Existence of positive solutions to second-order periodic boundary value problems with impulse actions

Ying He^{1}

Abstract

In this paper we consider the existence of positive solutions for second-order periodic boundary value problems with impulse actions. By constructing a cone $K_{1} \times K_{2}$, which is the Cartesian product of two cones in the space $C[0,2 \pi]$ and computing the fixed point index in the $K_{1} \times K_{2}$, we establish the existence of positive solutions for the system.

Mathematics Subject Classification: 34B15
Keywords: Periodic boundary value problem; Second-order impulsive differential equations; Fixed point index in cones.

[^0]
1 Introduction

This paper is devoted to study the existence of positive solutions for the following periodic boundary value problem with impulse effects:

$$
\left\{\begin{array}{l}
-u^{\prime \prime}+M u=g_{1}(x, u, v), \quad x \in I^{\prime}, \tag{1.1}\\
-v^{\prime \prime}+M v=g_{2}(x, v, u), \quad x \in I^{\prime}, \\
-\left.\Delta u^{\prime}\right|_{x=x_{k}}=I_{1, k}\left(u\left(x_{k}\right)\right),\left.\quad \Delta u\right|_{x=x_{k}}=\bar{I}_{1, k}\left(u\left(x_{k}\right)\right) \quad k=1,2, \cdots, l, \\
-\left.\Delta v^{\prime}\right|_{x=x_{k}}=I_{2, k}\left(v\left(x_{k}\right)\right),\left.\quad \Delta v\right|_{x=x_{k}}=\bar{I}_{2, k}\left(v\left(x_{k}\right)\right) \quad k=1,2, \cdots, l, \\
u(0)=u(2 \pi), \quad u^{\prime}(0)=u^{\prime}(2 \pi), \\
v(0)=v(2 \pi), \quad v^{\prime}(0)=v^{\prime}(2 \pi)
\end{array}\right.
$$

here $I=[0,2 \pi], 0=x_{0}<x_{1}<x_{2}<\cdots<x_{l}<x_{l+1}=2 \pi, M>0, I^{\prime}=$ $I \backslash\left\{x_{1}, x_{2}, \cdots, x_{l}\right\}$ are given, $R^{+}=[0,+\infty), g_{i} \in C\left(I \times R^{+}, R^{+}\right), I_{i, k}, \bar{I}_{i, k} \in$ $C\left(R^{+}, R^{+}\right)$with $-\frac{1}{m} I_{i, k}(u)<\bar{I}_{i, k}(u)<\frac{1}{m} I_{i, k}(u)(i=1,2), x \in R^{+}, m=$ $\sqrt{M},\left.\quad \Delta u^{\prime}\right|_{x=x_{k}}=u^{\prime}\left(x_{k}^{+}\right)-u^{\prime}\left(x_{k}^{-}\right),\left.\quad \Delta u\right|_{x=x_{k}}=u\left(x_{k}^{+}\right)-\left.u\left(x_{k}^{-}\right) \quad \Delta v^{\prime}\right|_{x=x_{k}}=$ $v^{\prime}\left(x_{k}^{+}\right)-v^{\prime}\left(x_{k}^{-}\right),\left.\Delta v\right|_{x=x_{k}}=v\left(x_{k}^{+}\right)-v\left(x_{k}^{-}\right), u^{\prime}\left(x_{k}^{+}\right), u\left(x_{k}^{+}\right), v^{\prime}\left(x_{k}^{+}\right)$and $v\left(x_{k}^{+}\right)$, $\left(u^{\prime}\left(x_{k}^{-}\right), u\left(x_{k}^{-}\right), v^{\prime}\left(x_{k}^{-}\right), v\left(x_{k}^{-}\right)\right)$denote the right limit (left limit) of $u^{\prime}(x), u(x)$, $v^{\prime}(x)$ and $v(x)$ at $x=x_{k}$ respectively.

It is well known that there are abundant results about the existence of positive solutions of boundary value problems for second order ordinary differential equations. Some works can be found in $[1-3]$ and references therein.They mainly investigated the case without impulse actions.Recently, Dirichlet boundary problems of second order impulsive differential equations have been studied in $[4-6]$.Motivated by the work above, this paper attempts to study the existence of positive solutions for periodic boundary value problems. By constructing a cone $K \times K$, which is the Cartesian product of two cones in the space $C[0,2 \pi]$,and computing the fixed-point index in the $K \times K$, we establish the existence of positive solutions for the impulsive differential system (1.1).

To conclude the introduction, we introduce the following notation:

$$
\begin{aligned}
& g_{i, 0}(v)=\liminf _{u \rightarrow 0^{+}} \min _{x \in[0,2 \pi]} \frac{g_{i}(x, u, v)}{u}, I_{i, 0}(k)=\liminf _{u \rightarrow 0^{+}} \frac{I_{i, k}(u)}{u} \\
& g_{i, \infty}(v)=\liminf _{u \rightarrow+\infty} \min _{x \in[0,2 \pi]} \frac{g_{i}(x, u, v)}{u}, I_{i, \infty}(k)=\liminf _{u \rightarrow+\infty} \frac{I_{i, k}(u)}{u} \\
& g_{i}^{\infty}(v)=\limsup _{u \rightarrow+\infty} \max _{x \in[0,2 \pi]} \frac{g_{i}(x, u, v)}{u}, I_{i}^{\infty}(k)=\limsup _{u \rightarrow+\infty} \frac{I_{i, k}(u)}{u}
\end{aligned}
$$

Ying He

$$
g_{i}^{0}(v)=\limsup _{u \rightarrow 0^{+}} \max _{x \in[0,2 \pi]} \frac{g_{i}(x, u, v)}{u}, I_{i}^{0}(k)=\limsup _{u \rightarrow 0^{+}} \frac{I_{i, k}(u)}{u}
$$

where $v \in R^{+}$and $i=1,2$.
Moreover,for the simplicity in the following discussion, we introduce the following hypotheses.
$\left(H_{1}\right)$:
$\left[\inf _{z \in R^{+}} g_{1,0}(z) 2 \pi+\sum_{k=1}^{l} I_{1,0}(k)\right] \sigma>2 \pi M, \quad \sup _{z \in R^{+}} g_{1}^{\infty}(z) 2 \pi+\sum_{k=1}^{l} I_{1}^{\infty}(k)<2 \pi \sigma M$.
$\left(H_{2}\right):$
$\sup _{z \in R^{+}} g_{2}^{0}(z) 2 \pi+\sum_{k=1}^{l} I_{2}^{0}(k)<2 \pi \sigma M, \quad\left[\inf _{z \in R^{+}} g_{2, \infty}(z) 2 \pi+\sum_{k=1}^{m} I_{2, \infty}(k)\right] \sigma>2 \pi M$.
where $\sigma=\min \left\{\frac{G(0)}{G(\pi)}, \frac{1}{e^{2 m \pi}}\right\}, G(0)=\frac{e^{2 m \pi}+1}{2 m\left(e^{2 m \pi}-1\right)}, G(\pi)=\frac{2 e^{m \pi}}{2 m\left(e^{2 m \pi}-1\right)}, m=\sqrt{M}$.

2 Preliminary

In this paper, we shall consider the following space
$P C(I, R)=\left\{u \in C(I, R) ;\left.u\right|_{\left(x_{k}, x_{k+1}\right)} \in C\left(x_{k}, x_{k+1}\right), u\left(x_{k}^{-}\right)=u\left(x_{k}\right), \exists u\left(x_{k}^{+}\right), k=\right.$ $1,2, \cdots, l\} P C^{\prime}(I, R)=\left\{u \in C(I, R) ;\left.u\right|_{\left(x_{k}, x_{k+1}\right)},\left.u^{\prime}\right|_{\left(x_{k}, x_{k+1}\right)} \in C\left(x_{k}, x_{k+1}\right), u\left(x_{k}^{-}\right)=\right.$ $\left.u\left(x_{k}\right), u^{\prime}\left(x_{k}^{-}\right)=u^{\prime}\left(x_{k}\right), \exists u\left(x_{k}^{+}\right), u^{\prime}\left(x_{k}^{+}\right), k=1,2, \cdots, l\right\}$ with the norm $\|u\|_{P C}=\sup _{x \in[0,2 \pi]}|u(x)|,\|u\|_{P C^{\prime}}=\max \left\{\|u\|_{P C},\left\|u^{\prime}\right\|_{P C}\right\}$, Then $P C(I, R), P C^{\prime}(I, R)$ are Banach spaces.

Definition 2.1. A couple function $(u, v) \in P C^{\prime}(I, R) \cap C^{2}\left(I^{\prime}, R\right) \times P C^{\prime}(I, R) \cap$ $C^{2}\left(I^{\prime}, R\right)$ is called a solution of system (1.1) if it satisfies system (1.1)

Lemma 2.2. The vector $(u, v) \in P C^{\prime}(I, R) \cap C^{2}\left(I^{\prime}, R\right) \times P C^{\prime}(I, R) \cap$ $C^{2}\left(I^{\prime}, R\right)$ is a solution of differential system (1.1) if and only if $(u, v) \in P C^{\prime}(I, R) \times$ $P C^{\prime}(I, R)$ is a solution of the following integral system

$$
\left\{\begin{array}{l}
u(x)=\int_{0}^{2 \pi} G(x, y) g_{1}(y, u(y), v(y)) d y+\sum_{k=1}^{l} G\left(x, x_{k}\right) I_{1, k}\left(u\left(x_{k}\right)\right)+\left.\sum_{k=1}^{l} \frac{\partial G(x, y)}{\partial y}\right|_{y=x_{k}} \bar{I}_{1, k}\left(u\left(x_{k}\right)\right), \tag{2.1}\\
v(x)=\int_{0}^{2 \pi} G(x, y) g_{2}(y, v(y), u(y)) d y+\sum_{k=1}^{l} G\left(x, x_{k}\right) I_{2, k}\left(v\left(x_{k}\right)\right)+\left.\sum_{k=1}^{l} \frac{\partial G(x, y)}{\partial y}\right|_{y=x_{k}} \bar{I}_{2, k}\left(v\left(x_{k}\right)\right)
\end{array}\right.
$$

where $G(x, y)$ is the Green's function to the priodic boundary value problem $-u^{\prime \prime}+M u=0, u(0)=u(2 \pi), u^{\prime}(0)=u^{\prime}(2 \pi), \quad$ and

$$
G(x, y):=\frac{1}{\Gamma} \begin{cases}e^{m(x-y)}+e^{m(2 \pi-x+y)}, & 0 \leq y \leq x \leq 2 \pi \\ e^{m(y-x)}+e^{m(2 \pi-y+x)}, & 0 \leq x \leq y \leq 2 \pi\end{cases}
$$

here $\Gamma=2 m\left(e^{2 m \pi}-1\right)$.

One can find that

$$
\begin{equation*}
\frac{2 e^{m \pi}}{2 m\left(e^{2 m \pi}-1\right)}=G(\pi) \leq G(x, y) \leq G(0)=\frac{e^{2 m \pi}+1}{2 m\left(e^{2 m \pi}-1\right)} \tag{2.2}
\end{equation*}
$$

For every positive solution of problem (1.1),one has

$$
\|u\|_{P C}=\sup _{x \in[0,2 \pi]}|u(x)|
$$

Without loss of generality, we assume $\lim _{x \rightarrow \xi}|u(x)|=\|u\|_{P C}, \xi \in\left[x_{k}, x_{k+1}\right], k \in$
$\{0,1 \ldots, l\}$, then $\operatorname{by}(2.2)$

$$
\begin{aligned}
\|u\|_{P C} & \leq G(0) \int_{0}^{2 \pi} g_{1}(y, u(y), v(y)) d y+\lim _{t \rightarrow \xi}\left\{\sum_{i=1}^{l} G\left(x, x_{i}\right) I_{1, i}\left(u\left(x_{i}\right)\right)\right. \\
& \left.+\left.\sum_{i=1}^{l} \frac{\partial G(x, y)}{\partial y}\right|_{y=x_{i}} \bar{I}_{1, i}\left(u\left(x_{i}\right)\right)\right\} \\
& =G(0) \int_{0}^{2 \pi} g_{1}(y, u(y), v(y)) d y \\
& +\frac{1}{\Gamma}\left\{\sum_{i=1}^{k}\left[e^{m\left(\xi-x_{i}\right)}+e^{m\left(2 \pi-\xi+x_{i}\right)}\right] I_{1, i}\left(u\left(x_{i}\right)\right)+\sum_{i=k+1}^{l}\left[e^{m\left(x_{i}-\xi\right)}+e^{m\left(2 \pi-x_{i}+\xi\right)}\right] I_{1, i}\left(u\left(x_{i}\right)\right)\right\} \\
& +\frac{1}{\Gamma}\left\{\sum_{i=1}^{k}\left[-m e^{m\left(\xi-x_{i}\right)}+m e^{m\left(2 \pi-\xi+x_{i}\right)}\right] \bar{I}_{1, i}\left(u\left(x_{i}\right)\right)\right\} \\
& +\frac{1}{\Gamma}\left\{\sum_{i=k+1}^{l}\left[m e^{m\left(x_{i}-\xi\right)}-m e^{m\left(2 \pi-x_{i}+\xi\right)}\right] \bar{I}_{1, i}\left(u\left(x_{i}\right)\right)\right\} \\
= & G(0) \int_{0}^{2 \pi} g_{1}(y, u(y), v(y)) d y \\
& +\frac{1}{\Gamma}\left\{\sum _ { i = 1 } ^ { k } \left[e^{m\left(\xi-x_{i}\right)}\left(I_{1, i}\left(u\left(x_{i}\right)\right)-m \bar{I}_{1, i}\left(u\left(x_{i}\right)\right)\right)+e^{m\left(2 \pi-\xi+x_{i}\right)}\left(I_{1, i}\left(u\left(x_{i}\right)\right)\right.\right.\right. \\
& \left.\left.\left.+m \bar{I}_{1, i}\left(u\left(x_{i}\right)\right)\right)\right]\right\} \\
& +\frac{1}{\Gamma}\left\{\sum _ { i = k + 1 } ^ { l } \left[e^{m\left(x_{i}-\xi\right)}\left(I_{1, i}\left(u\left(x_{i}\right)\right)+m \bar{I}_{1, i}\left(u\left(x_{i}\right)\right)\right)+e^{m\left(2 \pi-x_{i}+\xi\right)}\left(I_{1, i}\left(u\left(x_{i}\right)\right)\right.\right.\right. \\
& \left.\left.\left.-m \bar{I}_{1, i}\left(u\left(x_{i}\right)\right)\right)\right]\right\}
\end{aligned}
$$

It follows from $-\frac{1}{m} I_{1, i}(u)<\bar{I}_{1, i}(u)<\frac{1}{m} I_{1, i}(u)$, that $I_{1, i}(u)-m \bar{I}_{1, i}(u)>0, I_{1, i}(u)+$ $m \bar{I}_{1, i}(u)>0$. So

$$
\begin{equation*}
\|u\|_{P C} \leq G(0) \int_{0}^{2 \pi} g_{1}(y, u(y), v(y)) d y+\frac{2 e^{2 m \pi}}{\Gamma} \sum_{i=1}^{l} I_{1, i}\left(u\left(x_{i}\right)\right) \tag{2.3}
\end{equation*}
$$

For any $x \in[0,2 \pi]$, without loss of generality, we assume that $x \in\left[x_{k}, x_{k+1}\right)$,,then

$$
\begin{aligned}
u(x) & \geq G(\pi) \int_{0}^{2 \pi} g_{1}(y, u(y), v(y)) d y+\sum_{i=1}^{l} G\left(x, x_{i}\right) I_{1, i}\left(u\left(x_{i}\right)\right)+\left.\sum_{i=1}^{l} \frac{\partial G(x, y)}{\partial y}\right|_{y=x_{i}} \bar{I}_{1, i}\left(u\left(x_{i}\right)\right) \\
& =G(\pi) \int_{0}^{2 \pi} g_{1}(y, u(y), v(y)) d y \\
& +\frac{1}{\Gamma} \sum_{i=1}^{k}\left[e^{m\left(x-x_{i}\right)}\left(I_{1, i}\left(u\left(x_{i}\right)\right)-m \bar{I}_{1, i}\left(u\left(x_{i}\right)\right)\right)+e^{m\left(2 \pi-x+x_{i}\right)}\left(I_{1, i}\left(u\left(x_{i}\right)\right)+m \bar{I}_{1, i}\left(u\left(x_{i}\right)\right)\right)\right] \\
& +\frac{1}{\Gamma} \sum_{i=k+1}^{l}\left[e^{m\left(x_{i}-x\right)}\left(I_{1, i}\left(u\left(x_{i}\right)\right)+m \bar{I}_{1, i}\left(u\left(x_{i}\right)\right)\right)+e^{m\left(2 \pi-x_{i}+x\right)}\left(I_{1, i}\left(u\left(x_{i}\right)\right)-m \bar{I}_{1, i}\left(u\left(x_{i}\right)\right)\right)\right]
\end{aligned}
$$

It follows from $-\frac{1}{m} I_{1, i}(u)<\bar{I}_{1, i}(u)<\frac{1}{m} I_{1, i}(u)$, that $I_{1, i}(u)-m \bar{I}_{1, i}(u)>$ $0, I_{1, i}(u)+m \bar{I}_{1, i}(u)>0$. So

$$
\begin{align*}
u(x) & \geq G(\pi) \int_{0}^{2 \pi} g_{1}(y, u(y), v(y)) d y+\frac{2}{\Gamma} \sum_{i=1}^{l} I_{1, i}\left(u\left(x_{i}\right)\right) \\
& \geq \frac{G(\pi)}{G(0)} \bullet G(0) \int_{0}^{2 \pi} g_{1}(y, u(y), v(y)) d y+\frac{1}{e^{2 m \pi}} \frac{2 e^{2 m \pi}}{\Gamma} \sum_{i=1}^{l} I_{1, i}\left(u\left(x_{i}\right)\right) \\
& \geq \min \left\{\frac{G(\pi)}{G(0)}, \frac{1}{e^{2 m \pi}}\right\}\|u\|_{P C}:=\sigma\|u\|_{P C} . \tag{2.4}
\end{align*}
$$

Similarly, $v(x) \geq \sigma\|v\|_{P C}$.
In applications below, we take $E=C(I, R)$ and define

$$
K=\left\{u \in C(I, R): u(x) \geq \sigma\|u\|_{P C}, x \in[0,2 \pi]\right\}
$$

It is easy to see that K is a closed convex cone in E. For $r>0$, let $K_{r}=\{u \in$ $K:\|u\|<r\}$ and $\partial K_{r}=\{u \in K:\|u\|=r\}$. For any $(u, v) \in K \times K$,define mappings $\Phi_{v}: K \rightarrow C\left(I, R^{+}\right), \Psi_{u}: K \rightarrow C\left(I, R^{+}\right)$, and $T: K \times K \rightarrow$ $C\left(I, R^{+}\right) \times C\left(I, R^{+}\right)$as follows

$$
\begin{align*}
& \Phi_{v}(u)(x)=\int_{0}^{2 \pi} G(x, y) g_{1}(y, u(y), v(y)) d y+\sum_{k=1}^{l} G\left(x, x_{k}\right) I_{1, k}\left(u\left(x_{k}\right)\right)+\left.\sum_{k=1}^{l} \frac{\partial G(x, y)}{\partial y}\right|_{y=x_{k}} \bar{I}_{1, k}\left(u\left(x_{k}\right)\right), \\
& \Psi_{u}(v)(x)=\int_{0}^{2 \pi} G(x, y) g_{2}(y, v(y), u(y)) d y+\sum_{k=1}^{l} G\left(x, x_{k}\right) I_{2, k}\left(v\left(x_{k}\right)\right)+\left.\sum_{k=1}^{l} \frac{\partial G(x, y)}{\partial y}\right|_{y=x_{k}} \bar{I}_{2, k}\left(v\left(x_{k}\right)\right), \\
& T(u, v)(x)=\left(\Phi_{v}(u)(x), \Psi_{u}(v)(x)\right), \quad x \in[0,2 \pi] . \tag{2.5}
\end{align*}
$$

Lemma 2.3. $\quad T: K \times K \rightarrow K \times K$ is completely continuous.Moreover, $T(K \times K) \subset K \times K$.

Proof It is easy to see that $T: K \times K \rightarrow K \times K$ is completely continuous. Thus we only need to show $T(K \times K) \subset K \times K$,

For any $(u, v) \in K \times K$, we prove $T(u, v) \in K \times K$,i.e. $\Phi_{v}(u) \in K$ and $\Psi_{u}(v) \in K$. By using inequalities (2.3) and (2.4), we have that

$$
\begin{gathered}
\left\|\Phi_{v}(u)\right\| \leq G(0) \int_{0}^{2 \pi} g_{1}(y, u(y), v(y)) d y+\frac{2 e^{2 m \pi}}{\Gamma} \sum_{i=1}^{l} I_{1, i}\left(u\left(x_{i}\right)\right) \\
\Phi_{v}(u)(x) \geq \min \left\{\frac{G(\pi)}{G(0)}, \frac{1}{e^{2 m \pi}}\right\}\left\|\Phi_{v}(u)\right\|_{P C}:=\sigma\left\|\Phi_{v}(u)\right\|_{P C}, x \in[0,2 \pi]
\end{gathered}
$$

Similarly, $\Psi_{u}(v)(x) \geq \sigma\left\|\Psi_{u}(v)\right\|_{P C}$. Thus, $\Phi_{v}(u)(x) \in K$ and $\Psi_{u}(v)(x) \in K$. Consequently, $T(K \times K) \subset K \times K$

Lemma 2.4. Let $\Phi: K \rightarrow K$ be a completely continuous mapping with $\mu \Phi u \neq u$ for every $u \in \partial K_{r}$ and $0<\mu \leq 1$. Then $i\left(\Phi, K_{r}, K\right)=1$.

Lemma 2.5. Let $\Phi: K \rightarrow K$ be a completely continuous mapping. Suppose that the following two conditions are satisfied:
(i) $\inf _{u \in \partial K_{r}}\|\Phi u\|>0 ; \quad$ (ii) $\mu \Phi u \neq u$ for every $u \in \partial K_{r}$ and $\mu \geq 1$.

Then, $i\left(\Phi, K_{r}, K\right)=0$.
Lemma 2.6. Let E be a Banach space and $K_{i} \subset K(i=1,2)$ be a closed set in E. For $r_{i}>0(i=1,2)$, denote $K_{r_{i}}=\left\{u \in K_{i}:\|u\|<r_{i}\right\}$ and $\partial K_{r_{i}}=\left\{u \in K_{i}:\|u\|=r_{i}\right\}$. Suppose $\Phi_{i}: K_{i} \rightarrow K_{i}$ is completely continuous. If $u_{i} \neq \Phi_{i} u_{i}$ for any $u_{i} \in \partial K_{r_{i}}$, then

$$
i\left(\Phi, K_{r_{1}} \times K_{r_{2}}, K_{1} \times K_{2}\right)=i\left(\Phi_{1}, K_{r_{1}}, K_{1}\right) \times i\left(\Phi_{2}, K_{r_{2}}, K_{2}\right)
$$

where $\Phi(u, v)=:\left(\Phi_{1} u, \Phi_{2} v\right)$ for any $(u, v) \in K_{1} \times K_{2}$.

3 Main Results

Theorem 3.1. Assume that $\left(H_{1}\right)-\left(H_{2}\right)$ are satisfied. Then problem (1.1) has at least one positive solution (u, v).

To prove Theorem3.1, we first give the following lemmas.
Lemma 3.2. If $\left(H_{1}\right)$ is satisfied, then $i\left(\Phi_{v}, K_{R_{1}} \backslash \bar{K}_{r_{1}}, K\right)=1$.
Proof Since $\left(H_{1}\right)$ holds, then there exists $0<\varepsilon<1$ such that

$$
\begin{gather*}
(1-\varepsilon)\left[\inf _{z \in R^{+}} g_{1,0}(z) 2 \pi+\sum_{k=1}^{l} I_{1,0}(k)\right] \sigma>2 \pi M \\
2 \pi \sigma M>\sum_{k=1}^{l}\left(I_{1}^{\infty}(k)+\varepsilon\right)+2 \pi\left(\sup _{z \in R^{+}} g_{1}^{\infty}(z)+\varepsilon\right) . \tag{3.1}
\end{gather*}
$$

By the definitions of $g_{1,0}, I_{1,0}$, one can find $r_{0}>0$ such that for any $x \in$ $[0,2 \pi], 0<u<r_{0}, v \in R^{+}$

$$
g_{1}(x, u, v) \geq g_{1,0}(v)(1-\varepsilon) u, \quad I_{1, k}(u) \geq I_{1,0}(k)(1-\varepsilon) u .
$$

Let $r_{1} \in\left(0, r_{0}\right)$, then for $u \in \partial K_{r_{1}}$, we have

$$
u(x) \geq \sigma\|u\|=\sigma r_{1}>0 . \quad \forall x \in[0,2 \pi]
$$

Thus

$$
\begin{aligned}
\Phi_{v} u(x) & =\int_{0}^{2 \pi} G(x, y) g_{1}(y, u(y), v(y)) d y+\sum_{k=1}^{l} G\left(x, x_{k}\right) I_{1, k}\left(u\left(x_{k}\right)\right) \\
& +\left.\sum_{k=1}^{l} \frac{\partial G(x, y)}{\partial y}\right|_{y=x_{k}} \bar{I}_{1, k}\left(u\left(x_{k}\right)\right) \\
& \geq G(\pi) \int_{0}^{2 \pi} g_{1}(y, u(y), v(y)) d y+\frac{2}{\Gamma} \sum_{k=1}^{l} I_{1, k}\left(u\left(x_{k}\right)\right) \\
& \geq G(\pi)(1-\varepsilon) \int_{0}^{2 \pi} g_{1,0}(v(y)) u(y) d y+\frac{2}{\Gamma}(1-\varepsilon) \sum_{k=1}^{l} I_{1,0}(k) u\left(x_{k}\right) \\
& \geq(1-\varepsilon) \sigma r_{1}\left(\inf _{z \in R^{+}} g_{1,0}(z) G(\pi) 2 \pi+\frac{2}{\Gamma} \sum_{k=1}^{l} I_{1,0}(k)\right)
\end{aligned}
$$

from which we see that $\inf _{u \in \partial K_{r_{1}}}\left\|\Phi_{v} u\right\|_{P C}>0$, namely, hypothesis (i) of Lemma 2.5 holds. Next we show that $\mu \Phi_{v} u \neq u$ for any $u \in \partial K_{r_{1}}, v \in K$ and $\mu \geq 1$.

If this is not true, then there exist $u_{0} \in \partial K_{r_{1}}$ and $\mu_{0} \geq 1$ such that $\mu_{0} \Phi_{v} u_{0}=u_{0}$. Note that $u_{0}(x)$ satisfies

$$
\left\{\begin{array}{l}
-u_{0}^{\prime \prime}(x)+M u_{0}(x)=\mu_{0} g_{1}\left(x, u_{0}(x), v(x)\right), \quad x \in I^{\prime} \tag{3.2}\\
-\left.\Delta u_{0}^{\prime}\right|_{x=x_{k}}=\mu_{0} I_{1, k}\left(u_{0}\left(x_{k}\right)\right), \quad k=1,2, \cdots, l \\
\left.\Delta u_{0}\right|_{x=x_{k}}=\mu_{0} \bar{I}_{1, k}\left(u_{0}\left(x_{k}\right)\right), \quad k=1,2, \cdots, l \\
u_{0}(0)=u_{0}(2 \pi) \\
u_{0}^{\prime}(0)=u_{0}^{\prime}(2 \pi)
\end{array}\right.
$$

Integrate from 0 to 2π, using integration by parts in the left side, notice that

$$
\begin{aligned}
\int_{0}^{2 \pi}\left[-u_{0}^{\prime \prime}(x)+M u_{0}(x)\right] d x & =\sum_{k=1}^{l} \Delta u_{0}^{\prime}\left(x_{k}\right)+M \int_{0}^{2 \pi} u_{0}(x) d x \\
& =-\mu_{0} \sum_{k=1}^{l} I_{1, k}\left(u_{0}\left(x_{k}\right)\right)+M \int_{0}^{2 \pi} u_{0}(x) d x
\end{aligned}
$$

So we obtain

$$
\begin{aligned}
M \int_{0}^{2 \pi} x_{0}(t) d t & =\mu_{0} \sum_{k=1}^{l} I_{1, k}\left(u_{0}\left(x_{k}\right)\right)+\mu_{0} \int_{0}^{2 \pi} g_{1}\left(y, u_{0}(y), v(y)\right) d y \\
& \geq(1-\varepsilon) \sum_{k=1}^{l}\left[\left(I_{1,0}(k)+\inf _{z \in R^{+}} g_{1,0}(z) 2 \pi\right] \sigma r_{1}\right. \\
2 \pi M r_{1} & \geq(1-\varepsilon)\left[\sum_{k=1}^{l}\left(I_{1,0}(k)+\inf _{z \in R^{+}} g_{1,0}(z) 2 \pi\right] \sigma r_{1}\right.
\end{aligned}
$$

which contradicts with (3.1) . Hence,from Lemma 2.5 we have

$$
\begin{equation*}
i\left(\Phi, K_{r_{1}}, K\right)=0 . \quad \forall v \in K \tag{3.3}
\end{equation*}
$$

On the other hand, from $\left(H_{1}\right)$, there exists $H>r_{1}$ such that for any $x \in$ $[0,2 \pi], u \geq H, v \in R^{+}$

$$
\begin{equation*}
g_{1}(x, u, v) \leq\left(g_{1}^{\infty}(v)+\varepsilon\right) u, I_{1, k}(u) \leq\left(I_{1}^{\infty}(k)+\varepsilon\right) u \tag{3.4}
\end{equation*}
$$

Choose $R_{1}>R_{0}:=\max \left\{\frac{H}{\sigma}, r_{1}\right\}$ and let $u \in \partial K_{R_{1}}, v \in K$. Since $u(x) \geq$ $\sigma\|u\|_{P C}=\sigma R_{1}>H$ for $x \in[0,2 \pi], \quad v \in K$. Now we show that $\mu \Phi_{v} u \neq u$ for any $u \in \partial K_{R_{1}}, v \in K$ and $0<\mu \leq 1$. In fact, if there exist $u_{0} \in \partial K_{R_{1}}$
and $0<\mu_{0} \leq 1$ such that $\mu_{0} \Phi_{v} u_{0}=u_{0}$, then $u_{0}(x)$ satisfies equation (3.2). Integrating from 0 to 2π, we obtain

$$
\begin{aligned}
& M \int_{0}^{2 \pi} u_{0}(x) d x=\mu_{0}\left[\sum_{k=1}^{l} I_{1, k}\left(u_{0}\left(x_{k}\right)\right)+\int_{0}^{2 \pi} g_{1}\left(x, u_{0}(x), v(x)\right) d x\right] \\
\leq & \sum_{k=1}^{l}\left(I_{1}^{\infty}(k)+\varepsilon\right) u_{0}\left(x_{k}\right)+\int_{0}^{2 \pi} u_{0}(x) d x\left(\sup _{z \in R^{+}} g_{1}^{\infty}(z)+\varepsilon\right) \\
\leq & R_{1}\left[\sum_{k=1}^{l}\left(I_{1}^{\infty}(k)+\varepsilon\right)+2 \pi\left(\sup _{z \in R^{+}} g_{1}^{\infty}(z)+\varepsilon\right)\right]
\end{aligned}
$$

i.e.,

$$
2 \pi \sigma M R_{1} \leq R_{1}\left[\sum_{k=1}^{l}\left(I_{1}^{\infty}(k)+\varepsilon\right)+2 \pi\left(\sup _{z \in R^{+}} g_{1}^{\infty}(z)+\varepsilon\right)\right]
$$

which is a contradiction with (3.1).
Let $R_{1}=\max \left\{r_{1}, \frac{H}{\sigma}\right\}$, then for any $u \in \partial K_{R_{1}}, v \in K$ and $0<\mu \leq 1$, we have $\mu \Phi_{v} u \neq u$. Thus

$$
\begin{equation*}
i\left(\Phi, K_{R_{1}}, K\right)=1 \tag{3.5}
\end{equation*}
$$

In view of (3.3) and (3.5), we obtain

$$
i\left(\Phi, K_{R_{1}} \backslash \bar{K}_{r_{1}}, K\right)=1
$$

Lemma 3.3. : If $\left(H_{2}\right)$ is satisfied, then $i\left(\Psi_{u}, K_{R_{2}} \backslash \bar{K}_{r_{2}}, K\right)=-1$.
Proof Since $\left(H_{2}\right)$ holds, there exists $0<\varepsilon<1$ such that

$$
\begin{align*}
& 2 \pi \sigma M>\sum_{k=1}^{l}\left(I_{2}^{0}(k)+\varepsilon\right)+2 \pi\left(\sup _{z \in R^{+}} g_{2}^{0}(z)+\varepsilon\right) \\
& (1-\varepsilon)\left[\inf _{z \in R^{+}} g_{2, \infty}(z) 2 \pi+\sum_{k=1}^{l} I_{2, \infty}(k)\right] \sigma>2 \pi M \tag{3.6}
\end{align*}
$$

One can find $r_{0}>0$ such that for any $x \in[0,2 \pi], 0 \leq v \leq r_{0}, u \in R^{+}$

$$
\begin{equation*}
g_{2}(x, v, u) \leq\left(g_{2}^{0}(u)+\varepsilon\right) v, \quad I_{2, k}(v) \leq\left(I_{2}^{0}(k)+\varepsilon\right) v \tag{3.7}
\end{equation*}
$$

Let $r_{2} \in\left(0, r_{0}\right)$. Now we prove that $\mu \Psi_{u} v \neq v$ for any $v \in \partial K_{r_{2}}, u \in K$ and $0<\mu \leq 1$. If this is not true, then there exist $v_{0} \in \partial K_{r_{2}}$ and $0<\mu_{0} \leq 1$ such
that $\mu_{0} \Psi_{u} v_{0}=v_{0}$. Note that $v_{0}(x)$ satisfies

$$
\left\{\begin{array}{l}
-v_{0}^{\prime \prime}(x)+M v_{0}(x)=\mu_{0} g_{2}\left(x, v_{0}(x), u(x)\right), \quad x \in I^{\prime}, \tag{3.8}\\
-\left.\Delta v_{0}^{\prime}\right|_{x=x_{k}}=\mu_{0} I_{2, k}\left(v_{0}\left(x_{k}\right)\right), \quad k=1,2, \cdots, l, \\
\left.\Delta v_{0}\right|_{x=x_{k}}=\mu_{0} \bar{I}_{2, k}\left(v_{0}\left(x_{k}\right)\right), \quad k=1,2, \cdots, l, \\
v_{0}(0)=v_{0}(2 \pi), \\
v_{0}^{\prime}(0)=v_{0}^{\prime}(2 \pi) .
\end{array}\right.
$$

Integrating from 0 to 2π, we obtain

$$
\begin{aligned}
& M \int_{0}^{2 \pi} v_{0}(x) d x=\sum_{k=1}^{l} \mu_{0} I_{2, k}\left(v_{0}\left(x_{k}\right)\right)+\mu_{0} \int_{0}^{2 \pi} g_{2}\left(x, v_{0}(x), u(x)\right) d x \\
\leq & \sum_{k=1}^{l}\left(I_{2}^{0}(k)+\varepsilon\right) v_{0}\left(x_{k}\right)+\int_{0}^{2 \pi} v_{0}(x) d x\left(\sup _{z \in R^{+}} g_{2}^{0}(z)+\varepsilon\right) \\
\leq & r_{2}\left[\sum_{k=1}^{l}\left(I_{2}^{0}(k)+\varepsilon\right)+2 \pi\left(\sup _{z \in R^{+}} g_{2}^{0}(z)+\varepsilon\right)\right] .
\end{aligned}
$$

so

$$
2 \pi \sigma M r_{2} \leq r_{2}\left[\sum_{k=1}^{l}\left(I_{2}^{0}(k)+\varepsilon\right)+2 \pi\left(\sup _{z \in R^{+}} g_{2}^{0}(z)+\varepsilon\right)\right]
$$

which is a contradiction with (3.6). By Lemma 2.4, we have

$$
\begin{equation*}
i\left(\Psi_{u}, K_{r_{2}}, K\right)=1 \tag{3.9}
\end{equation*}
$$

On the other hand, from $\left(H_{2}\right)$, there exists $H>r_{2}$ such that for any $x \in$ $[0,2 \pi], v \geq H, u \in R^{+}$

$$
\begin{equation*}
g_{2}(x, v, u) \geq g_{2, \infty}(u)(1-\varepsilon) v, \quad I_{2, k}(v) \geq I_{2, \infty}(k)(1-\varepsilon) v, \tag{3.10}
\end{equation*}
$$

Choose $R_{2}>R_{0}:=\max \left\{\frac{H}{\sigma}, r_{2}\right\}$ and let $v \in \partial K_{R_{2}}, u \in K$. Since $v(x) \geq$ $\sigma\|v\|_{P C}=\sigma R_{2}>H$ for $x \in[0,2 \pi], \quad u \in K$, from (3.10) we see that

$$
\begin{gathered}
g_{2}(x, v(x), u(x)) \geq g_{2, \infty}(u(x))(1-\varepsilon) v(x) \geq \sigma g_{2, \infty}(u(x))(1-\varepsilon) R_{2}, \\
I_{2, k}\left(v\left(x_{k}\right) \geq \sigma I_{2, \infty}(k)(1-\varepsilon) R_{2}\right.
\end{gathered}
$$

Essentially the same reasoning as above yields $\inf _{v \in \partial K_{R_{2}}}\left\|\Psi_{u} v\right\|_{P C}>0$. Next we show that if R_{2} is large enough, then $\mu \Psi_{u} v \neq v$ for any $v \in \partial K_{R_{2}}, u \in K$ and $\mu \geq 1$. In fact, if there exist $v_{0} \in \partial K_{R_{2}}$ and $\mu_{0} \geq 1$ such that $\mu_{0} \Psi_{u} v_{0}=v_{0}$,
then $v_{0}(x)$ satisfies equation (3.8). Integrate from 0 to 2π, using integration by parts in the left side to obtain

$$
\begin{aligned}
M \int_{0}^{2 \pi} v_{0}(x) d x & =\sum_{k=1}^{l} \mu_{0} I_{2, k}\left(v_{0}\left(x_{k}\right)\right)+\mu_{0} \int_{0}^{2 \pi} g_{2}\left(x, v_{0}(x), u(x)\right) d x \\
& \geq(1-\varepsilon)\left[\sum_{k=1}^{l} I_{2, \infty}(k)+\inf _{z \in R^{+}} g_{2, \infty}(z) 2 \pi\right] \sigma R_{2}
\end{aligned}
$$

So we obtain

$$
2 \pi M R_{2} \geq(1-\varepsilon)\left[\sum_{k=1}^{l} I_{2, \infty}(k)+\inf _{z \in R^{+}} g_{2, \infty}(z) 2 \pi\right] \sigma R_{2}
$$

which contradicts with (3.6), too.
Hence hypothesis (ii) of Lemma 2.5 is satisfied and

$$
\begin{equation*}
i\left(\Psi_{u}, K_{R_{2}}, K\right)=0 \tag{3.11}
\end{equation*}
$$

In view of (3.9) and (3.11), we obtain

$$
i\left(\Psi_{u}, K_{R_{2}} \backslash \bar{K}_{r_{2}}, K\right)=-1
$$

Proof of Theorem 3.1. Since $\left(H_{1}\right)-\left(H_{2}\right)$ are satisfied, from Lemma2.3 we get $\Phi_{v}: K \rightarrow K, \Psi_{u}: K \rightarrow K$ and $T: K \times K \rightarrow K \times K$ are completely continuous. From Lemma3.2,3.3 and 2.6 we have
$i\left(T, K_{R_{1}} \backslash \bar{K}_{r_{1}} \times K_{R_{2}} \backslash \bar{K}_{r_{2}}, K \times K\right)=i\left(\Phi_{v}, K_{R_{1}} \backslash \bar{K}_{r_{1}}, K\right) \times i\left(\Psi_{u}, K_{R_{2}} \backslash \bar{K}_{r_{2}}, K\right)=-1$
Thus, system (1.1)has at least one positive solution (u,v).
Corollary 3.4. The conclusion of Theorem 3.1 is valid if $\left(H_{1}\right)$ and $\left(H_{2}\right)$ are replaced by

$$
\begin{aligned}
& \left(H_{1}^{*}\right) \inf _{z \in R^{+}} g_{1,0}(z)=\infty \text { or } \sum_{k=1}^{l} I_{1,0}(k)=\infty \\
& \quad \sup _{z \in R^{+}} g_{1}^{\infty}(z)=0 \text { and } I_{1}^{\infty}(k)=0, \quad k=1,2, \ldots l .
\end{aligned}
$$

$$
\left(H_{2}^{*}\right) \sup _{z \in R^{+}} g_{2}^{0}(z)=0 \text { and } I_{2}^{0}(k)=0, \quad k=1,2, \ldots l
$$

$$
\inf _{z \in R^{+}} g_{2, \infty}(z)=\infty \text { or } \sum_{k=1}^{l} I_{2, \infty}(k)=\infty
$$

References

[1] X.Y. Cheng and C.K. Zhong, Existence of positive solutions for a secondorder ordinary differential system, J. Math. Anal. Appl., 312, (2005), 1423.
[2] W. Ding and M. Han, Periodic boundary value problem for the second order impulsive functional differential equations, Appl. Math. Comput., 155, (2004), 709-726.
[3] D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, Boston, MA, 1988.
[4] D. Guo, J. Sun and Z. Liu, Functional Methods in Nonlinear Ordinary Differential Equations, Shandong Science and Technology Press,Jinan, 1995 (in Chinese).
[5] S.G. Hristova and D.D. Bainov, Monotone-iterative techniques of V. Lakshmikantham for a boundary value problem for systems of impulsive differential-difference equations, J. Math. Anal. Appl., 197, (1996), 1-13.
[6] V. Lakshmikntham, D.D. Bainov and P.S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.

[^0]: ${ }^{1}$ School of Mathematics and Statistics, Northeast Petroleum University, Daqing 163318, P.R.China.

 Project supported by Heilongjiang province education department natural science research item, China. (12541076).
 E-mail: heying65338406@163.com

 Article Info: Received: June 1, 2014. Revised : June 30, 2014.
 Published online: June 30, 2014.

