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Valuation on a Filtered Module

M.H. Anjom Shoa' and M.H. Hosseini?

Abstract

In this paper we show if R is a filtered ring and M a filtered R_module
then we can define a valuation on a module for M. Then we show that
we can find an skeleton of valuation on M, and we prove some properties

such that derived form it for a filtered module.
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1 Introduction

In algebra valuation module and filtered R_module are two most important
structures. We know that filtered R_module is the most important structure
since filtered module is a base for graded module especially associated graded
module and completion and some similar results ([1], [2], [3],[7], [8]). So, as

these important structures, the relation between these structure is useful for
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finding some new structures, and if M is a valuation module then M has many
properties that have many usage for example, Rees valuations and asymptotic

primes of rational powers in Noetherian rings and lattices ([4], [10]).

In this article we investigate the relation between filtered R_module and
valuation module. We prove that if we have filtered R_module then we can
find a valuation R_module on it. For this we define v : M — Z such that
for every t € M, and by lemma(3.1), lemma(3.2), lemma(3.3), lemma(3.4)
and theorem(3.1) we show v has all properties of valuation on R-module M.
Also we show if M is a filtered R_module then it has a skeleton of valuation,

continuously we prove some properties for M that derived from skeleton of
valuation ([6], [9]).

2 Preliminary Notes

Definition 2.1. A filtered ring R is a ring together with a family {R,}, -, of

additive subgroups of R satisfying in the following conditions:
i) Ry =R;
ii) Ryy1 € R, for allm > 0;
ii1) RyRy C Ryt for all ny,m > 0.

Definition 2.2. Let R be a ring together with a family {R,}, -, of additive
subgroups of R satisfying the following conditions:

i) Ry =R;
ii) Rny1 C R, for alln > 0;
iii) RpRy = Ryvm for alln,m >0,
Then we say R has a strong filtration.

Definition 2.3. Let R be a filtered ring with filtration {R,},~, and M be
a R_module with family {]\/[n}n20 of subgroups of M satisfying the following
conditions:



M.H. Anjom Shoa and M.H. Hosseini 127

i) My= M;
i1) My € M, for alln > 0;
i11) RyM,, C My, for allm,m >0,
Then M is called filtered R_module.

Definition 2.4. Let R be a filtered ring with filtration {R,},-, and M be a
R_module together with a family {Mn}n20 of subgroups of M satisfying the

following conditions:
i) My =R;
ii) My € M, for alln > 0;
ii1) RyM,, = My, for alln,m >0,
Then we say M has a strong filtration.

Definition 2.5. Let M be an R_module where R is a ring, and A an ordered
set with mazximum element oo and A # {oo}. A mapping v of M onto A is

called a valuation on M, if the following conditions are satisfied:
i) For any x,y € M, v(x +y) > min{v(z),v(y)};
i) If v(z) <wu(y), z,y € M, then v(ax) < v(ay) for all a € R;

iii) Put v = {x € M|v(z) = oo}. If v(az) < v(bz), where a,b € R, and
z€ M\ v(c0), then v(az) < v(ay) for allx € M

w) For every a € R\ (v™'(c0) : M), there is an a' € R such that
v((a'a)z) = v(z) for all z € M

Definition 2.6. Let M be an R_-module where R is a ring, and let v be a
valuation on M. A representation system of the equivalence relation ~,, is

called a skeleton of v.

Definition 2.7. A subset S of M is said to be v-independent if SNv~(c0) = ¢,
and v(x) ¢ v(Ry) for any pair of distinct elements x,y € S. Here, we adopt

the convention that the empty subset ¢ is v-independent.
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Proposition 2.1. Let M be an R_module where R is a ring, and let
v: M — A be a valuation on M. Then the following statements are true:
i) If v(z) = v(y) for x,y € M, then v(azx) = v(ay) for all a € R;
ii) v(—x) =v(x) for all x € M;
iin) If v(z) # v(y), then v(z +y) = min{v(x),v(y)};

w) If v(az) = v(bz) for some a,b € R and z € M \ v (00),then
v(az) = v(bz) for allz € M;

v) If v(az) < v(bz) for some a,b € R and z € M, then v(ax) < v(bx) for
allw € M\ v (c0);

vi) The core v=1 of v is prime submodule of M ;

vii) The following subsets constitute a valuation pair of R with core
(M : vt (00)):

A, ={a € Alv(ax) > v(z) for all x € M},
P, ={a € Alv(azx) > v(x) for all x € M\ v '(c0)}
Proof. see proposition 1.1 [6] O

Definition 2.8. The pair (A,, P,) as in Proposition (2.1) is called the valua-

tion pair of R induced by v or the induced valuation pair of v.

3 Main Results

In this section we use the four following lemmas for showing the existence of
valuation on filtered module. Let R be a ring with unit and R a filtered ring
with filtration {R,},., and M be filtered R_module with filtration {M,}

n>0"

Lemma 3.1. Let M be filtered R_module with filtration {M,},.,. Now we
define v : M — Z such that for everyt € M and v(t) = min{i |t € M;\ M1 }.
Then for all x,y € M we have v(z +y) > min{v(z),v(u)}.
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Proof. For any z,y € M such that v(z) =i also v(y) = j, and v(z +y) = h,
so we have z + y € My\Myy,. Without losing the generality, let ¢ < j so
M; C M; hence y € R;. Now if & < ¢, then £+ 1 < 4 and M; C My

so x+y € M, C Mgy, it is contradiction. Hence k > ¢ and so we have

v(z +y) > min {v(z),v(y)}.
[l

Lemma 3.2. Let M be filtered R_module with filtration {My,},_,. Now we
define v as lemma(3.1). If v(y) < v(zx), x,y € M, then v(ax) < v(ay) for all
a€R;

Proof. Let v(xz) =i and v(y) = j, since v(z) > v(y) then M; D M,. Since R
is filtered ring, there exists k € Z such that a € Ry so

ar € R M; C M,
ay € RM; C My
we have i + k > j + k by i > j, then v(azx) > v(ay) for all a € R. O

Lemma 3.3. Let M be filtered R_module with filtration {My,},_,. Now we
define v as lemma(3.1). Put v := {z € M|v(z) = oo}. If v(az) < v(bz),
where a,b € R, and z € M \ v'(00), then v(az) < v(ay) for all z € M.

Proof. Since a,b € R and z € M then there exist i, j, k € Z such that
a€ R;,be R; and z € M, hence

az € RiMy, C My,
bz € R;My C M,
Now if v(az) < v(bz) then
E+i<k+j=—=1<j=—R;CR,
So we have v(ax) < v(bzx) for all x € M O

Lemma 3.4. Let M be filtered R_module with filtration {M,},_,. Now we
define v as lemma(3.1). For every a € R\ (v™'(c0) : M), there is an a' € R
such that v((a'a)z) = v(z) for all z € M.
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Proof. Let x € v~'(c0) then for all a',a € R v((a'a)z) = v(z) = co.

Now let 2 ¢ v~ '(oo) and for all @' € R we have v((a'a)x) # v(z). So if
a € R\ (v~(o0): M), thena'a € R\ (v~!(c0) : M) and hence v((a'a)z) # co.
Let a € Ry, , a € Ry and x € M;, then d'a € R ;s so (a'a)x € M, 1.

We may have one of following conditions:
1) v((d'a)r) < v(x).

2) v(z) < v((a'a)z)

Now if we have (1) then i + &k + k" < i, it is contradiction .
Consequently @' € R, and a € Ry, for k € Z then

aac€ Ry = (aa)r € R wM; C M .,

Since My ;.. € M; hence (a'a)z € M;. So we have v((a'a)z) < i therefore
v(x) > v((d'a)r), it is contradiction with (2). By now we have
v(z) = v((a'a)x). O

Theorem 3.1. Let R be a filtered ring with filtration {R,},.,, and M be a
filtered R_module with filtration {M,},.,. Now we define v : M — Z such
that for everyt € M and v(t) = min{i|t € M;\Mp41}. Then v is a valuation
on M.

Proof. i) Bylemma (3.1) we have For any =,y € M, v(z+y) > min{v(x),v(y)};

ii) We have If v(z) < v(y), z,y € M, then v(az) < v(ay) for all a € R by
lemma(3.2);

iii) Put v := {z € M|v(z) = oo}. If v(az) < v(bz), where a,b € R, and
z € M\ v~!(c0), then then by lemma (3.3) v(ax) < v(ay) for all x € M;

iv) For every a € R\ (v~'(c0) : M), then by lemma(3.4) there is an a' € R
such that v((a'a)r) = v(x) for all 2 € M.
So by definition(2.5) v is a valuation onM if has those conditions. O

Corollary 3.1. If M be a filtered R-module, then v : M — Z has all of
properties that explained in Proposition(2.1).
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Proposition 3.1. I R is a strongly filtered ring and M is a strongly filtered
R_module and there exist valuation v : M — 7Z on M, then R should be a
trivial filtered R_module.

Proof. By definition(2.5)(iv) and theorem(3.1) we have for every a € R\
(v™(c0) : M), there is an @' € R such that v((a'a)z) = v(x). Now if v(a) =i
,v(aw)=jand v(z) =k theni+j+k=Fksoi+j =0, consequently R; = R
for every ¢ > 0. O]

Proposition 3.2. Let M be an R_module, where R is a ring. Then there is
a valuation on M, if and only if there exists a prime ideal P of R such that
PMp # Mp, where Mp is the localization of M at P.

Proof. see (Proposition 1.3 [6]) O

Corollary 3.2. Let M be an filtered R-module, where R is a filtered ring.
Then there exists a prime ideal P of R such that PMp # Mp, where Mp 1is
the localization of M at P.

Proof. By theorem(3.1) there is an valuation on M, then by proposition(3.2)
there exists a prime ideal P of R such that PMp # Mp, where Mp is the
localization of M at P. m

Corollary 3.3. Let M be an filtered R_module, where R is a filtered ring.

Then there is a skeleton on M.

Proof. By theorem(3.1) there is a valuation on M then by definition(2.6) we
have there is a skeleton on M. O

Proposition 3.3. Let M be an filtered R_module where R is a filtered ring,
and v a valuation on M. If A is a skeleton of v, then the following conditions

are satisfied:
i) A is a v-independent subset of M ;

i1) For every x € Mv_1(00), there exists a unique A € A such that
v(z) = v(RN).

Proof. By corollary(3.3) A is a skeleton of v and by proposition(1.4, [6]) we

have the above conditions. O
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Proposition 3.4. Let M be an filtered R_module where R is a filtered ring,
and v a valuation on M. If A is a skeleton of v. If aix\i + -+ 4+ apA, = 0
where ay,---a, € R and A1 ---\, € A are mutually distinct, then

a; € (v_q(o0) : M),i=1,--- n.

¢}

Proof. By corollary(3.3) A is a skeleton of v and by proposition(1.5, [6]) w
have If a1\ + -+ + a,\, = 0 where a1,---a, € R and A\;---\, € A ar
mutually distinct, then a; € (v_y(c0): M), i=1,--- n.

O &

4 Conclusion

In this article we show that we can define a valuation on filtered module.
Then we show that for a valuation on a filtered module there a skeleton of its

valuation.
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