, t),  

           M(Qu, STu, qt), M (Px2n, STu, t)} ≥ 0. 

Letting  n→∞ and using (2) and  (5), we get 

F{M (z, Qu, qt), M (z, z, t), M (z, Pz, t), M (Qu, z, qt), M (z, z, t)} ≥ 0 

As F is non-decreasing in the first argument, we have  

F{M (z, Qu, qt), 1, 1, M (Qu, z, qt), 1} ≥ 0 

i.e.,   M(z, Qu, qt) ≥ 1. 

Therefore,  z = Qu = STu.   

Since Q is ST absorbing,  we have 

M(STu, STQu, t) ≥ M (STu, Qu, t/R) ≥ 1 

i.e.,  STu = STQu which implies z = STz. 

Putting x = z and y = z in (3.3) , we get 

F{M(Pz, Qz, qt), M(ABz, STz, t), M (Pz, ABz, t),  

M(Qz, STz, qt), M(Pz, STz, t)} ≥ 0 

or, F{M(z, Qz, qt), M(z, z, t), M (z, z, t), M(Qz, z, qt), M (z, z, t)} ≥ 0. 

As F is non-decreasing in the first argument, we have  

      F{M(z, Qz, qt), 1, 1, M (Qz, z, qt), 1} ≥ 0, 

i.e., M (z, Qz, qt) ≥ 1.  

Therefore,  z = Qz  

Hence, z = Qz = STz. 

Step 6.   Putting x = x2n and y = Tz in condition (3.3), we get 

F{M (Px2n, QTz, qt), M (ABx2n, STTz, t), M (Px2n, ABx2n, t),  

                       M(QTz, STTz, qt), M (Px2n, STTz, t)} ≥ 0 

As QT = TQ and ST = TS, we have 

QTz = TQz = Tz    and     ST(Tz) = T(STz) = TQz  = Tz. 

Letting  n→∞ and using (2) we get 

F{M (z, Tz, qt), M (z, Tz, t), M (z, z, t), M (Tz, Tz, qt), M (z, Tz, t)} ≥ 0 
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F{M (z, Tz, qt), M (z, Tz, t)} ≥ 0 

i.e.,  M(z, Tz, qt) ≥ M (z, Tz, t).  

Therefore, by lemma 2.2, we get 

Tz  = z 

Now, STz = Tz = z implies Sz = z. 

Hence,  Sz = Tz = Qz = z.                          (7) 

Hence, z is the common fixed point of A, B, S, T, P and Q.                           

Uniqueness: Let w be another fixed point of A, B, P, Q, S and T. Then putting  

x = z and y = u in (3.3), we get  

 F{M (Pz, Qu, qt), M (ABz, STu, t), M (Pz, ABz, t),  

                      M (Qu, STu, qt), M (Pz, STu, t)} ≥ 0 

As F is non-decreasing in the first argument, we have 

  F{M(z, u, qt), M(z, u, t), M(z, z, t), M(u, u, qt), M(z, u, t)} ≥ 0 

or, F{M(z, u, qt), M(z, u, t), 1, 1, M(z, u, t)} ≥ 0 

i.e.  z = u.    

Hence z is unique fixed point in X.                                     □ 

 

Remark 3.1 If we take B = T = I (the identity map) in theorem 3.1, we get the 

following corollary. 

 

Corollary 3.1 Let A, B, S, T, P and Q be self mappings of a complete fuzzy 

metric space (X, M, *) with t-norm defined by a * b = min{a, b}, satisfying : 

(3.1) P(X) ⊆  S(X), Q(X)  ⊆  A(X);  

(3.2) Q is S-absorbing; 

(3.3) for some F∈ Φ there exists k ∈ (0,1) such that for all x, y ∈ X and  t > 0 

  F{M(Px, Qy, kt), M(Ax, Sy, t), M (Px, Ax, t), M(Qy, Sy, kt), M(Px, Sy, t)} ≥ 0. 

If the pair of maps (P, A) is sub-sequential continuous and sub-compatible 

then P, Q, S and A have a unique common fixed point in X. 
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Conclusion In view of Remark 3.1, Corollary 3.1 is a generalization of the result 

of Ranadive and Chouhan [13] in the sense that condition of reciprocal continuous 

and semi-compatible maps has been replaced by sub-sequential continuous and 

sub-compatible maps.  
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