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From Sierpiński’s conjecture to Legendre’s

Robert Deloin1

Abstract

The third unsolved problem that Landau announced in 1912 at the
fifth International Congress of Mathematicians at Cambridge, is Legen-
dre’s conjecture. It states that:
There is always at least one prime number between two consecutive
squares N2 and (N + 1)2 for any integer N > 0.
In the present article, an elementary proof of this conjecture is given by
creating and solving the D conjecture, a modified version of Sierpiński’s
conjecture that originally states that:
For any integer N > 1, there is always at least one prime number in
each line of a N×N matrix filled up from left to right and from bottom
to top with the N2 integers from 1 to N2.
While proving the D conjecture, Sierpiński’s S conjecture is also proved
as well as Oppermann’s conjecture which states that:
For any integer N > 1 one has : π(N2 + N) > π(N2) > π(N2 − N),
where π(x) is the prime counting function. It’s this conjecture that
proves Legendre’s.
Finally, as applications, pm+1−pm = O(

√
pm), Andrica’s and Brocard’s

conjectures are proved.
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1 Introduction

The unsolved Sierpiński’s S conjecture (1958) [1] states that:

For any integer N > 1, there is always at least one prime number in each line

of a N × N matrix filled up from bottom to top and from left to right with

the N2 integers from 1 to N2.

Let’s then write Sierpiński’s S(N) matrix:

Table 1. Sierpiński’s matrix S(N)

N . . . . . . . . . Low Opp. Conj. . . . . . . N2

N-1 . . . . . . . . . . . . . . . . . . . . . . . . N2 −N

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . Sierp. Conj. . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 3N+1 . . . . . . . . . . . . . . . . . . . . . 4N

3 2N+1 . . . . . . . . . . . . . . . . . . . . . 3N

2 N+1 . . . . . . . . . . . . . . . . . . . . . 2N

1 1 2 3 . . . . . . . . . . . . . . . N

L/C C1 C2 . . . . . . . . . . . . . . . C(N-1) C(N)

In this Table 1, with the definitions of the conjectures mentioned in the in-

troduction, one can see that all the lines of the matrix S(N) correspond to

Sierpiński’s conjecture and that the top line only corresponds to the lower

part of Oppermann’s conjecture [2].

Considering only the integers N > 1, one can see that for N = 2 et N = 3,

Sierpiński’s matrices are:

Table 2. Sierpiński’s matrix S(2)

3 4

1 2
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Table 3. Sierpiński’s matrix S(3)

7 8 9

4 5 6

1 2 3

and one can check that Sierpiński’s conjecture is verified by these two matrices.

But they do not show any kind of recursivity.

2 Preliminary Notes

Now, let’s define a new matrix that we name D(N) and in which we intro-

duce some recursivity with the help of the recursive relation:

(N + 1)2 = N2 + (2N + 1)

In order to do that, we simply add to Sierpiński’s S(N) matrix, two lines

upwards with the 2N numbers immediately greater than N2 and then, one

column rightwards filled up with zeros except the number (N + 1)2 at its top,

as follows:

Table 4. Matrix D(N) (from column 1 to column N+1)

N+2 A . . . . . . . . . . . . . . . B (N + 1)2

N+1 C High Opp. Conj. . . . D N2 + N 0

N E Low Opp. Conj. F N2 − 1 N2 0

N-1 . . . . . . . . . . . . . . . . . . N2 −N 0

. . . . . . . . . . . . . . . . . . . . . . . . 0

k . . . . . . Sierp. Conj. . . . . . . kN 0

. . . . . . . . . . . . . . . . . . . . . . . . 0

4 3N+1 . . . . . . . . . . . . . . . 4N 0

3 2N+1 . . . . . . . . . . . . . . . 3N 0

2 N+1 . . . . . . . . . . . . . . . 2N 0

1 1 2 . . . . . . . . . . . . N 0

L/C C1 C2 . . . . . . . . . . . . C(N) C(N+1)

This ties three independent conjectures into one real matrix. With this model,

matrix D(N+1) is:
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Table 5. Matrix D(N+1)

N+3 . . . Low Opp. Conj. . . . Legend. Conj. (N + 2)2

N+2 . . . High Opp. Conj. . . . Legend. Conj. 0

N+1 A Low Opp. Conj. . . . B (N + 1)2 0

N N2 C High Opp. Conj. D N2 + N 0

N-1 . . . . . . E Low Opp. F N2 − 1 0

. . . . . . . . . . . . . . . . . . . . . . . . 0

k . . . . . . . . . . . . . . . . . . k(N+1) 0

. . . . . . . . . . . . . . . . . . . . . . . . 0

4 3N+4 . . . . . . . . . . . . . . . 4(N+1) 0

3 2N+3 . . . . . . . . . . . . . . . 3(N+1) 0

2 N+2 . . . . . . . . . . . . . . . 2(N+1) 0

1 1 2 . . . . . . . . . . . . N+1 0

L/C C1 C2 . . . . . . . . . . . . C(N+1) C(N+2)

Using Table 4 to replace numbers up to (N + 1)2 of Table 5, this last one can

be written :

Table 6. New matrix D(N+1)

N+4 . . . Low Opp. . . . . . . Legend. Conj. (N + 2)2

N+3 . . . High Opp. . . . . . . Legend. Conj. 0

N+2 A Low Opp. . . . . . . B (N + 1)2 0

N+1 C High Opp. . . . D N2 + N 0 0

N E Low Opp. F N2 − 1 N2 0 ↑
N-1 . . . . . . . . . . . . . . . N2 −N 0 0

. . . . . . . . . . . . . . . . . . . . . 0 Sierp.’s

L k . . . . . . . . . . . . . . . kN 0 matrix

. . . . . . . . . . . . . . . . . . . . . 0 S(N)

L4 3N+1 . . . . . . . . . . . . 4N 0 0

L3 2N+1 . . . . . . . . . . . . 3N 0 0

L2 N+1 . . . . . . . . . . . . 2N 0 0

L1 1 2 . . . . . . . . . N 0 ↓
L/C C1 C2 . . . . . . . . . C(N) C(N+1) C(N+2)

Now, let’s modify Sierpiński’s conjecture in order to create conjecture D which

states that:
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For any integer N > 1, there is always at least one prime number in each

line of a matrix D(N), filled in according to the model in Table 4.

We will now prove this conjecture by induction.

3 Main Result : Proof by induction

3.1 For N=2 and N=3

One can easily check that conjecture D is verified when N=2 and 3:

Table 7. Matrix D(2)

7 8 9

5 6 0

3 4 0

1 2 0

Table 8. Matrix D(3)

13 14 15 16

10 11 12 0

7 8 9 0

4 5 6 0

1 2 3 0

and one can check that conjecture D is verified by these two matrices which

show a beginning of recursivity that we will use in the next step.

3.2 From N to N+1

Now, we suppose that conjecture D is verified for a value N > 3 and we

will prove that it is still true for N+1.
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3.3 Extension of matrix D(N+1) of Table 6

By using recursively the principle used to transform matrix D(N+1) of

Table 5 into the new matrix D(N+1) of Table 6, we get at the end of the

process, from any N > 2 down to N = 2 :

Table 9. Matrix D(N+1) of Table 6 recursively transformed

. . . Low Opp. for N+2 . . . Legend. Conj. (N + 2)2

. . . High Opp. for N+1 . . . Legend. Conj. 0

A Low Opp. for N+1 . . . B (N + 1)2 0

C High Opp. for N D N2 + N 0 0

E Low Opp. for N F . . . N2 0 0

. . . High Opp. for N-1 . . . 0 0 0

. . . Low Opp. for N-1 (N − 1)2 0 0 0

. . . High Opp. for N-2 0 0 0 0

. . . Low Opp. for N-2 . . . . . . . . . . . .

. . . High Opp. for . . . . . . . . . . . . . . .

21 22 23 24 25 Low Opp. for 5 0

17 18 19 20 0 High Opp. for 4 0

13 14 15 16 0 Low Opp. for 4 0

10 11 12 0 0 High Opp. for 3 0

7 8 9 0 0 Low Opp. for 3 0

5 6 0 0 0 High Opp. for 2 0

3 4 0 0 0 Low Opp. for 2 0

1 2 0 0 0 0 0 0 0

C1 C2 C3 C4 C5 . . . C(N) C(N+1) C(N+2)

3.4 Conditional proof of Oppermann’s conjecture

If we suppose that conjecture D is true for matrix D(N), it means that

Sierpiński’s, Oppermann’s and Legendre’s conjectures are true for N, and par-

ticularly, it means that both lines N and N+1 of matrix D(N) of Table 4

contain at least one prime number. As line parts CD and EF of these two lines

are parts of Oppermann’s conjecture for N and become respectively parts of

lines N and N+1 of matrix D(N+1) of Table 6, these lines also contain at least
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one prime number. Oppermann’s conjecture, which is already verified for N=2

and N=3 in matrices D(2) and D(3) of Tables 7 and 8, is therefore proved for

D(N+1), conditionally to the validity of conjecture D for matrix D(N).

Noticing that Oppermann’s conjecture (just conditionally proved), applies

to lines N to N+4 of matrix D(N+1) of Table 6, these five lines therefore

contain, still conditionally, at least one prime number.

3.5 Conditional proof of Sierpiński’s conjecture

Still because Oppermann’s conjecture is conditionally proved, it also applies

to all the lines of matrix D(N+1) of Table 9 except line 1, but as this line 1

always contains the prime number 2 when N > 1, one can therefore conclude

that in matrix D(N+1) of Table 9, and still conditionally, all lines contain at

least one prime number.

Now, we will do the reverse operation that we did to get Table 9 from

Table 6, operation that was exactly to expand the N lines of the N by N

matrix of Sierpiński into 2N lines for which we have just shown that each

of them contains at least one prime number. We can therefore say that this

reverse operation consists, ignoring zeros, to force the first N lines of Table 9,

each of them containing at least one prime number, into the N lines N+1 to 2N

of Table 9, each of them also containing at least one prime number. At the

end of this process, the N prime numbers of the first N lines of Table 9 have

been forced into the N lines N+1 to 2N of Table 9 which, at the start of the

process, contained already at least one prime number. Therefore, in the new

matrix D(N+1) of Table 6, the number of prime numbers by line varies from at

least 1 in line N (which remains unchanged in the process) to exactly π(N) in

ligne 1. This proves Sierpiński’s conjecture for matrix D(N+1), conditionally

to the validity of conjecture D for matrix D(N).

3.6 Proof of conjecture D

As we have seen that, conditionally to the validity of conjecture D for ma-

trix D(N), lines N to N+4 of the new matrix D(N+1) of Table 6 contain at least

one prime number according to the conditionally proved Oppermann’s conjec-

ture, and that lines 1 to N of this new matrix D(N+1) contain at least one
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prime number according to the conditionally proved Sierpiński’s conjecture,

one can therefore conclude that all lines of the new matrix D(N+1) of Table 6

contain at least one prime number. Conjecture D is therefore unconditionally

proved.

3.7 Unconditional proofs of Oppermann’s and Sierpiński’s

conjectures

Oppermann’s and Sierpiński’s conjectures which were only proved condi-

tionally to the validity of conjecture D for matrix D(N) are now unconditionally

proved, as conjecture D has been unconditionally proved in step 3.6.

3.8 Proof of Legendre’s conjecture

Finally, as Oppermann’s conjecture has been unconditionally proved in step

3.7, Legendre’s conjecture is also unconditionally proved.

4 Consequences

The above four proved conjectures allow other proofs of conjectures. Three

of these other proofs are given hereafter.

4.1 Conjecture dm = pm+1 − pm = O(
√

pm)

Proof - As Oppermann’s and Sierpiński’s conjectures have been proved, we

can therefore say that in lines 1 to N+1 of the following extended matrix S(N),

there is always at least one prime number:
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Table 10. Extended matrix of Sierpiński S(N)

N+1 N2 + 1 . . . . . . High Opp. Conj. . . . pm+1 N2 + N

N pm . . . . . . Low Opp. Conj. . . . . . . N2

N-1 . . . . . . . . . . . . . . . . . . . . . . . . N2 −N

N-2 . . . . . . . . . . . . . . . . . . . . . . . . N2 − 2N

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Line k . . . . . . . . . . . . Sierp. Matrix . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L4 3N+1 . . . . . . . . . . . . . . . . . . 4N-1 4N

L3 2N+1 . . . . . . . . . . . . . . . . . . . . . 3N

L2 N+1 . . . . . . . . . . . . . . . . . . . . . 2N

L1 1 . . . . . . . . . . . . . . . . . . . . . N

As all numbers of the column on the right are composite, for any couple of

lines N and N+1, the maximum possible distance dm between two consecutive

prime numbers pm and pm+1 is:

dm = pm+1 − pm ≤ (N − 1) + (N − 1) = 2N − 2 (1)

Verifying this on lines (3,4) and (N,N+1), we get respectively:

dm = pm+1 − pm ≤ (4N − 1)− (2N + 1) = 2N − 2

dm = pm+1 − pm ≤ (N2 + N − 1)− (N2 −N + 1) = 2N − 2

As for lines N and N+1, Oppermann’s proved conjecture implies that:

(N − 1)2 < N2 −N < pm < N2 < pm+1 < N2 + N < (N + 1)2

one also has, taking only the positive square roots:

(N − 1) <
√

pm < N <
√

pm+1 < (N + 1) (2)

which shows that:

√
pm+1 −√pm < (N + 1)− (N − 1) = 2 (3)

But as (2) contains:

N <
√

pm+1 (4)

and as (3) can also be written:

√
pm+1 <

√
pm + 2 (5)

from relations (1), (4) and (5) applied in that order, we get:
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dm = pm+1 − pm ≤ 2N − 2 < 2
√

pm+1 − 2 < 2(
√

pm + 2)− 2

or :

dm = pm+1 − pm < 2
√

pm + 2

which proves the limit searched for by Hoheisel [3] and others since 1930:

dm = pm+1 − pm = O(
√

pm)

where O( ) is the big O of Landau’s notation.

4.2 Andrica’s conjecture

This conjecture [4] states that for any m > 0:

√
pm+1 −√pm < 1

Proof - As pm+1 − pm > 0, with relation (3) we have:

0 <
√

pm+1 −√pm < 2

which gives, by division by
√

pm:

0 <

√
pm+1 −√pm√

pm

<
2√
pm

(6)

¿From Euclid we know that there are infinitely many primes. This implies

that when m tends to infinity, we have:

2√
pm
→ 0

and from (6) :

0 <
√

pm+1−√pm√
pm

< 2√
pm
→ 0

which implies that when m tends to infinity:

limm→∞(
√

pm+1 −√pm) = 0 (7)

Finally, as the quantity
√

pm+1 − √
pm reaches a maximum of

√
11 − √

7 =

0, 67... < 1 for m = 4 before tending to zero as proved above in (7), this proves

Andrica’s conjecture.
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4.3 Brocard’s conjecture (1904)

This conjecture states that for m ≥ 2 :

π(p2
m+1)− π(p2

m) ≥ 4

Proof - As the minimum distance between two primes is dmin = pm+1−pm = 2

for the case of twin primes and that, for any N, we have:

(N + 1)− (N − 1) = 2

(N + 1)2 − (N − 1)2 = 4N (8)

it is thus possible to consider the minimum case of twin primes where for N

even:

pm+1 = (N + 1)

pm = (N − 1)

so that from (8):

p2
m+1 − p2

m = 4N

Sierpiński’s matrix S(N) extended up to line N+7 for an even N between twin

primes, can then be written:
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Table 11. Sierpiński’s matrix S(N) extended up to line N+7 for twin primes

. . . . . . . . . . . . . . . . . . . . . (N + 3)2 N2 + 7N

. . . . . . . . . . . . . . . . . . . . . . . . N2 + 6N

. . . . . . . . . (N + 2)2 . . . . . . . . . . . . N2 + 5N

. . . . . . . . . . . . . . . . . . . . . . . . N2 + 4N

p2
m+1 . . . . . . . . . . . . . . . . . . . . . N2 + 3N

. . . . . . . . . Leg.’s proved Conj. . . . . . . N2 + 2N

. . . . . . . . . Leg.’s proved Conj. . . . . . . N2 + N

. . . . . . . . . Sierp.’s proved Conj. . . . . . . N2

p2
m . . . . . . Sierp.’s proved Conj. . . . . . . N2 −N

. . . . . . . . . . . . . . . . . . . . . . . . N2 − 2N

. . . . . . . . . (N − 2)2 . . . . . . . . . . . . N2 − 3N

. . . . . . . . . . . . . . . . . . . . . . . . N2 − 4N

. . . . . . . . . . . . . . . . . . . . . (N − 3)2 N2 − 5N

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . Sierp.’s proved Conj. . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

3N+1 . . . . . . . . . . . . . . . . . . . . . 4N

2N+1 . . . . . . . . . . . . . . . . . . . . . 3N

pm+1 . . . . . . . . . . . . . . . . . . . . . 2N

1 2 3 . . . . . . . . . . . . pm N(even)

Here, we have to consider four points. First point, Table 11 is obtained for the

case of twin primes. Second point, in Table 11 the square numbers (N − 3)2,

(N − 2)2, (N − 1)2 = p2
m, (N + 1)2 = p2

m+1, (N + 2)2 and (N + 3)2 of general

equation z = (N +or−√C)2 where z is integer only when the column number

C is a square number, are located on a parabola of horizontal axis that is

described by the equation y = L = (N + 1) + or − 2
√

C where C is the

column number and y=L is the line number. Third point, the already proved

Sierpiński’s and Legendre’s conjectures provide at least one prime number per

line in Table 11. Fourth point, no couple of two consecutive primes can be

nearer than twin primes. With these four points and as p2
m+1 and p2

m are

located four lines away in Table 11, we can conclude that there is always at

least 4 prime numbers between p2
m and p2

m+1. This proves Brocard’s conjecture.
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5 Conclusion

This article provides the proofs of six conjectures: Oppermann’s, Sierpiński’s,

Legendre’s, Andrica’s, Brocard’s and that on dm = pm+1 − pm. It shows a

method to solve the overlapping three first conjectures by linking them in a

larger one, the D conjecture, that has the property of recursivity.
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