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Hidden properties of the Navier-Stokes equations.

Double solutions.

Origination of turbulence.
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Abstract

The Navier-Stokes equations, which describe flows of fluids and gases,
possess hidden properties that are discovered when studying the consis-
tency of the conservation law equations involved into the set of Navier-
Stokes equations. Under such an investigation one obtains a nonidenti-
cal evolutionary relation for entropy as a state functional. This relation
discloses peculiarities of the solutions to the Navier-Stokes equations
due to which the Navier-Stokes equations can describe not only the
change of physical quantities (such as energy, pressure, density) but
also processes such as origination of waves, turbulent pulsations.

From the evolutionary relation it follows that the Navier-Stokes
equations possess solutions of two types, namely, the solution that is
not a function and the solution that is a discrete function. The so-
lutions of the first type are defined on nonintegrable manifold (like a
tangent one) and describe the non-equilibrium state of a flow. And
the solutions of the second type are defined on integrable structure and
describe the locally equilibrium state of a flow. The transition from
the solutions of the first type to ones of the second type describes the
process of origination of turbulence.
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These results are obtained due to the skew-symmetric forms the basis
of which are nonintegrable manifolds.

1 Introduction

As it is known, the Navier-Stokes equations describe a flow of a fluid or a

gas. They are comprised of the conservation law equations for energy, momen-

tum and mass.

The Navier-Stokes equations usually are used for description of physical

quantities (such as energy, pressure, density).

But, the Navier-Stokes equations posses the specific properties that enable

to describe not only the change of physical quantities but also processes such as

a nonequilibrium, transitions to the state of locally equilibrium, origination of

various structures and formations such as waves, vortices, turbulent pulsations

and so on.

The problem of realization of these possibilities of Navier-Stokes equations

consists in the fact that these properties of Navier-Stokes equations are hidden

ones, since they do not directly follow from Navier-Stokes equations.

They are discovered when analyzing the consistency of the conservation

law equations involved into the set of Navier-Stokes equations.

The hidden properties are related to the peculiarities of the functions that

describe physical quantities. Since the functions desired relate to a one material

medium (flow), it has to exist a connection between them. This connection is

described by state functional that specifies the material medium state.

When analyzing the consistency of the conservation law equations involved

into the set of Navier-Stokes equations, one obtains the evolutionary relation

for entropy, which is a state functional that specifies a state flow.

This relation for the state functional discloses hidden properties of the

Navier-Stokes equations and specific features of their solutions.

The evolutionary relation, which contains the differential of the entropy

and the evolutionary skew-symmetric form depended on the characteristics of

flows and external actions, turns out to be a nonidentical one.
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From the nonidentical relation it follows that the equations that made up the

set of Navier-Stokes equations (also the derivatives obeying the Navier-Stokes

equations) appear to be inconsistent. This points to the fact that the tangent

manifold of the Navier-Stokes equations and the accompanying manifold (a

manifold made up by the particle trajectories) proofs to be nonintegrable.

This implyies that corresponding solutions to the Navier-Stokes equations are

not functions (their derivatives do not form a differential). Such solutions,

which are defined on nonintegrable manifolds, describe the non-equilibrium

state of a flow. This follows from the evolutionary relation. Since the relation

is nonidentical, from that one cannot obtain the state functional (entropy), and

this points out to the absence of the state function and the non-equilibrium

state of a flow.

Further, nonidentical relation describes the process of going to agreement

of the equations made up the set of the Navier-Stokes equations and obtaining

an internal consistency inherent the material medium under consideration.

From the nonidentical relation it follows that, if flows of fluids and gases

(as material medium) possesses any degrees of freedom, it can realize the con-

ditions (the conditions of the degenerate transformation) under which the inte-

grable structure with interior differential is realized. In this case, the so-called

generalized solution, which is a discrete function, will be the solution to the

Navier-Stokes equations.

Under degenerate transformation the identical relation can be obtained

from the nonidentical relation.

From the identical relation one can obtain the state function, and this fact

will point out to the transition of a flow into the locally equilibrium state.

The transition from the solution that is not a function to the generalized

solution (a transition from nonintegrable manifold to integrable structure) de-

scribes the transition of flow gas or fluid from the non-equilibrium state to the

locally equilibrium state. Such transition is accompanied by origination of ob-

servable formation. The turbulent pulsations is an example of such formations.

This discloses a mechanism of the turbulence origination.

Such peculiarities of the Navier-Stokes equations, as it follows from the

evolutionary relation, are connected with the properties of conservation laws

that appear to be noncommutative.

It should be emphasized that the specific properties of the Navier-Stokes



94 Hidden properties of the Navier-Stokes equations.

equations are those that are inherent the mathematical physics equations which

describe material media (systems) like the thermodynamical, gas-dynamic,

cosmological systems, the systems of charged particles, and so on. The evo-

lutionary relation obtained from the equations for such material systems is a

relation for such functionals as the action functional, entropy, the Pointing

vector, the Einstein tensor, and so on.

The application of the mathematical apparatus of skew-symmetric differen-

tial forms enables to disclose peculiarities of the solutions to the Navier-Stokes

equations and physical meaning of these solutions. In doing so, the skew-

symmetric differential forms, which basis is nonintegrabe manifolds, were used

in addition to exterior skew-symmetric forms. Such skew-symmetric forms,

which are obtained (as it was established by the author) from differential

equations, possess a nontraditional mathematical apparatus, which includes

nonidentical relations and degenerate transformations, and this fact enables to

describe discrete transitions [1,2].

Such a mathematical formalism, which non of mathematical formalisms

possess, enables to describe processes like the origination of physical structures

and observable formations and the turbulence origination.

2 Studying an integrability of the Navier-Stokes

equations. Functional and physical proper-

ties of the solutions

The investigation of the integrability of Navier-Stokes equations, which de-

pends on the conjugacy of the derivatives obeying the Navier-Stokes equations

and on the consistency of the conservation law equations involved into the set

of Navier-Stokes equations, enables to understand peculiarities of the solutions

to Navier-Stokes equations.

From the Navier-Stokes equations it does not follows (directly) that the

derivatives obeying the equation have to be conjugacy. And, since these equa-

tions describe actual processes (with nonpotential characteristics), this points

out that the tangent manifold of the Navier-Stokes equations is nonintegrable.
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Derivatives of such a manifold are not consistent do not made up a differential.

This means that the solutions of the Navier-Stokes equations obtained from

these derivatives cannot be functions. About the properties of such solutions

and generalized solutions (which are the discrete functions) will be said below.

When investigating the integrability of Navier-Stokes equations, the em-

phasis will be on the analysis of the consistency of the conservation law equa-

tions that made up the set of the Navier-Stokes equations. This analysis

enables not only to study the integrability of the Navier-Stokes equations, but

it also enables to understand the mechanism of evolutionary processes that

lead to the turbulence origination.

2.1 Analysis of consistency of the conservation law equa-

tions. Evolutionary relation for the state functional

Integrability and the properties of solutions of the Navier-Stokes equations

will be investigated for the case of gas-dynamic system, namely, flow of a viscid

heat-conducting gas. In addition, the Euler equations, which describe a flow

of ideal (inviscid) gas and solutions of which possess the same properties as

the solutions of the Navier-Stokes equations will be investigated.

It is known that the Navier-Stokes equations (and Euler equations) are a

set of the conservation laws energy, linear momentum and mass [3].

Let us now analyze the consistency of the equations for energy and linear

momentum.

We introduce two frames of reference: the first is an inertial one and the

second is an accompanying one that is connected with the manifold made

up by the trajectories of elements of a gas-dynamic system. (The Euler and

Lagrangian coordinate systems cam be regarded as examples of such frames of

reference.)

In the inertial frame of reference the energy equation can be reduced to the

form:
Dh

Dt
− 1

ρ

Dp

Dt
= A1 (1)

where D/Dt is the total derivative with respect to time, ρ = 1/V and h are

respectively the density and enthalpy of the gas. A1 is an expression that

depends on the flow characteristics and energetic actions.
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In the case of viscous heat-conducting gas described the Navier-Stokes

equations the expression A1 can be written as (see [3], Chapter 6, formula

(6.2.4))

A1 =
1

ρ

∂

∂xi

(
−qi

T

)
− qi

ρT

∂T

∂xi

+
τki

ρ

∂ui

∂xk

(2)

Here qi is the heat flux and τki is the viscous stress tensor.

In the case of ideal gas described by the Euler equations we have A1 = 0.

Expressing enthalpy in terms of internal energy e with the help of formula

h = e + p/ρ and using the thermodynamic relation Tds = de + pdV , equation

(1) of the conservation law for energy can be reduced to the form

Ds

Dt
= A1 (3)

Here s is the entropy.

Since the total derivative with respect to time is that along the trajectory,

in the accompanying frame of reference the equation of the conservation law

for energy takes the form:
∂s

∂ξ1
= A1 (4)

where ξ1 is the coordinate along the trajectory.

In the accompanying frame of reference the equation of conservation law

for linear momentum can be presented as

∂s

∂ξν
= Aν (5)

where ξν is the coordinate in the direction normal to the trajectory. In the case

of two-dimensional flow of ideal gas one can obtain the following expression

for the coefficient Aν (see [3], Chapter 6, formula (6.7.12)):

Aν =
∂h0

∂ν
+ (u1

2 + u2
2)

1/2
ζ − Fν +

∂Uν

∂t
(6)

where ζ = ∂u2/∂x− ∂u1/∂y.

In the case of viscous gas the expression Aν includes additional terms re-

lated to viscosity and heat-conductivity.

One can see that in the accompanying frame of reference the equations for

energy and linear momentum are reduced to the equations for derivatives of

entropy s. In this case equation (4) obtained from the energy equation defines

the derivative of entropy along the trajectory, and equation (5), assigned to
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the equation for linear momentum, defines the derivatives of entropy in the

direction normal to trajectory.

Equations (4) and (5) can be convoluted into the relation

ds = ω (7)

where ω = Aµdξµ is the first degree skew-symmetric differential form and

µ = 1, ν. (A summing over repeated indices is carried out.) Since the con-

servation law equations are evolutionary ones, the relation obtained is also an

evolutionary relation. In this case the skew-symmetric form ω is evolutionary

one as well.

Relation (7) has been obtained from the conservation law equation for en-

ergy and linear momentum. In this relation the form ω is that of the first

degree. Taking into account the conservation law equations for angular mo-

mentum and mass, the evolutionary relation may be written as

dψ = ωp (8)

where the form degree p takes the values p = 1, 2, 3.

[Skew-symmetric forms (such as ω, for example), which are obtained from differential

equations, are defined on nonintegrable (accompanying) manifolds as opposed to exterior

forms, which are defined on integrable manifolds or structures. Such skew-symmetric forms

which are evolutionary ones, possess the properties that enable one to investigate differential

equations [1]. From those one can obtain closed inexact exterior forms, which are invariants

and describe physical structures. This gives a possibility to understand the mechanism of

origination of various physical structures [2]].

The evolutionary relation (7) possesses the properties that enable one to

investigate the integrability of the Navier-Stokes equations and the properties

of their solutions. (Relation (8) possesses the same properties.)

2.2 Nonidentity of the evolutionary relation. Inconsis-

tency of the conservation law equations made up

the set of Navier-Stokes equations

Evolutionary relation (7) has a certain peculiarity. This relation appears

to be nonidentical. This relates to the fact that this relation involves the skew-

symmetric differential form ω, which is unclosed and cannot be a differential
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like the left-hand side of this relation. The evolutionary form ω is not closed

since the differential of evolutionary form ω and its commutator are nonzero.

The differential of evolutionary form ω is expressed as dω =
∑

K1νdξ1dξν ,

where K1ν are components of the form commutator. Without accounting for

terms that are connected with the deformation of the manifold made up by

the trajectories, the commutator can be written as

K1ν =
∂Aν

∂ξ1
− ∂A1

∂ξν
(9)

The coefficients Aµ of the form ω have been obtained either from the equation

of the conservation law for energy or from that for linear momentum. This

means that in the first case the coefficients depend on the energetic action

and in the second case they depend on the force action. In actual processes

energetic and force actions have different nature and appear to be inconsistent.

The commutator of the form ω constructed of the derivatives of such coeffi-

cients is nonzero. Since the commutator of the form ω is nonzero, this means

that the differential of the form ω is nonzero as well. Thus, the form ω proves

to be unclosed and is not a differential. In the left-hand side of relation (7) it

stands a differential, whereas in the right-hand side it stands an unclosed form

that is not a differential. Such a relation cannot be an identical one.

The nonidentity of the evolutionary relation points to the fact that the

conservation law equations for energy and linear momentum (entered into the

set of Navier-Stokes equations) appear to be inconsistent. (It should be under-

lined that one has to take into account the consistency of the conservation law

equations for energy and linear momentum with the equation of conservation

law for mass.)

The integrability of the Navier-Stokes equations and the properties of their

solutions depend on the inconsistency of the equations made up the set of

Navier-Stokes equations.

Here the attention should be called to the following. Since the conserva-

tion law equations are inconsistent, this means that the conservation laws are

noncommutative. Below it will be shown that the peculiarities of the Navier-

Stokes equations reflect an influence of the noncommutativity of conservation

laws conservation laws on the processes proceeding in a gas-dynamic system.
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2.3 Inexact solutions to the Navier-Stokes equations (the

solutions that are not functions)

Since the equations made up the set of Navier-Stokes equations are incon-

sistent, they cannot be contracted into an identical relation (which is built by

differentials) and integrated directly. This means that that the solutions to

equations are not functions, which depend only on variables.

They will depend on a commutator of the form ω which enters into the

evolutionary relation. (If the commutator be equal to zero, the evolutionary

relation would be identical and the equations would be integrated directly).

(Hereafter these solutions will be referred to as the solutions of the first type

or ”inexact solutions”. However, one has to keep in mind that these solutions

are not approximate ones. Inexactness is related to the fact that they cannot

be represented analytically because they are not functions. Inexact solutions

describe the quantities that are not the inherent quantities of a gas-dynamic

system. The inconsistency of these quantities, as will be said below, brings a

system into a non-equilibrium state).)

2.4 Physical meaning of inexact solutions. Non-equilibrium

state of a gas-dynamic system

Inexact solutions have a physical meaning. They describe a nonequilibrium

state of gas-dynamic system. This follows from the evolutionary relation.

Evolutionary relation (7) has an unique physical meaning because this rela-

tion includes a differential of entropy s, which is a state functional. The entropy

entered into the evolutionary relation is the functional, which characterizes the

state of gas-dynamic system. (Here, it should be called attention to the fact

that the entropy, which enters into the evolutionary relation for a gas-dynamic

system, depends on space-time coordinates rather then on thermodynamical

variables like the entropy entered into the thermodynamical relation. The

state of gas-dynamic system is characterized by the entropy, which depends

on space-time variables. And the entropy that depends on thermodynamical

variables characterizes a state of thermodynamic system. In the gas-dynamic

system the entropy depended on thermodynamical variables characterizes only

the state of a gas rather then the state of gas-dynamic system itself.)



100 Hidden properties of the Navier-Stokes equations.

If from relation (7) the differential of entropy could be obtained, this would

point to the fact that entropy is a state function. And this would mean that

the state of a gas-dynamic system is a equilibrium one.

But, since relation (7) is a nonidentical relation, from that one cannot

obtain the differential of entropy and find the state function. This means that

the gas-dynamic system is in a non-equilibrium state.

One can see that the solutions of the Navier-Stokes equations, which are

not functions, describe a nonequilibrium state of gas-dynamic system.

The nonequilibrium means that in a gas-dynamic system an internal force

acts. It is evident that the internal force is described by the commutator of

skew-symmetric form ω, on which the inexact solutions of the Euler and Navier-

Stokes depend. (If the evolutionary form commutator be zero, the evolutionary

relation would be identical, and this would point out to the equilibrium state,

i.e. the absence of internal forces.) Everything that gives a contribution into

the commutator of the evolutionary form ω leads to emergence of internal force

that causes the non-equilibrium state of a gas-dynamic system.

From the analysis of the expression Aµ in formulas (2) and (6) one can see

that the terms, which are related to the multiple connectedness of the flow

domain, the nonpotentiality of the external forces and the nonstationarity of

the flow contribute into the commutator (see, formula (6)). In the case of a

viscous non-heat-conducting gas, the terms related to the transport processes

will contribute to the commutator (see, formula (2)). (In a general case the

term related to physical-chemical processes will make a contribution into the

commutator.)

One can see that nonequilibrium is caused by not a simple connectedness of

the flow domain, nonpotential external (for each local domain of a gas-dynamic

system) forces, a nonstationarity of the flow, and transport phenomena. (In

common case of the gas-dynamic instability, the thermodynamic, chemical,

oscillatory, rotational and translational nonequilibrium will effect).

All these factors lead to emergence of internal forces, that is, to nonequi-

librium, and to development of various types of instability. And yet for every

type of instability one can find an appropriate term giving contribution into the

evolutionary form commutator, which is responsible for this type of instabil-

ity. Thus, there is an unambiguous connection between the type of instability

and the terms that contribute into the evolutionary form commutator in the
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evolutionary relation. (It can be noted that, for the case of ideal gas, La-

grange derived a condition of the eddy-free stable flow. This condition is as

follows: the domain must be simple connected one, forces must be potential

and the flow must be stationary. One can see, that, under fulfillment of these

conditions, there are no terms that contribute into the commutator).

Here it can be noted that the nonidentity of the relation is connected with

a noncommutativity of conservation laws. And this points out to the fact that

the noncommutativity of conservation laws is a cause of nonequilibrium state

of a gas-dynamic system [4].

Evolutionary relation also describes a variation of non-equilibrium state.

This is due to another peculiarity of nonidentical evolutionary relation, namely,

this relation is a selfvarying relation.

The manifold, on which the evolutionary form is defined, made up by tra-

jectories of the material medium elements (particles) and, in addition, in the

case of non-equilibrium state of a material medium such manifold appears to

be a deforming (under the action of internal forces) one. This means that the

evolutionary form basis varies. In turn, this leads to variation of the evolu-

tionary form, and the process of intervariation of the evolutionary form and

the basis is repeated. Selfvariation of the evolutionary relation goes on by

exchange between the evolutionary form coefficients and the manifold char-

acteristics. (This is an exchange between physical quantities and space-time

characteristics.) Since one of the objects of evolutionary relation is an unmea-

surable quantity, the other cannot be compared with the first one, and hence,

the process of mutual variation cannot be terminated. The processes of self-

variation of the evolutionary relation are governed by the evolutionary form

commutator. It should be noted that, in addition to the term made up by the

skew-symmetric form coefficients, the commutator of metric form of noninte-

grable manifold, which is nonzero, enters into the commutator of evolutionary

form defined on nonintegrable manifold [1]. (In formula (9), where the expres-

sion for the commutator of the evolutionary form ω is presented, this term

was not accounted for). The interaction of two terms of the evolutionary form

commutator just exerts the process of the evolutionary relation selfvariation.

The process of the evolutionary relation selfvariation describes the process

of selfvariation of the gas-dynamic system state. This process proceeds under

the internal force action and is described by inexact solutions. As it was
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already noted, in this case the evolutionary form commutator, on which an

inexact solution depends, describes an internal force.

2.5 Realization of exact solutions of the Navier-Stokes

equations

The exact solutions of differential equations, which are functions, are al-

lowed only on integrable manifold or on integrable structures.

Since the tangent and accompanying manifolds of the Navier-Stokes equa-

tions are nonintegrable ones, the exact solutions of the Navier-Stokes equations

are possible only on integrable structures.

Here it may be called attention to the following. Exact solutions describe

quantities that are inherent ones of material media (gas-dynamic system),

whereas the solutions, that are not functions, are not quantities that are in-

herent ones of material media, because they depend on the commutator being

connected with nonpotential quantities (any external forces).

It turns out that, under additional conditions, from the Navier-Stokes equa-

tions integrable structures with exact solutions can be realized. These conclu-

sions follow from the analysis of the nonidentical evolutionary relation.

The Navier-Stokes equations can have exact solutions only in the case if

from the evolutionary skew-symmetric form ω in the right-hand side of non-

identical evolutionary relation it is realized a closed skew-symmetric form,

which is a differential. (In this case the identical relation is obtained from the

nonidentical relation, and this will point out to a consistency of the conserva-

tion law equations and an integrability of the Navier-Stokes equations.)

But here there is some delicate point.

From the evolutionary unclosed skew-symmetric form, which differential is

nonzero, one can obtain a closed exterior form with a differential being equal

to zero only under degenerate transformation, namely, under a transforma-

tion that does not conserve differential. (The Legendre transformation is an

example of such a transformation.)

Degenerate transformations can take place under additional conditions,

which are related with degrees of freedom. The vanishing of such functional
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expressions as determinants, Jacobians, Poisson’s brackets, residues and others

corresponds to the additional conditions.

The conditions of degenerate transformation specify the integrable struc-

tures (pseudostructures) on which the solutions become exact ones. The char-

acteristics (the determinant of coefficients at the normal derivatives vanishes),

the singular points (Jacobian is equal to zero), potentials of simple and double

layers, and others are such integrable structures.

The conditions of degenerate transformation can be realized under change

of nonidentical evolutionary relation, which, as it was noted, appears to be a

selfvarying relation.

If the conditions of degenerate transformation are realized, from the un-

closed evolutionary form ω (see evolutionary relation (7)) with nonvanishing

differential dω 6= 0, one can obtain the differential form closed on pseudostruc-

ture. The differential of this form equals zero. That is, it is realized the

transition

dω 6= 0 → (degenerate transformation) → dπω = 0, dπ
∗ω = 0

The realization of the conditions of dπ
∗ω = 0 and dπω = 0 means that it is

realized a closed dual form ∗ω, which describes some an integrable structure π,

and the closed exterior form ωπ which basis is an integrable structure obtained.

(It should be noted an integrable structure is a pseudostructure with respect

to its metric properties.)

(As it is known, the form dual to a certain exterior skew-symmetric form

describes an integrable manifold, which is the basis of exterior form. In the

present case, since the dual form is realized only under additional condition,

the dual form describes an integrable structure, which is the basis of closed

inexact exterior form.)

Thus, it appears that under degenerate transformation the closed inexact

(defined only on pseudostructure) exterior form (with the differential being

equal to zero) is realized.

Since the form ωπ is a closed on pseudostructure form, this form turns

out to be a differential. (It should be emphasized that such a differential is

an interior one: it asserts only on pseudostructure, which is defined by the

condition of degenerate transformation).

On the pseudostructure π, which is an integrable structure, from evolution-
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ary relation (7) it is obtained the relation

dsπ = ωπ (10)

which occurs to be an identical one, since the form ωπ is a differential.

Thus, on the pseudostructure, which is an integrable structure, from the

evolutionary relation ds = ω it is obtained the identical relation dsπ = ωπ.

The identity of the relation obtained from the evolutionary relation means

that on the integrable structure realized the equations of conservation laws,

which made up the Navier-Stokes equations, become consistent. This points

out to that the Navier-Stokes equations become locally integrable (only on

integrable structure).

On integrable structures the desired quantities of gas-dynamic system (such

as the temperature, pressure, density) become functions of only independent

variables and do not depend on the commutator (and on the path of integrat-

ing). These are generalized solutions, which are the discrete functions, since

they are realized only under additional conditions (on the integrable struc-

tures). Such solutions may be found by means of integrating (on integrable

structures) the the Navier-Stokes equations.

Since generalized solutions are defined only on realized integrable struc-

tures, they or their derivatives have discontinuities in the direction normal to

integrable structure [5].

Thus, one can see that the Navier-Stokes equations can have the solutions

of two types:

1. the inexact solutions that are not functions, i.e., they depend not only

on independent variables, and

2. the generalized solutions, which are the discrete functions.

The specific feature is the fact that the solutions to the Navier-Stokes

equations are defined on different spatial objects.

The solutions of the Euler equations, which describe the flows of ideal

(inviscid) gas, possess the same properties.

Here the following is noteworthy. The degenerate transformation, under

which a closed exterior form is obtained from evolutionary form, is realized

as a transition from nonintegrable accompanying manifold (on which the evo-

lutionary form is defined) to the integrable structures with a closed form.

Mathematically to this it is assigned a transition from one frame of reference
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to another nonequivalent frame of reference (from accompanying frame of ref-

erence to a locally-inertial on obtained integrable structures).

3 Transition of gas-dynamic system from non-

equilibrium state to locally-equilibrium state.

Origination of vorticity and turbulence

As it has been shown above, under degenerate transformation the identical

relation is obtained from nonidentical one.

From identical relation one can obtain the differential of entropy ds and

find entropy s as a function of space-time coordinates. It is precisely the

entropy that will be a gas-dynamic function of state. The availability of gas-

dynamic function of state would point out to equilibrium state of a gas-dynamic

system. However, since the identical relation is satisfied only under additional

conditions, such a state of gas-dynamic system will be a locally-equilibrium

one.

One can see that the transition from nonidentical relation to identical one

points out to transition of material system from non-equilibrium state into

locally-equilibrium state.

As it has been shown above, the transition from nonidentical relation to

identical points out to a transition from inexact solutions of the first type to

the generalized (exact) solutions.

It turns out that the transition from inexact solutions to exact (general-

ized) solutions is assigned to the transition of gas-dynamic system from non-

equilibrium state to locally-equilibrium state.

Since the non-equilibrium state has been induced by an availability of inter-

nal force and in the case of locally-equilibrium state there is no internal force

(in local domain of gas-dynamic system), it is evident that under transition of

gas-dynamic system from non-equilibrium state into locally-equilibrium state

the nonmeasurable quantity, which acts as internal force, changes to a measur-

able quantity. This manifests itself in the form of arising a certain observable

measurable formation. Waves, vortices, turbulent pulsations and so on are
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examples of such formations.

Exact generalized solutions to the Euler and Navier-Stokes equations de-

scribe such observable formations arisen.

[It should be noted that closed dual forms and closed inexact exterior forms,

which are realized under degenerate transformations, made up a differential-

geometric structure, i.e. a pseudostructure (integrable structure) with conser-

vative quantity (closed exterior form describes a conservative quantity because

its differential equals zero). Realization of such differential-geometric structure

(under degenerate transformation) points out to emergence of physical struc-

ture. The characteristics, the singular points, the envelopes of characteristics,

and other structures with conserved quantities are examples of such physical

structures. The origination of physical structure reveals as a new measurable

and observable formation that spontaneously arises in a gas-dynamic system.]

It is evident that the transition from inexact solutions to exact (gener-

alized) solutions is assigned to the transition of gas-dynamic system from a

non-equilibrium state to a locally-equilibrium state, which is accompanied by

the emergence of observable formations. Such observable formations are de-

scribed by generalized solutions of the Euler and Navier-Stoles equations. In

this case the discontinuities of a function, which corresponds to generalized so-

lutions, or their derivatives are defined by a quantity that is described by the

commutator of unclosed form ω and acts as an internal force. Such a quantity

defines the intensity of formations arisen (if the commutator be equal to zero,

the intensity of formation would be equal to zero, i.e. the formation could’t

arise).

The process of arising observable formations discloses a mechanism of such

phenomena as an emergence of vorticity and turbulence.

Here it should be emphasized that the conservation laws for energy, linear

momentum, and mass, which are noncommutative ones, play a controlling role

in these processes [4].

4 Conclusion

The Navier-Stokes equations possess the properties that are inherent in the
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the mathematical physics equations which describe material media (systems)

like the thermodynamical, gas-dynamic, cosmological systems, the systems of

charged particles, and so on.

As opposed to common differential equations, these equations include the

conservation law equations for energy, linear momentum, angular momentum,

and mass that exert a connection between the change of physical quantities

(such as energy, pressure and density) and external actions.

Physical quantities of material media possess specific properties.

Due to external actions physical quantities change and cease to be consis-

tent, namely, inherent quantities of material media, and this leads to emergence

of internal forces and a non-equilibrium state of the medium. A role of the

conservation laws consists in performing the process that leads changed physi-

cal quantities to the consistency, which is internal, inherent to a given material

medium (in correspondence to its degrees of freedom).

The peculiarity of the Navier-Stokes equations, as well as the relevant math-

ematical physics equations, consists in the fact that from the Navier-Stokes

equations one obtains the relation for the state functional, which discloses

such a role of the conservation laws and describes the mechanism of evolu-

tionary processes that are accompanied by origination of various observable

formations (such as waves, vortices, turbulent pulsations).

The difficulties of the Navier-Stokes equations, which did not’t allow to

disclose such possibilities, were related to the fact that the relevant properties

of the Navier-Stokes equations are not reveal explicitly. As it was shown, they

are disclosed only under studying the consistency of corresponding conserva-

tion law equations. Moreover, these difficulties could be also related to the

fact that for studying such a consistency of equations one needs a previously

unknown mathematical apparatus of skew-symmetric forms which basis are

nonintegrable manifolds.
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