
Theoretical Mathematics & Applications, vol.4, no.3, 2014, 1-17 
ISSN: 1792- 9687 (print), 1792-9709 (online) 
Scienpress Ltd, 2014 

 
Cartesian and Polar Coordinates for the 

N-Dimensional Elliptope  

Werner Hürlimann1 

 

 

Abstract 

Based on explicit recursive closed form correlation bounds for positive 

semi-definite correlation matrices, we derive simple Cartesian and polar 

coordinates for them. 
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1  Introduction  

The algorithmic generation of valid (i.e. positive semi-definite) correlation 

matrices is an interesting problem with many applications. The author derives in 

[4], Theorem 3.1, explicit recursively defined generic closed form correlation 
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2                                                              Elliptope  

bounds. Based on a new and more appropriate variant of this result, we construct 

simple Cartesian and polar coordinates for the space of all valid correlation 

matrices. 

   A positive semi-definite matrix whose diagonal entries are equal to one is 

called a correlation matrix. The convex set of  nxn   correlation matrices 

njirR ij ≤≤= ,1),( , is called elliptope (stands for ellipsoid and polytope), a 

terminology coined by Laurent and Poljak [5]. It is a particular instance of a 

spectrahedron, whose study is at the interface between optimization, convexity, 

real algebraic geometry, statistics and combinatorics (see Vinzant [8]). Clearly, 

the elliptope is uniquely determined by the set of  nn )1(2
1 −   upper diagonal 

elements  njirr ij ≤<≤= 1),( , denoted by  nE . In the main Theorem 3.1, we 

construct an explicit parameterization of the elliptope, which maps bijectively any  
nn

ijxx )1(2
1

1,1][)( −−∈=   to  nij Err ∈= )( . These so-called Cartesian coordinates 

depend very simply on  ijx , as well as on products  
kij xx   and sums of 

products, which additionally involve the functional quantities 

)1)(1(),( 22
,,  jijiijij xxxxyy −−== .    (1.1) 

The notation (1.1) will be used throughout without further mention. 

 

 

2 Determinantal identities for correlations and partial 

correlations 

For fixed  2≥n   let  njirR ij ≤≤= ,1),(   be an  nxn   correlation 

matrix. For each  { }nm ,...,2∈   and any index set  ),...,,( 21
)(

m
m ssss =   with 

minsi ,...,1,1 =≤≤ , consider the mxm  sub-correlation matrix 

mjirR
jiss

m ≤≤= ,1),()( , 
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which is uniquely determined by 

mjirr
jiss

m ≤<≤= 1),()( . 

It is convenient to use own notations. 

 

Definitions 2.1 (Determinant, partial correlation and d-scaled partial correlation) 

The determinant of the matrix  )(mR   is denoted by 

 

)det(),...,,()( )(
21

)( m
m

mmm Rssss =∆=∆ .    (2.1) 

 

For  3≥≥ mn   and an index set  )(ms   the partial correlation of  ),( 21 ss   

with respect to  ),...,( 3 mss   is recursively defined and denoted by 

)1()1( 2
,...,;

2
,...,;

,...,;,...,;,...,;
,...,;

132131

1321311321

321

−−

−−−

−⋅−

⋅−
=

mmmm

mmmmm

m

ssssssss

ssssssssssss
ssss

rr

rrr
r ,   (2.2) 

where for  2=m   the quantities used on the right hand side of (2.2) are by 

convention the correlations  
mm ssssss rrr

2121
,, . The transformed partial correlation 

defined and denoted by 

),...,,(),...,,(

);...,,()(

32
1

31
1

,...,;

21
)(

321 m
m

m
m

ssss

m
mmm

ssssssr

sssNsN

m

−− ∆⋅∆⋅=

=
  (2.3) 

is called d-scaled (determinant scaled) partial correlation, with 
21

),( 21
2

ssrssN = . 

 

Recall the product representation (e.g. Hürlimann [3], formula (2.10)) 

( ) ( ) ( ) ( )∏




 ∏ −⋅∏ −⋅∏ −⋅∏ −=

∆
−

=

−−

=
+−−

−

=
−−

−

=
−

−

=

2

3

1

1

2
,...,1;

3

1

2
,1;2

2

1

2
;1

1

1

2 1111

),...,2,1(
n

k

kn

i
nknkin

n

i
nnin

n

i
nin

n

i
in

n

rrrr

n
,     (2.4) 

where an empty product is set equal to one. We need a new variant of Proposition 

2.1 in Hürlimann [4], which by the way must be corrected for misprints. 
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Proposition 2.1 (Recursive relation for d-scaled partial correlations) For all 

5,1,...,4,,...,1 ≥−=−= nnkkni , one has the identity 

.
),...,4;3,1(

),...,4;3,(

),...,3(),...,4;1,(
),...,4(),...,3;1,(

1

1

21

3













+−+−+−⋅

+−+−
−

+−∆⋅+−+−=

+−∆⋅+−+−

−

−

−−

−

nknknknN
nknkniN

nknnknkniN
nknnknkniN

k

k

kk

kk

  (2.5) 

Proof This is shown by induction. For  4=k   one has by the defining recursion 

(2.2) that 

))1(()1( 2
;13

2
;1

;13;1;3
,1;3

nnnnin

nnnninnin
nnin

rr

rrr
r

−−−

−−−−
−−

−⋅−

⋅−
= , with 

),3(),(
);3,(,3,,

),1(),(
);1,(

22

3

;322

3

;1
nnni

nniNrnis
nnns

nnsNr ninnsn
−∆⋅∆

−
=−=

−∆⋅∆

−
= −− . 

Using these relations and the defining relation (2.3) for the d-scaled partial 

correlation one obtains 

.

))1(()1(

),1,3(),1,(

),3(),(),1(
);1,3();1,(),1();3,(

),1,3(),1,(),1;3,(

2
;13

2
;1

33

222

3323

33
1;3
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=
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From (2.4) for 3=n  with index set  ),1,(),,( 321
)3( nnsssss −==   one gets 

3,),1(),1(),(),1,( 2
;1

223 −=−⋅−∆⋅∆=−∆ − nisrnnnsnns nsn . Inserted into the 

preceding relation shows the result for 4=k . It remains to show that if (2.5) 

holds for the index  k   then it holds for the index  1+k . Proceeding similarly 

one notes that 

))1(()1( 2
,...,3;2

2
,...,3;2

,...,3;2,...,3;2,...,3;
,...,2;

nknkknnnknkin

nknkknnnknkinnknkin
nknkin

rr

rrr
r

+−+−−+−+−

+−+−−+−+−+−−
+−−

−⋅−

⋅−
= , 

with 
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),...,3,(),...,3,(
),...,3;,(

,,,
),...,3,2(),...,3,(

),...,3;2,(

11,...,3;

11,...,3;2
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Inserting these relations into (2.3) one obtains 
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Proposition 2.2 in Hürlimann [4] remains true when replacing the canonical 

index set by any other index set. In particular (2.8) (loc. cit.) is valid for the index 

set   

),...,( 1
)(

k
k sss = , { }1 2, , 2, , 3,...,js s i n k s n k s j j n k n= ∈ − = − + = = − + , 

hence 

.,),1(),...,2(),...,3,(
),...,3(),...,2,(

2
,...,3;2

11

2

knisrnknnkns
nknnkns

nknksn
kk

kk

−=−⋅+−∆⋅+−∆=

+−∆⋅+−∆

+−+−
−−

−

 

Inserted into the preceding relation shows (2.5) for the index  1+k .          ◊ 

 

 

3  Cartesian and polar coordinates for the elliptope 

As a main result, we derive the following canonical parameterization for 

correlation matrices. The representation is canonical in the sense that it holds up to 

a permutation matrix of order n . 
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Theorem 3.1 (Cartesian coordinates of n -dimensional elliptope). There exists a 

bijective mapping between the cube  nn )1(2
1

1,1][ −−   and  nE , which maps the 

Cartesian coordinates  )( ijxx =   to  )( ijrr =   such that 

2,1,...,1, ≥−== nnixr inin ,        (3.1) 

3,2,...,1,,1111 ≥−=+= −−−− nniyxxxr nininnninin ,    (3.2) 

4,2,...,2,1,...,1,
1

,

2 2
,11

≥−=−−=∏+

∑ ∏+=

+−=
−−

= +−=
−+−−+−−−

nnkkniyx

yxxxxr

n

kn
kinkin

k

j

n

jn
kinjknnjinknninkin









  (3.3) 

 

Corollary 3.1 (Polar coordinates of n -dimensional elliptope). There exists a 

bijective mapping between the cube  nn )1(
22

2
1

],[ −− ππ   and  nE , which maps the 

polar coordinates  )( ijϕϕ =   to  )( ijrr =   such that 

2,1,...,1),sin( ≥−== nnir inin ϕ ,       (3.4) 

3,2,...,1,
)cos()cos()sin(

)sin()sin(
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1
1 ≥−=
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=
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−
− nnir
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nnin
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,  (3.5) 
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ϕϕϕ

ϕϕϕϕ
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  (3.6) 

Proof  Set  )sin( ijijx ϕ=   in the formulas of Theorem 3.1.               ◊ 

 

Remarks 3.1 

(i)  Researchers in Applied Mathematics often report the difficulty to generate 

valid correlation (covariance) matrices. For example Hirschberger et al. [2] “were 

not able to generate a single valid 50x50 covariance matrix by assigning random 
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numbers in 800 tries” and state that “sizes of 1000x1000 are not uncommon” in 

portfolio selection. Theorem 3.1 solves this practical problem from an algebraic 

viewpoint. To generate a valid random correlation matrix, it suffices to choose  

nn )1(2
1 −    uniform 1,1][−   random numbers  njixij ≤<≤1, , and apply the 

formulas (3.1)-(3.3). 

(ii)  Another different but less general trigonometric approach to correlation 

matrices than Corollary 3.1 is the hyper-sphere decomposition by Rebonato [6] 

(see also Brigo [1] and Rebonato [7]). 

 

The derivation of the explicit coordinates (3.1)-(3.3) relies on the following 

new and more appropriate variant of Theorem 3.1 in Hürlimann [4]. Note the 

misprint in the denominator of formula (3.4) (loc. cit.), which should be  

),...,1( nknk +−∆  as in (3.10) below. 

 

Theorem 3.2 (Recursive generation of valid correlation matrices) A correlation 

matrix parameterized by  njirr ij ≤<≤= 1),(  in nE , is positive semi-definite 

if, and only if, the following bounds are fulfilled: 

,2,1,...,11,1][ ≥−=−∈ nnirin          (3.7) 

)1)(1(
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2

1
2
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),...,1(
),...,1,(),...,1,(

),...,1(),...,2(
),...,2;1,(),...,2;1,(

,5,2,...,3,1,...,1,],[
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1
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nkn
nknknnkni

njnnjn
njnjnknNnjnjniN
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 (3.10) 

Proof A correlation matrix is positive semi-definite if, and only if, all correlations 

and partial correlations in the product expansion (2.4) belong to the interval  

1,1][−  (e.g. Lemma 2.1 in Hürlimann [3]). The bounds are derived in two steps. 

 

Step 1:  derivation of (3.7)-(3.9) 

From the first product one gets immediately the bounds (3.7). The partial 

correlations in the second product satisfy the condition 

1,1][
)1)(1( 2

1
2

11
;1 −∈

−−

−
=

−

−−
−

nnin

nninin
nin

rr

rrr
r  

if, and only if, one has   

],[ 111
+
−

−
−− ∈ ininin rrr  

with  )1)(1( 2
1

2
11 nninnninin rrrrr −−

±
− −−±= , which shows the bounds (3.8). For the 

partial correlations in the third product, one sees first that 

1,1][
)1)(1( 2

;12
2

;1

;12;1;2
,1;2 −∈
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r  

if, and only if, one has   

],[ ;2;2;2
+
−

−
−− ∈ ninninnin rrr  

with   

)1)(1( 2
;12

2
;1;12;1;2 nnnninnnnninnin rrrrr −−−−−−

±
− −−±= . 

 Since 
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)1)(1( 2
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r
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this condition is fulfilled if, and only if, one has   
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which implies by definition of the d-scaled partial correlations that 
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By inserting both expressions into the above, one obtains the bounds (3.9). 

Step 2:  derivation of (3.10) 

For each fixed  2,...,3 −= nk   the curly bracket in the last product of (3.11) 

satisfies the conditions 

,1,...,11,1],[
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One continues this way until ],[ +
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−− ∈ kinkinkin rrr  with (proof by induction on k ) 
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 (3.11) 

One must show that (3.11) coincides with (3.10). For  2=j   one has by 

Definition (2.3) 

kni
rr
nniNr

nnin

nin −=
−−

−
=

−

− ,...,1,
)1)(1(
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2

1
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3
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2
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which coincides with the term for  2=j   in the second sum of (3.10). Similarly, 

for  kj ,...,3=   one has by Definition (2.3) 

.,...,1

,
),...,2,1(),2,(
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On the other hand, from a general version of (2.4) with arbitrary index set, one 
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obtains for 1,...,3 += kj   the recursive relationships 

.1,...,1

,)1()1(),...,2(),...,2,(
1

2

2
,...,2;1

21

+−=

∏ −⋅−⋅+−∆=+−∆
−

=
+−+−

−

jni

rrnjnnjni
j

s
nsnsinin

jj

 (3.13) 

If one combines (3.12) and (3.13), one sees that the terms for  kj ,...,3=   

in the second sum of (3.11) coincide with the corresponding terms in (3.10). 

Finally, using (3.13) for  1+= kj   shows that the last term in (3.11) coincides 

with the last term in (3.10). The result is shown.                          ◊ 

 

Before entering into the proof of Theorem 3.1, it is necessary to explain how 

the coordinates  1,1][−∈ijx   are actually defined. Clearly, the formulas 

(3.1)-(3.2) are restatements of the bounds (3.7)-(3.8) and show how  

1,1][, 1 −∈−inin xx   are chosen. Similarly, to satisfy the bounds (3.9)-(3.10) it 

suffices to define  kinr −   through these formulas by multiplying the square root 

terms with  1,1][−∈−kinx , where  3,...,1 −= ni   when  4,2 ≥= nk , and  

1,...,1 −−= kni   when  2,2,...3 +≥−= knnk . This settles uniquely the choice 

of  nn
ijxx )1(2

1

1,1][)( −−∈= . Now, the derivation of the Cartesian coordinates 

depends upon the following main auxiliary identity, whose proof is postponed to 

Section 4. 

 

Lemma 3.1 For all  ,4,2,...,2,,...,1 ≥−=−= nnkkni   one has the identity 

 

),...,1(),...,2,(),...,2;1,( 1
1 nknnknixnknkniN kk

kin
k +−∆⋅+−∆⋅=+−+− +−
+ . 

 

Corollary 3.1 For all ,4,2,...,2,,...,1 ≥−=−= nnkkni  one has the identity 

∏ −⋅+−∆=+−∆
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+
n
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i
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. 
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Proof This is shown by induction. For 4,2 ≥= nk , one has  
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2

1
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1
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as should be. Now, assume the identity holds for the index  1−k   and show it 

for the index k . From Proposition 2.2 in Hürlimann [4] one borrows the identity 
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With the Lemma 3.1 this can be rewritten as 
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Dividing both sides of the identity by  ),...,2(1 nknk +−∆ −   shows the desired 

identity for the index  k . Corollary 3.1 is shown.                         ◊ 

 

Proof of Theorem 3.1 As already made clear, the formulas (3.1)-(3.2) are 

restatements of the bounds (3.7)-(3.8). In a first step, one shows the validity of 

(3.3) for  4,3,...,1,2 ≥−== nnik . From the bounds (3.9) one has for some  

1,1][2 −∈−inx   the identity 
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Clearly, the first term coincides with  nnin xx 2− . For the middle term, use Lemma 

3.1 to see that 
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Inserted into the third term yields 
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Together, this shows (3.3) for  4,2 ≥= nk . Now, let  

5,2,...,3,1,...,1 ≥−=−−= nnkkni . From the bounds (3.10) one has for some  
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One argues similarly to the above. The first term coincides with  knnin xx − . For the 
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summands of the middle term one has with Lemma 3.1 that 
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Through application of Corollary 3.1 one obtains further 
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Therefore, the preceding term coincides with 
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Finally, for the last term, one obtains from Corollary 3.1 that 
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Together, this shows (3.3) for  5,2,...,3 ≥−= nnk . The proof is complete.    ◊ 

 

 

4  Derivation of the remaining main auxiliary identity 

It remains to show the validity of Lemma 3.1. We show the following 

slightly more general identity, which for  1−=s   reduces to Lemma 3.1. 
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Lemma 4.1  For all  ,4,3,...,1,0,1,2,...,2,,...,1 ≥−−=−=−= nksnkkni   

one has the identity 
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Proof This is shown by forward induction on the index  k   (with arbitrary  s ) 

and backward induction on the index  s   (with arbitrary  k ). If  2=k   one 

has necessarily 1−=s . Then from (3.2) of Theorem 3.1 (that is trivially true as 

already mentioned) one gets 
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Now, by Proposition 2.1 one has the identity 
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By the backward induction assumption with index  1+s   the identity (4.1) 

yields 
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By the forward induction assumption the identity of Lemma 3.1 yields 
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Inserted into the above one gets 
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Divide by  ),...,4(3 nsknsk ++−∆ −−   to obtain the desired expression (4.1).  ◊ 
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