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Alternative Approach to Estimating the  
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Abstract 

Application of the method of moments for the parametric distribution is common 

in the construction of a suitable parametric distribution. However, moment method 

of parameter estimation does not produce good results. An alternative approach 

when constructing an appropriate parametric distribution for the considered data 

file is to use the so-called order statistics. This paper deals with the use of order 

statistics as the methods of L-moments and TL-moments of parameter estimation. 

L-moments have some theoretical advantages over conventional moments. 

L-moments have been introduced as a robust alternative to classical moments of 

probability distributions. However, L-moments and their estimations lack some 

robust features that belong to the TL-moments. TL-moments represent an 
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alternative robust version of L-moments, which are called trimmed L-moments. 

This paper deals with the use of L-moments and TL-moments in the construction 

of models of wage distribution. Three-parametric lognormal curves represent the 

basic theoretical distribution whose parameters were simultaneously estimated by 

three methods of point parameter estimation and accuracy of these methods was 

then evaluated. There are method of TL-moments, method of L-moments and 

maximum likelihood method in combination with Cohen’s method. A total of 328 

wage distribution has been the subject of research. 

 

Mathematics Subject Classification : 60E05; 62E99; 62F10 

Keywords: Order statistics, L-moments, TL-moments, maximum likelihood 

method, probability density function, distribution function, quantile function, 

lognormal curves, model of wage distribution  

 

 

1  L-Moments 

Moments and cumulants are traditionally used to characterize the probability 

distribution or the observed data set in statistics. It is sometimes difficult to 

determine exactly what information about the shape of the distribution is 

expressed by its moments of third and higher order. Especially in the case of a 

small sample, numerical values of sample moments can be very different from the 

values of theoretical moments of the probability distribution from which the 

random sample comes. Particularly in the case of small samples, parameter 

estimations of the probability distribution obtained using the moment method are 

often markedly less accurate than estimates obtained using other methods, such as 

maximum likelihood method.  

An alternative approach is to use the order statistics. Let X be a random 

variable having a distribution with distribution function F(x) and with quantile 
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function x(F), and let X1, X2, …, Xn is a random sample of sample size n from this 

distribution. Then X...XX nnnn ::2:1 ≤≤≤  are the order statistics of random 

sample of sample size n, which comes from the distribution of random variable X. 

L-moments are analogous to conventional moments and are estimated based 

on linear combinations of order statistics, i.e. L-statistics. L-moments are an 

alternative system describing the shape of the probability distribution.  

L-moments present the basis for a general theory, which includes the 

characterization and description of the theoretical probability distribution, 

characterization and description of the obtained sample data sets, parameter 

estimation of theoretical probability distribution and hypothesis testing of 

parameter values for the theoretical probability distribution. The theory of 

L-moments includes such established procedures such as the use of order statistics 

and Gini’s middle difference and leads to some promising innovations in the area 

of measuring skewness and kurtosis of the distribution and provides relatively new 

methods of parameter estimation for individual distribution. L-moments can be 

defined for any random variable whose expected value exists. The main advantage 

of the L-moments than conventional moments consists in the fact that L-moments 

can be estimated on the basis of linear functions of the data and are more resistant 

to the influence of sample variation. Compared to conventional moments, 

L-moments are more robust to the existence of outliers in the data and allow better 

conclusions obtained on the basis of small samples for basic probability 

distribution. L-moments often bring even more efficient parameter estimations of 

parametric distribution than the estimations obtained using maximum likelihood 

method, especially for small samples. Theoretical advantages of L-moments over 

conventional moments lie in the ability to characterize a wider range of 

distribution and in greater resistance to the presence of outliers in the data when 

estimating from the sample. Compared with conventional moments, experience 

also shows that L-moments are less prone to bias estimation and approximation by 

asymptotic normal distribution is more accurate in finite samples. 
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1.1 L-Moments of Probability Distribution 

Let X be a continuous random variable that has a distribution with 

distribution function F(x) and with quantile function x(F). Let X...XX nnnn ::2:1 ≤≤≤  

are the order statistics of random sample of sample size n, which comes from the 

distribution of random variable X. L-moment of the r-th order of random variable 

X  is defined 
1
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Expected value of the r-th order statistic of random sample of sample size n has 

the form  
1

0

1
:

!( ) d ( ).( ) [ ( )] [1 ( )]
( 1)! ( )!

r n r
r n

nE F xx F F x F xX r n r
− −= ⋅ ⋅⋅ −

− ⋅ − ∫  
 

(2) 
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and )]([ xFPr
∗  represents the r-th shifted Legendre polynomial. We also obtain 

substituting (2) into equation (1) 
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The letter “L” in the name of “L-moments” stresses that the r-th L-moment λr 

is a linear function of the expected value of certain linear combination of order 

statistics. Own estimation of the r-th L-moment λr based on the obtained data 

sample is then linear combination of ordered sample values, i.e. L-statistics. The 
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first four L-moments of the probability distribution in now defined 
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The probability distribution can be specified by its L-moments, even if some 

its conventional moments do not exist, but the opposite is not true. It can be 

proved that the first L-moment λ1 is the level characteristic of the probability 

distribution, the second L-moment λ2 is the variability characteristic, of a random 

variable X. It is convenient to standardize the higher L-moments λr, r ≥ 3, to be 

independent on specific units of the random variable X. The ratio of L-moments of 

the r-th order of random variable X is defined 
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It is also possible to define such a function of L-moments, which is analogous to 

the classical coefficient of variation, i.e. the so-called L-coefficient of variation. 
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Table 1: Formulas for the distribution function or quantile function, and for 

L-moments and ratios of L-moments of chosen probability distributions 

 

Distribution 

Distribution function F(x) or 

quantile function x(F) 

L-moments and ratios of 

L-moments 

   

 

 

 

Uniform 

 

 

 

)()()( xFFx ⋅α−β+α=  

21
β+α

=λ  

62
α−β

=λ  

03 =τ  

04 =τ  

 

 

 
 

Exponential 

 

 

 
 

)]([1ln)( xFFx −⋅α−ξ=  

α+ξ=λ1  

22
α

=λ  

3
1

3 =τ  

6
1

4 =τ  

 

 

Gumbel 

 

 

)](ln[ln)( xFFx −⋅α−ξ=  

α⋅+ξ=λ e1  

2ln2 ⋅α=λ  

,169903 =τ  

,150404 =τ  

 

 

Logistic 

 
 

)(1
)(ln)(
xF

xFFx
−

⋅α+ξ=  

ξ=λ1  

α=λ2  

03 =τ  

6
1

4 =τ  

  Source: Hosking (1990); own research 
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       Table 1: Continuation  
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Table 1: Continuation
  

Distribution 

Distribution function F(x) or quantile 

function x(F) 

L-moments and ratios 

of L-moments 
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The ratio of L-moments τ3 is the skewness characteristic and the ratio of 

1) Ix(p, q) is incomplete beta function 
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L-moments τ4 is the kurtosis characteristic of the corresponding probability 

distribution. Main properties of the probability distribution are summarized very 

well by the following four characteristics: L-location λ1, L-variation λ2, 

L-skewness τ3 and L-kurtosis τ4. L-moments λ1 and λ2, L-coefficient of variation τ 

and ratios of L-moments τ3 and τ4 are the most useful measurements for 

characterizing the probability distribution. Their most important features are: the 

existence (if the expected value of the distribution exists, then all L-moments of 

the distribution exit, too) and uniqueness (if the expected value of the distribution 

exists, then L-moments define only one distribution, i.e. no two distributions have 

the same L-moments). 

Using equations (6)−(9) and equation (10) we obtain formulas for L-moments, 

respectively for the ratios of L-moments for the case of chosen probability 

distributions, see Table 1. More on the L-moments is for example in [13], [14], 

[17] and [21]. 

 

 

1.2 Sample L-Moments  

We usually estimate L-moments using random sample, which is taken from an 

unknown distribution. Since the r-th L-moment λr is a function of the expected 

values of order statistics of random sample of sample size r, it is natural to 

estimate it using the so-called U-statistic, i.e. the corresponding function of sample 

order statistics (averaged over partial subsets of sample size r, which can be 

formed from the obtained random sample of sample size n). 

Let x1, x2, …, xn is a sample and x...xx nnnn ::2:1 ≤≤≤  is an ordered sample. 

Then the r-th sample L-moment can be written as 
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Hence the first four sample L-moments have the form 
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U-statistics are widely used especially in nonparametric statistics. Their 

positive features are:  the absence of bias, asymptotic normality and some slight 

resistance due to the influence of outliers. 

When calculating the r-th sample L-moment it is not necessary to repeat the 

calculation across all partial subsets of sample size r, but this statistic can be 

expressed directly as linear combination of order statistics of random sample of 
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therefore generally  
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Therefore the firs sample L-moments can be written as 
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Application of sample L-moments is similar to the application of sample 

conventional moments. Sample L-moments summarize the basic properties of the 

sample distribution, which are the location (level), variability, skewness and 

kurtosis. Thus, sample L-moments estimate the corresponding properties of the 

probability distribution from which the sample comes and can be used in 

estimating the parameters of the relevant theoretical probability distribution. 

Under such applications, we often prefer the L-moments before conventional 

moments, since as a linear function of data, sample L-moments are less sensitive 

to the sample variability than conventional moments or to the size of errors in the 

case of existence of outliers. L-moments therefore lead to more accurate and 
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robust estimations of the parameters or characteristics of a basic probability 

distribution, see for example [1]–[8] or [11]. 

Sample L-moments were used already previously in the statistics, although not 

as a part of a unified theory. The first sample L-moment l1 is a sample L-location 

(sample average), the second sample L-moment l2 is a sample L-variability.  

 

 

Table 2: Formulas for estimations of parameters taken by the method of 

L-moments of chosen probability distributions 
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 Table 2: Continuation 

Distribution Parameter estimation 
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 Table 2: Continuation 

Distribution Parameter estimation 
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Natural estimation of the ratio of L-moments (10) is the sample ratio of 

L-moments 
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Hence t3 is a sample L-skewness and t4 is a sample L-kurtosis. Sample ratios of 

L-moments t3 and t4 can be used as characteristics of skewness and kurtosis of the 

sample data file. Gini’s middle difference is related to sample L-moments, which 

has the form 
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and Gini’s coefficient, which depends only on a single parameter σ in the case of 

two-parametric lognormal distribution, but it depends on the values of all three 

parameters in the case of three-parametric lognormal distribution. Table 2 presents 

the formulas for estimation of parameters of chosen probability distributions, 

which were obtained using the method of L-moments. 

 

 

2  TL-Moments 

Alternative robust version of L-moments will be now presented. This robust 

modification of L-moments is called „trimmed L-moments“, and labeled 

„TL-moments“. 

This is a relatively new category of moment characteristics of the probability 

distribution. There are the characteristics of the level, variability, skewness and 

kurtosis of probability distributions constructed using TL-moments that are robust 

extending of L-moments. L-moments alone were introduced as a robust alternative 

to classical moments of probability distributions. However, L-moments and their 

estimations lack some robust properties that belong to the TL-moments. 

Sample TL-moments are linear combinations of sample order statistics, which 

assign zero weight to a predetermined number of sample outliers. Sample 

TL-moments are unbiased estimations of the corresponding TL-moments of 

probability distributions. Some theoretical and practical aspects of TL-moments 

are still under research or remain for future research. Efficiency of TL-statistics 

depends on the choice of α proportion, for example, the first sample TL-moments 

lll ))) 2(
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1 ,,  have the smallest variance (the highest efficiency) among other 

estimations from random samples from normal, logistic and double exponential 

distribution. 
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When constructing the TL-moments, the expected values of order statistics of 

random sample in the definition of L-moments of probability distributions are 

replaced by the expected values of order statistics of a larger random sample, 

where the sample size grows like this, so that it will correspond to the total size of 

modification, as shown below. 

TL-moments have certain advantages over conventional L-moments and 

central moments. TL-moment of probability distribution may exist even if the 

corresponding L-moment or central moment of the probability distribution does 

not exist, as it is the case of Cauchy’s distribution. Sample TL-moments are more 

resistant to existence of outliers in the data. The method of TL-moments is not 

intended to replace the existing robust methods, but rather as their supplement, 

especially in situations where we have outliers in the data. 

 

 

2.1 TL-Moments of Probability Distribution 
In this alternative robust modification of L-moments, the expected value 

E(Xr-j:r) is replaced by the expected value E(Xr+t1−j:r+t1+t2). Thus, for each r we 

increase sample size of random sample from the original r to r + t1 + t2 and we 

work only with the expected values of these r treated order statistics 

Xt1+1:r+t1+t2, Xt1+2:r+t1+t2, …, Xt1+r:r+t1+t2  by trimming the t1 smallest and the 

t2 largest from the conceptual sample. This modification is called the r-th trimmed 

L-moment (TL-moment) and is marked .), 21(λ tt
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order of random variable X is defined 
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It is apparent from equations (30) and (1) that the TL-moments simplify to 

L-moments, when t1 = t2 = 0. Although we can also consider applications, where 

the values of trimming are not equal, i.e. t1 ≠ t2, we focus here only on symmetric 

case t1 = t2 = t. Then equation (30) can be rewritten 
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,)2(
3
1

5:25:35:4
)1(

3 XXXE +−=λ  (34) 

  

.)33(
4
1

6:263:6:46:5
)1(

4 XXXXE −+−=λ  (35) 

Note that the measures of location (level), variability, skewness and kurtosis of the 

probability distribution analogous to conventional L-moments (6)−(9) are based 

on .a,, )))) 1(
4

1(
3

1(
2

1(
1 λλλλ  

Expected value E(Xr:n) can be written using the formula (2). Using equation (2) 

we can re-express the right side of equation (31) 
11

(

0 0

1) 11 ( 2 )! d ( ) ,( ) [ ( )] [1 ( )]( 1)
( 1)! ( )!

r

r
j

r t j t jt j r r t F xx F F x F x
jr r t j t jλ

−

=

+ − − +−  +
= ⋅ ⋅ ⋅ ⋅ ⋅⋅ −−   + − − ⋅ + 

∑ ∫  

 1, 2, ... .r = (36) 

It is necessary to be noted here that λ=λ rr
)0(  is a normal the r-th L-moment 

without any trimming. 

Expressions (32)-(35) for the first four TL-moments, where t = 1, can be 

written in an alternative manner 

,)(d])([1)]([)(6
1

0

1(
1

) xFxFxFFx∫ −⋅⋅⋅=λ  (37) 
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1

0

(1)
2 6 ( ) [ ( )] [1 ( )] [2 ( ) 1] d ( ) ,x F F x F x F x F xλ = ⋅ ⋅ ⋅ − ⋅ −∫  (38) 

  

1
(1
3

0

) 220 ( ) [ ( )] [1 ( )] { 5 ( ) 1} d ( ) ,5[ ( )]
3

x F F x F x F x F xF xλ = ⋅ ⋅ ⋅ − ⋅ − +∫  (39) 

  

1
(1
4

0

) 3 215 ( ) [ ( )] [1 ( )] { 9[ ( )] 1] d ( ).14[ ( )] 21[ ( )]
2

x F F x F x F x F xF x F xλ = ⋅ ⋅ ⋅ − ⋅ − + −∫  

 (40) 

Distribution may be identified by its TL-moments, although some of its 

L-moments or conventional central moments do not exit; for example λ )1(
1  

(expected value of median of conceptual random sample of sample size three) 

exists for Cauchy’s distribution, although the first L-moment λ1 does not exist. 

TL-skewness τ )(
3
t  and TL-kurtosis τ )(

4
t  are defined analogously as 

L-skewness τ3  and L-kurtosis τ4  

2

( )
( ) 3
3 ( )

t
t

t
λ

τ
λ

= , (41) 

  

4
4

2

( )
( )

( ) .
t

t
t

λτ
λ

=  (42) 

 

 

2.2 Sample TL-Moments 

Let x1, x2, …, xn is a sample and x...xx nnnn ::2:1 ≤≤≤  is an ordered sample. 

Expression 

1
1: 1 :

11ˆ ( )

1

n

i
j j l i n

i n i
E xX n j l

j l
=

+ + +
− −   

= ⋅ ⋅ ⋅        
 + + 

∑  
(43) 
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is considered to be an unbiased estimation of expected value of the (j + 1)-th order 

statistic Xj+1:j+l+1 in conceptual random sample of sample size (j + l + 1). Now we 

will assume that we replace the expression E(Xr+t−j:r+2t ) by its unbiased estimation 

in the definition of the r-th TL-moment λ )(t
r  in (31)  

,
1

1

2

1)( :2:
1

xjt
in

jtr
i

tr
nXÊ nitrjtr

n

i
⋅







+
−

⋅







−−+

−
⋅









+

= ∑
=

− ++  
(44) 

which we gain by assigning j → r + t − j − 1 a l → t + j in (43). Now we obtain the 

r-th sample TL-moment 

,2,...,2,1,)(
1

)1(1 1

0

(
2:

) tnrXÊ
j

r
rl

r

j
r trjtr

jt −=⋅






 −
⋅−⋅= ∑

−

=
+−+  (45) 

i.e. 
 

,2,...,2,1,
1

1

2

11
)1(1 1

0 1

(
:

) tnrxjt
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i
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r
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j
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jt −=⋅







+
−

⋅







−−+

−
⋅









+

⋅






 −
⋅−⋅= ∑ ∑

−

= =

 

 (46) 

which is unbiased  estimation of the r-th TL-moment .t
rλ )(  Note that for each 

j = 0, 1, …, r − 1, values xi:n in (46) are nonzero only for r + t − j ≤ i ≤ n − t −j due 

to the combinatorial numbers. Simple adjustment of the equation (46) provides an 

alternative linear form 
 

(

1

0)
:

1 1
( 1)

11 .

2

r
j

n t jt
r i n

i r t

r i n i
j r t j t j

l xnr
r t

−

−
=

= +

 − − −     
⋅ ⋅−     + − − +     = ⋅ ⋅

  
  +  

∑
∑  (47) 

For example, we obtain for r = 1 for the first sample TL-moment 
 

,
1

:
)
:

) ((
1 ∑

−

+=
⋅=

tn

ti
ni

t
ni

t xwl  (48) 

where the weights are given by 
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( )
:

1

.

2 1

t
i n

i n i
t t

w n
t

− −   
⋅   

   =
 
 + 

 

 
(49) 

 

Table 3: Formulas for TL-moments and ratios of TL-moments and formulas for        

        estimations of parameters taken by the method of TL-moments of  

        chosen probability distributions (t = 1) 

 

Distribution 

TL-moments and ratios of 

TL-moments 

 

Parameter estimation 

   

 

 

Normal 

µ=λ(1)
1  

σ=λ ,2970(1)
2  

0(1)
3 =τ  

,0620(1)
4 =τ  

 

lˆ =µ (1)
1  

0,297

(1)
2lˆ =σ  

 

 

Logistic 

µ=λ(1)
1  

σ=λ ,5000(1)
2  

0(1)
3 =τ  

,0830(1)
4 =τ  

 

lˆ =µ (1)
1  

lˆ 2 (1)
2=σ  

 

 

Cauchy 

µ=λ(1)
1  

σ=λ ,6980(1)
2  

0(1)
3 =τ  

,3430(1)
4 =τ  

 

lˆ =µ (1)
1  

0,698

(1)
2lˆ =σ  

 

 6
5(1)

1
α

=λ   
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Exponential 

4
(1)
2

α
=λ  

9
2(1)

3 =τ  

12
1(1)

4 =τ  

 

5
6 (1)

1lˆ =α  

Source: Elamir & Seheult (2003); own research 

 

 

The above results can be used to estimate TL-skewness and TL-kurtosis by 

simple ratios 
(

( 3
3 (

2

)
)

) ,
t

t
t

lt
l

=  
 

(50) 

  

(
( 4
4 (

2

)
)

) .
t

t
t

lt
l

=  
 

(51) 

We can choose t = nα representing the amount of the adjustment from each 

end of the sample, where α is a certain proportion, where 0 ≤ α < 0,5. 

Table 3 contains the formulas for TL-moments and for the ratios of 

TL-moments and the formulas for parameter estimations obtained using the 

method of TL-moments of chosen probability distributions. More on the 

TL-moments is for example in [12]. 

 

 

3  Lognormal Curves 

3.1 Three-Parametric Lognormal Curves 

Random variable X has three-parametric lognormal distribution with 

parameters µ, σ2 and θ, where –∞ < µ < ∞, σ2 > 0, –∞ < θ < ∞, if its probability 

density function have the form 
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f(x; µ, σ2, θ) ,
2 2

])([ln 2
exp

2)(
1





















σ

µ−θ−
−⋅

π⋅θ−⋅σ
=

x
x

  

,> θx  
 

(52) 

 ,0=  else.  

 

Lognormal distribution with parameters µ, σ2 and θ (beginning of distribution, 

theoretical minimum) is marked LN(µ, σ2, θ). Probability density function of 

three-parametric lognormal distribution is asymmetric, positively skewed. Figures 

1 and 2 show the graphs of the probability density function of three-parametric 

lognormal distribution depending on the values of the parameters of this 

distribution.  

Probability density function of three-parametric lognormal distribution is 

sometimes presented in the form 
 

f(x; γ, δ, θ) [ ] ,)(ln 2
2
1exp

2)( 





 θ−⋅δ+γ−⋅

π⋅θ−
δ

= x
x

 
 

,> θx   

(53) 

 ,0=  else,  

where it is valid 
δ

=σ
δ
γ

−=µ
1and  between the expressions for probability 

density function (52) and (53). 

If we substitute θ = 0 (distribution minimum) into expressions for the 

probability density function of three-parametric lognormal distribution (52) and 

(53), we obtain formulas for the probability density function of two-parametric 

lognormal distribution. 

Distribution function of three-parametric lognormal distribution has the for  

ln ( )( ) , > .xF x xθ µ θ
σ
− − = Φ   

 (54) 
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Source: Own research 

Figure 1: Probability density function of three-parametric lognormal distribution 

for the values of parameters σ = 2 (σ2 = 4); θ = 2 
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Figure 2: Probability density function of three-parametric lognormal distribution 

for the values of parameters μ = 3; θ = 2 
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If the random variable X has three-parametric lognormal distribution 

LN(µ, σ2, θ), then the random variable  

)(ln θ−= XY  (55) 

has normal distribution N(µ, σ2) and the random variable  

)(ln)(ln
θ−⋅δ+γ=

σ
µ−θ−

= XXU  (56) 

has standardized normal distribution N(0; 1). Parameter µ is the expected value of 

random variable (55) and parameter σ2 is the variance of this random variable. 

Parameter θ is the beginning of the distribution, i.e. theoretical minimum of the 

random variable X. 

For )(exp 2σ=ω  the r-th common and central moments of three-parametric 

lognormal distribution have the form 

,
2

exp)(
2 2


















σ+µ⋅+θ==µ rrXE r\

r
 (57) 

  

,)(exp)1(])([ )/21()(
0

2
1

µ⋅⋅











ω⋅








⋅−⋅ω=µ−=µ −−⋅−

=
∑ r

j
r

XE jrjrr

j
j/r\ r

r  (58) 

specifically 

,)3(exp)2()1( 223
3 µ⋅⋅+ω⋅−ω⋅ω=µ /  (59) 

  

.)4(exp)332()1( 23422
4 µ⋅⋅−ω+ω+ω⋅−ω⋅ω=µ  (60) 

We obtain the expressions for the expected value and variance of random variable 

X  having three-parametric lognormal distribution from (57) and (58) 

,
2

exp)(
2















 σ+µ+θ=XE  
(61) 

  

.XD )1()(2exp]1)([exp)2(exp)( 22 −ω⋅ω⋅µ=−σ⋅σ+µ=  (62) 

The expression for median 
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)(exp)( µ+θ=XMedian  (63) 

comes from the expression for 100 · P% quantile of this distribution 

).(exp ux PP ⋅σ+µ+θ=  (64) 

Three-parametric lognormal distribution is unimodal with one mode 

.)(exp)(exp)( 2

ω
µ

+θ=σ−µ+θ=XMode  (65) 

The relationship between the expected value, median and mode follows from the 

equations (61), (63) and (65) 

,)()()( XModeXMedianXE >>  (66) 

which is typical just for positively skewed distribution. 

The coefficient of variation of three-parametric lognormal distribution is 

a function of all three parameters µ, σ2 and θ of this distribution 

.XV









































































σ+µ+θ

−ωσ+µ

=
σ+µ+θ

−σ
σ+µ

=

2
exp

1
2

2
exp

2
exp

1)exp(
2

2
exp

)(
22

2
 

(67) 

Gini’s coefficient of three-parametric lognormal distribution depends on all three 

parameters µ, σ2 and θ of this distribution, too 

.G





































σ+µ+θ







 σ⋅σ+µ

=

2

2
exp

2
erf

2

2
exp

 
(68) 

Moment measurement of skewness and kurtosis depend on single parameter σ2 

2 2exp ( ) 1 [exp ( ) 2] 1 ( 2) ,1 σ σ ω ωβ = − ⋅ + = − ⋅ +  (69) 
  

3 242 2 24 3 2 2 3[exp ( ) 2exp ( ) 3exp ( ) 3] ( 3).2 σ σ σ ω ωβ ω= + + − = + + −  (70) 
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3.2 Four-Parametric Lognormal Curves 

Random variable X has four-parametric lognormal distribution with 

parameters µ, σ2, θ a τ, where –∞ < µ < ∞, σ2 > 0, –∞ < θ < τ < ∞, if its probability 

density function has the form 

 

f(x; µ, σ2, θ, τ) 

( )
,

2 2

ln
2

exp
2)()(

)(





















σ

µ−
−τ
θ−

−⋅
π⋅−τ⋅θ−⋅σ

θ−τ
= x

x

xx
 

 

,τ<<θ x  

  (71) 

 ,0=  else. 

Lognormal distribution with parameters µ, σ2, θ a τ is marked LN(µ, σ2, θ, τ). 

The probability density function of four-parametric lognormal distribution can 

have very different shapes depending on the values of the parameters of the 

distribution, see Figures 3–5. Distribution may be also bimodal for σ2 > 2 and 

.// )21(tanh2)21( 2122 σ−−σ−⋅σ<µ −  Probability density function of 

four-parametric lognormal distribution is often presented in the form 
 

f(x; γ, δ, θ, τ) ,ln
2

2
1exp

2)()(
)(






















−τ
θ−

⋅δ+γ−⋅
π⋅−τ⋅θ−

θ−τ⋅δ
=

x
x

xx

 

 

,τ<<θ x  

  (72) 

 ,0=  else, 

where it is valid between the expressions for probability density function (71) and 

(72) .1and
δ

=σ
δ
γ

−=µ  

If the random variable X has four-parametric lognormal distribution 

LN(µ, σ2, θ, τ), then the random variable 

X
XY
−τ

θ−
= ln

 
(73) 
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has normal distribution N(µ, σ2) and the random variable 

.ln
ln

X
XX

X

U
−τ

θ−
⋅δ+γ=

σ

µ−
−τ

θ−

=

  

(74) 

has standardized normal distribution N(0; 1). Parameter µ is therefore the 

expected value of a random variable (73) and the parameter σ2 is the variance of 

this random variable. The parameter θ is the beginning of the distribution 

(theoretical minimum) of a random variable X and the parameter τ represents the 

end point of the distribution (theoretical maximum) of the random variable X. 

More on the lognormal distribution is for example in [6], [9], [10], [15] or 

[16]. 
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Source: Own research 

Figure 3: Probability density function of four-parametric lognormal distribution     

        for the values of parameters σ = 2 (σ2 = 4); θ = 2; τ = 20 
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 Figure 4: Probability density function of four-parametric lognormal distribution  

         for the values of parameters σ = 2 (σ2 = 4); θ = 2; τ = 20 
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Figure 5: Probability density function of four-parametric lognormal distribution  

        for the values of parameters μ = –1; θ = 2; τ = 20 
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4  Methods of Point Parameter Estimation 

We focus here only on the parameter estimation of three-parametric 

lognormal distribution, which is the basic theoretical probability distribution of 

this research. Various methods of parametric estimation can be used for estimating 

the parameters of three-parametric lognormal distribution. There are for example 

the maximum likelihood method, moment method, quantile method, Kemsley’s 

method, Cohen’s method, L-moment method, TL-moment method, graphical 

method, etc. We focus on maximum likelihood method and on lesser-known 

methods of parametric estimation, i.e. Kemsley’s method and Cohen’s method. 

 

 

4.1 Maximum Likelihood Method 

Let the random sample of the sample size n comes from three-parametric 

lognormal distribution with probability density function (52) or (53). Then the 

likelihood function has the form 

=∏ σσ
=

θµ=θµ
n

i
ixfL

1
22 ),,;(),,;(x   

  

.
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])([ln 2
exp

)()(2)(
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1 2
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22
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−⋅

∏ θ−⋅π⋅σ

=
=

=

n

i

i

n

i
i

/n/n

x

x

 
(75) 

We determine the logarithm of the likelihood function 

   

1 1

2

2

2
2

ln ( ; , , )

[ln ( ) ]
ln (2 ) ln ( ).ln

2 22

n n

i i
i

L

n nxi
x

µ θσ

µθ πσ θ
σ= =

− −
= − − ⋅ − ⋅ − −∑ ∑

x

       (76) 

We put in the equality to zero the first partial derivation of the logarithm of the 

likelihood function according to μ and according to σ2 by 
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1

2
=
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=
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θµ∂
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∑ θ−σ =

n

i
ixL x  

 

(77) 
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24
1

2

2

2
=−=

θµ∂
σσ
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σ∂
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n

i
xix  

 

(78) 

We obtain maximum likelihood estimations of the parameters μ and σ2 for the 

given parameter θ after treatment 

,1
)(ln

)(
n

ˆ

n

i
ix∑ θ

=
−

=θµ  

 

(79) 

  

.
)]()([ln

)( 1

2

2

n

ˆxi
ˆ

n

i
∑ θµ−θ−

=θσ
=  

 

(80) 

If the value of the parameter θ in known, we get the maximum likelihood 

estimations of the remaining two parameters of three-parametric lognormal 

distribution using the expressions (79) and (80). However, if the value of the 

parameter θ is unknown, the problem is more complicated. It can be proved that if 

the parameter θ closes to min{X1, X2, …, Xn}, then the maximum likelihood 

approaches to infinity. The maximum likelihood method is also often combined 

with Cohen’s method, where we put the smallest sample value to be equal to the 

100 ⋅ (n + 1)− 1
 -percentage quantile 

.)(exp )1(min 1uˆˆˆx n
V

+ −⋅σ+µ+θ=   

(81) 

Equation (81) is then combined with a system of equations (79) and (80). 

For solving of maximum likelihood equations (79) and (80) it is also possible 

to use θ̂  satisfying the equation  

,0
)(

)(
)( 1

1
=

θσ

∑
θ−

+∑ θ−
=

= ˆˆ

n
ˆxi

z\
i

ˆx
in

i i  

 
(82) 
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where 
 

,
)(

)()(ln

θσ

θµ−θ−
= ˆˆ

ˆˆˆx
z

i\
i  

 

(83) 

where )ˆ(ˆand)ˆ(ˆ θσθµ  satisfy equations (79) and (80) with the parameter θ 

replaced by .θ̂  We may also obtain the limits of variances 

,
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)(2exp2
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(84) 
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=σ⋅ ˆDn  

 

(86) 

Especially difficulties related with the use of the equations (79), (80) and (82) 

lead us to think about other methods. 

 

 

4.2 Kemsley’s Method 

Kemsley used the estimation method, which is a combination of moment and 

quantile methods of parametric estimation. This method of parametric estimation 

put into equality the sample quantiles xx PP
V

11
V

1 and −  and the corresponding 

theoretical quantiles of the probability distribution. We get the last equation so 

that we put sample average equal to the expected value of the probability 

distribution (“K” means Kemsley’s estimation) 

,)(exp KK
1

KV
1 ux PP ⋅σ+µ+θ=  (87) 
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Now we solve a similar system of equations as in the case of quantile method of 

parameter estimation and 
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(90) 
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        Figure 6: Graph K2σ  for Kemsley’s method of parametric estimation for         

              p1 = 0,05; 0,10 and 0,20 

 

The proposal for the solution of equation (90) K2σ  determines approximately 

using Figure 6. Then we obtain the values of the remaining two parameters using 

the expressions 
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K ux PP ⋅σ+µ−=θ  (92) 

 

 

4.3 Cohen’s Method of the Smallest Sample Value 
It is known that parameter θ determines the beginning of three-parametric 

lognormal distribution. In this case, an appropriate estimation would be a function 

of the smallest sample value. This method constitutes an alternative to the method 

of maximum likelihood. This keeps the equations (79) and (80) and needed the 

third equation is based on the smallest sample value xmin. If the value xmin is 

contained nmin-times in the sample, then the sample quantile of order 
n

nmin  in the 

third equation is putted into equality to the corresponding theoretical quantile of 

the distribution. Thus, Cohen’s method represents a combination of maximum 

likelihood method and the quantile method. We can get the parameter estimations 

obtained by Cohen’s method with the system of equations (“C” means Cohen’s 

estimation) 
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5  Appropriateness of the Model 

It is also necessary to assess the suitability of constructed model or choose 

a model from several alternatives, which is made by some criterion, which can be 

a sum of absolute deviations of the observed and theoretical frequencies for all 

intervals 
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S nn π
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or known criterion χ2 
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where ni are the observed frequencies in individual intervals, πi are the theoretical 

probabilities of membership of statistical unit into the i-th interval, n is the total 

sample size of corresponding statistical file, n ⋅ πi are the theoretical frequencies in 

individual intervals, i = 1, 2, ..., k, and k is the number of intervals. 

The question of the appropriateness of the given curve for model of the 

distribution of wage is not entirely conventional mathematical-statistical problem 

in which we test the null hypothesis 

H0: The sample comes from the supposed theoretical distribution 

against the alternative hypothesis 

H1: non H0,  

because in goodness of fit tests in the case of wage distribution we meet frequently 

with the fact that we work with large sample sizes and therefore the tests would 

almost always lead to the rejection of the null hypothesis. This results not only 

from the fact that with such large sample sizes the power of the test is so high at 

the chosen significance level that the test uncovers all the slightest deviations of 

the actual wage distribution and a model, but it also results from the principle of 

construction of the test. But practically we are not interested in such small 

deviations, so only gross agreement of the model with reality is sufficient and we 
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so called “borrow” the model (curve). Test criterion χ2 can be used in that 

direction only tentatively. When evaluating the suitability of the model we 

proceed to a large extent subjective and we rely on experience and logical 

analysis. 

 

 

6  Database 

The data base of the research consists in employees of the Czech Republic. 

There are a total set of all employees of the Czech Republic together and further 

the partial sets broken down by various demographic and socio-economic factors. 

Figures 7 and 8 provide information on the geographic position of the Czech 

Republic in Europe and look at the map of the Czech Republic. The researched 

variable is the gross monthly wage in CZK (nominal wage). Data come from the 

official website of the Czech Statistical Office. The data was in the form of 

interval frequency distribution, since the individual data is not currently available.  

 

Researched period represents years 

2003−2010. Employees of the Czech 

Republic were classified according to 

gender, job classification (CZ-ISCO), the 

classification of economic activities, age 

and educational attainment. Branch 

Classification of Economic Activities 

(OKEC) has been replaced by 

Classification of Economic Activities 

(CZ-NACE) during researched period. 

This fast therefore disrupts the continuity 

of the obtained time series during the 

analysis period.  

   Source: www.obrazky.cz 
Figure 7: Position of the Czech       
        Republic in Europe 

http://www.obrazky.cz/
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The main classes of 

Job Classification 

CZ-ISCO form: 

Managers (code 1000); 

Professionals (code 

2000); Technicians and 

Associate Pprofessionals 

(code 3000); Clerical 

Support Workers (code 

4000); Service and Sales 

Workers (code 5000); 

Skilled Agricultural, 

Forestry  and   Fishery Source: www.obrazky.cz  
Figure 8: Map of the Czech Republic 

                 

Workers (code 6000); Craft and Related Trades Workers (code 7000); Plant and 

Machine Operators, and Assemblers (code 8000); Elementary Occupations (code 

9000). 

The main classes of Branch Classification of Economic Activities − OKEC 

(years 2003-2008) are: A-B − Agriculture, Fishing; C-E − Industry; F − 

Construction; G − Trade, Repairs; H − Hotels and Restaurants; I − Transport, 

Storage; J − Financial intermediation; K − Real Estate, Renting; L − Public 

Administration; M − Education; N − health; O − Other Services. 

The main classes of Classification of Economic Activities − CZ-NACE (years 

2009-2010)  represent: A − Agriculture, Forestry and Fishing; B-E − Industry;  

F − Construction;  G − Wholesale  and  Retail Trade, Repair of Motor 

Vehicles and Motorcycles; H − Transportation and Storage; I − Accommodation 

and Food Service Activities; J − Information and Communication; K − Financial 
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and Insurance Activities; L − Real Estate activities; M − Professional, Scientific 

and Technical Activities; N − Administrative and Support Service Activities; O − 

Public Administration and Defense, Compulsory Social Security;  P − Education; 

Q − Human Health and Social Work Activities; R − Arts, Entertainment and 

Recreation; S − Other Service Activities. 

Classification by age include the following age intervals: to 19 years; from 20 

to 24 years; from 25 to 29 years; from 30 to 34 years; from 35 to 39 years; from 

40 to 44 years; from 45 to 49 years; from 50 to 54 years; from 55 to 59 years; 

from 60 to 64 years; from 65 years. 

Classification according to educational attainment distinguishes the following 

five levels of educational attainment of the employee: Primary education; 

Apprenticeship; Secondary with GCE; Higher post-secondary schools; University. 

Tables 4−9 provide information on the sample sizes of sample sets of employees 

of single researched wage distribution. 

 

 

Table 4: Sample sizes of wage distribution by gender 
 

Gender 

Year 

2003 2004 2005 2006 2007 2008 2009 2010 

         

Total 1,018,934 1,404,496 1,515,527 1,614,372 1,673,498 1,711,811 1,651,506 1,662,829 

Men 559,863 711,551 769,802 813,821 858,656 875,139 846,028 850,788 

Women 459,071 692,945 745,725 800,551 814,842 836,672 805,478 812,041 

Source: www.czso.cz 

 

 

Table 5: Sample sizes of wage distribution by Job Classification CZ-ISCO 
CZ-ISCO 

code 

Year 

2003 2004 2005 2006 2007 2008 2009 2010 

         

1000 60,300 84,264 91,302 96,382 104,516 107,599 109,281 110,155 

2000 109,779 241,959 248,320 270,252 273,497 285,880 289,894 295,775 

3000 250,639 355,319 383,730 402,651 402,553 413,067 399,798 401,402 

http://www.czso.cz/
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4000 77,565 95,552 101,920 111,470 118,124 122,083 123,784 125,778 

5000 63,685 95,247 108,172 122,661 128,053 134,127 134,560 134,370 

6000 9,912 10,697 11,417 10,098 8,859 7,877 7,630 7,250 

7000 193,715 211,356 226,527 232,399 243,246 243,390 221,308 225,420 

8000 192,378 214,229 240,057 258,177 282,001 284,634 260,355 256,472 

9000 60,961 95,873 104,082 110,282 112,649 113,154 104,896 106,207 

Source: www.czso.cz 

 

 

Table 6: Sample sizes of wage distribution by Branch Classification of Economic 

Activities OKEC 
 

OKEČ 

Year 

2003 2004 2005 2006 2007 2008 2009 2010 

         

A+B 28,132 31,055 33,004 27,502 24,296 21,537 − − 

C-E 431,534 479,817 522,097 554,783 600,924 603,951 − − 

F 38,261 42,223 45,242 43,941 50,073 50,437 − − 

G 52,070 63,221 74,232 93,353 111,944 120,464 − − 

H 8,556 11,188 12,020 15,447 16,858 16,997 − − 

I 161,895 157,881 142,185 141,819 143,612 144,536 − − 

J 47,932 52,140 48,601 51,893 53,506 55,993 − − 

K 35,911 43,758 49,080 59,836 67,604 79,003 − − 

L 68,971 192,993 217,590 235,536 232,800 233,438 − − 

M 33,508 173,477 183,277 189,068 187,325 188,730 − − 

N 93,480 125,784 149,429 160,700 144,471 155,533 − − 

O 18,684 30,959 38,770 40,494 40,085 41,192 − − 

Source: www.czso.cz 

 

 

Table 7: Sample sizes of wage distribution by Classification of Economic 

Activities CZ-NACE 
CZ-NACE Year 

2003 2004 2005 2006 2007 2008 2009 2010 

         

A − − − − − − 20,560 18,659 

B-E − − − − − − 558,904 560,299 

http://www.czso.cz/
http://www.czso.cz/
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F − − − − − − 50,789 52,769 

G − − − − − − 125,373 130,348 

H − − − − − − 147,328 141,193 

I − − − − − − 17,132 16,673 

J − − − − − − 42,058 43,602 

K − − − − − − 57,149 57,715 

L − − − − − − 5,540 5,093 

M − − − − − − 20,922 22,978 

N − − − − − − 41,588 44,533 

O − − − − − − 208,606 212,765 

P − − − − − − 185,453 186,092 

Q − − − − − − 143,595 143,877 

R − − − − − − 23,756 23,033 

S − − − − − − 2,753 3,200 

Source: www.czso.cz 

 

 

Table 8: Sample sizes of wage distribution by age 
Age  

(in years) 

Year 

2003 2004 2005 2006 2007 2008 2009 2010 

         

  − 19 2,805 3,567 4,314 5,887 6,879 6,455 4,245 3,927 

20 − 24 63,496 76,595 86,317 97,025 105,523 106,958 94,097 91,160 

25 − 29 129,298 166,682 178,259 188,289 193,222 190,866 177,961 177,044 

30 − 34 121,054 173,799 197,020 217,720 227,325 231,284 220,500 216,899 

35 − 39 122,324 170,268 183,513 198,609 210,780 226,740 233,095 246,619 

40 − 44 123,278 184,904 204,368 218,373 225,528 226,265 216,461 218,695 

45 − 49 148,936 198,188 205,107 208,653 209,454 217,468 220,087 227,237 

50 − 54 166,456 221,988 222,759 220,744 220,894 216,944 201,687 194,387 

55 − 59 113,813 163,222 182,059 194,592 200,682 207,352 201,606 203,674 

60 − 64 22,019 36,571 42,151 52,473 60,501 66,795 66,452 68,220 

65 + 5,455 8,712 9,660 12,007 12,710 14,684 15,315 14,967 

Source: www.czso.cz 

 

 

 

http://www.czso.cz/
http://www.czso.cz/
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Table 9: Sample sizes of wage distribution by educational attainment 
 

Education 

Year 

2003 2004 2005 2006 2007 2008 2009 2010 

         

Primary education 95,112 119,480 125,972 129,027 135,399 137,190 120,254 116,383 

Apprenticeship 377,347 470,688 523,744 553,522 587,081 591,669 557,780 555,266 

Secondary with 

GCE 
408,562 560,237 575,668 621,306 629,447 644,576 625,631 627,073 

Higher 

post-secondary 

schools 

15,749 29,144 40,055 42,856 47,967 54,439 57,747 64,684 

University 122,164 224,947 250,088 267,661 273,604 283,937 290,094 299,423 

Source: www.czso.cz 

 

 

7  Main Results 

All calculations were made using the statistical program packages Statgraphics 

and SAS, spreadsheet Microsoft Excel and mathematical program R.  

Figures 9 and 10 provide an overview of the development of the annual 

growth rate of the level of gross monthly wage in the Czech Republic in the period 

and the overview of the development of the average annual inflation. Because the 

growth rate is calculated from the growth coefficient, which is the ratio of two 

consecutive values of the time series, we would have data for 2002 to calculate the 

growth rate for the year 2003. Since 2002 is not included in the analysis period, 

the growth rate for 2003 is not presented here. The impact of the global economic 

crisis on the development of the wage level in the Czech Republic and on the 

development of inflation is clearly evident from these figures. It is apparent from 

Figure 9 that the annual growth rate of middle gross monthly wage in the Czech 

Republic dropped to almost zero in 2009. It has increased slightly over the next 

year, but it is far below the values before crisis. It is plainly evident from 

Figure 10 that the average annual inflation rate fell sharply in 2009, but it again 

slightly increase during the next year, too. 

http://www.czso.cz/
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Figure 11 presents the dependence of the value of criterion (96) on the sample 

size. A similar situation exists in term of the criterion (97). This is the wage 

distribution broken down by classification of economic activities CZ-NACE, i.e. 

a total of 32 wage distributions of the years 2009–2010. This is only a chosen file 

of wage distribution for clear visibility, since we obtain similar results also in 

terms of all surveyed wage distribution. The linear dependence of the value of 

criterion S on the sample size follows from Figure 11. Figure 12 presents the 

results of significance tests for the linear dependence. We can see from Figure 12 

that both significance tests of regression coefficient are significant at 5%, but even 

at 1% significance level (t-test and F-test of regression coefficient provide 

equivalent results form the linear dependence between two variables). Linear 

dependence of the value of criterion S on sample size is therefore proved even at 

1% significance level. 

 

0

1

2

3

4

5

6

7

8

2004 2005 2006 2007 2008 2009 2010

gr
ow

th
 ra

te
 o

f m
ed

ia
n 

of
 th

e 
gr

os
s 

m
on

th
ly

 w
ag

e 
(in

 %
)

year  
Source: Own researc 

Figure 9: Annual growth rate of the median of gross monthly wage in the Czech  

        Republic in 2003−2010 (in %) 
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Figure 10: Average annual inflation rate in 2003−2010 (in %) 

 

 
The determination coefficient in Figure 12 says that 86.57 % of the variability 

of criterion S in given 32 wage distributions can be explained by the chosen 

regression line. The correlation coefficient in Figure 12 shows a very tight direct 

linear dependence of the criterion S on sample size of wage distribution. 

Table 10 presents parameter estimations obtained using the various three 

methods of point parameter estimation and the value of criterion S for the total 

wage distribution of the Czech Republic. This table describes approximately the 

research results of all 328 wage distribution. We obtained in total research that the 

method of TL-moments provided the most accurate results in almost all cases of 

wage distribution with minor exceptions, deviations occur mainly at both ends of 

the wage distribution due to the extreme open intervals of interval frequency 

distribution. In the results of Table 10 for total sets of wage distribution of the 

Czech Republic in 2003–2010 method of TL-moments always brings the most 

accurate results in terms of criterion S.  

 



Diana Bílková 43  
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Figure 11: Dependence of the value of criterion S (in 1,000) on sample size  

         (in 1,000) - broken down by educational attainment, years 2003–2010 

 

 

In terms of research of all 328 wage distribution, method of L-moments 

brought the second most accurate results in more than in half of the cases. 

Deviations occur again especially at both ends of the distribution. In the results of 

Table 10 method of L-moments brought the second most accurate results in terms 

of all total sets of wage distribution of the Czech Republic in 2003–2010. 
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Regression Analysis - Linear model: Y = a + b*X
-----------------------------------------------------------------------------
Dependent variable: criterion S
Independent variable: sample size
-----------------------------------------------------------------------------
                               Standard          T
Parameter       Estimate         Error       Statistic        P-Value
-----------------------------------------------------------------------------
Intercept        3,20675        2,71914        1,17933         0,2475
Slope           0,222708      0,0160139        13,9071         0,0000
-----------------------------------------------------------------------------

                           Analysis of Variance
-----------------------------------------------------------------------------
Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value
-----------------------------------------------------------------------------
Model                     28734,2      1      28734,2     193,41       0,0000
Residual                  4457,03     30      148,568
-----------------------------------------------------------------------------
Total (Corr.)             33191,2     31

Correlation Coefficient = 0,930439
R-squared = 86,5717 percent
Standard Error of Est. = 12,1888  

    Source: Own research 
Figure 12: Dependence of the value of criterion S (in 1,000) on sample size  

         (in 1,000)-broken down by educational attainment, years 2003–20103) 
 

 

 

 

 

3)  Output of the statistical program Statgraphics; decimal comma is used instead decimal 
point in this output 
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Table 10: Parameter estimations obtained using the various three methods of point parameter estimation and the value of criterion S for the total 

wage distribution of the Czech Republic 
 

 

 

 

Year 

Method 

 

Method of TL-moments 

 

Method of L-moments 

Maximum likelihood method in combination with 

Cohen’s method 

Parameter estimation Parameter estimation Parameter estimation 

µ σ2 θ µ σ2 θ µ σ2 θ 

          

2003 9.059 747 0.630 754 9,065.52 9.017 534 0.608 369 7,664.46 9.741 305 0.197 395 2.07 

2004 9.215 324 0.581 251 8,552.10 9.241 235 0.507 676 6,541.16 9.780 008 0.232 406 0.22 

2005 9.277 248 0.573 002 8,872.54 9.283 399 0.515 290 6,977.45 9.833 604 0.228 654 0.27 

2006 9.313 803 0.577 726 9,382.66 9.283 883 0.543 225 7,868.21 9.890 594 0.210 672 0.59 

2007 9.382 135 0.680 571 10,027.84 9.387 739 0.601 135 7,902.64 9.950 263 0.268 224 0.16 

2008 9.438 936 0.688 668 10,898.39 9.423 053 0.624 340 8,754.64 10.017 433 0.264 124 0.19 

2009 9.444 217 0.703 536 10,640.53 9.431 478 0.631 013 8,684.51 10.019 787 0.269 047 0.20 

2010 9.482 060 0.681 258 10,616.80 9.453 027 0.621 057 8,746.20 10.033 810 0.269 895 0.20 

 

 

 

 Criterion S  Criterion S Criterion S 

          

2003  108,437.01   133,320.79   248,331.74  

2004  146,509.34   248,438.78   281,541.41  

2005  137,422.05   231,978.79   311,008.23  

2006  149,144.68   216,373.24   325,055.67  
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2007  198,670.74   366,202.87   370,373.62  

2008  206,698.93   357,668.48   391,346.02  

2009  193,559.55   335,999.20   359,736.37  

2010  200,060.20   339,871.80   378,629.15  

Source: Own research



Diana Bílková 47  

0

5000

10000

15000

20000

25000

2003 2004 2005 2006 2007 2008 2009 2010

m
ed

ia
n 

(in
 C

ZK
)

year

sample median
method of TL-moments
method of L-moments
maximum likelihood method

 
Source: Own research 

Figure 13: Development of sample and theoretical median of three-parametric  

         lognormal curves with parameters estimated using three various    

         methods of parameter estimation 
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Figure 14: Development of probability density function of three-parametric 

lognormal curves with parameters estimated using the method of TL-moments 
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Figure 15: Development of probability density function of three-parametric   

         lognormal curves with parameters estimated using the method of  

         L-moments 
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Figure 16: Development of probability density function of three-parametric  

         lognormal curves with parameters estimated using the maximum     

         likelihood method 
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Figure 17: The values of S criterion for model three-parametric lognormal curves  

         with parameters estimated by methods of point parameter estimation       

         (year 2010, broken down by codes of job classification) 
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Figure 18: The values of S criterion for model three-parametric lognormal curves  

         with parameters estimated by methods of point parameter estimation        

         (year 2010, broken down by age intervals in years) 
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Overall, maximum likelihood method was the third in most cases in terms of 

accuracy of the results obtained (in all cases in Table 10). Figure 13 also gives 

some idea of the accuracy of the researched methods of point parameter estimation. 

This figure shows the development of the sample median of gross monthly wage 

for the total set of all employees of the Czech Republic together in the period 

2003–2010 and the development of corresponding theoretical median of model 

three-parametric lognormal curves with parameters estimated by three various 

methods of point parameter estimation. We can observe from this figure that the 

curve characterizing the course of theoretical median of three-parametric 

lognormal distribution with parameters estimated using the method of 

TL-moments adheres the most to the curve showing the development of the 

sample median. The other two curves articulating the development of the 

theoretical median of three-parametric lognormal curves with parameters 

estimated by method of L-moments and by maximum likelihood method are 

relatively remote from the course of sample median of wage distribution. 

Figures 14–16 represents the development of probability density function of 

three-parametric lognormal curves with parameters estimated using the method of 

TL-moments, method of L-moments and maximum likelihood method. This is 

again a development of model distributions of the total wage distribution of the 

Czech Republic for all employees of the Czech Republic together in the period 

2003––2010. We can see that the shapes of the lognormal curves with parameters 

estimated using the method of L-moments and maximum likelihood method 

(Figures 15 and 16) are similar mutually and they are very different from the 

shape of three-parametric lognormal curves with parameters estimated by the 

method of TL-moments (Figure 14). 

Figure 17 shows the values of criterion S of wage distributions broken down 

by job classification in 2010 and Figure 18 presents the same of wage distributions 

broken down by five-year age intervals in 2010. High accuracy of the method of 

TL-moments against the other two methods of point parameter estimation is 
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evident from these two figures, too. 

Other methods usable for processing of the economic data are presented for 

example in [18]–[20]. 

 

 

8  Conclusion 
Alternative category of moment characteristics of probability distributions 

was introduced here. There are the characteristics in the form of L-moments and 

TL-moments. Accuracy of the methods of L-moments and TL-moments was 

compared with the accuracy of the maximum likelihood method using such 

criterion as the sum of all absolute deviations of the observed and theoretical 

frequencies for all intervals. Higher accuracy of the method of TL-moments due to 

the method of L-moments and to the maximum likelihood method was proved by 

studying of the set of 328 wage distribution. However, the advantages of the 

method of L-moments to the maximum likelihood method were demonstrated here, 

too. The values of χ2 criterion were also calculated for each wage distribution, but 

this test led always to the rejection of the null hypothesis about the supposed shape 

of the distribution due to the large sample sizes, which are typical for wage 

distribution. The dependence the value of criterion χ2 and the value of criterion of 

the sum of all absolute deviations of observed and theoretical frequencies on the 

sample size follows from the construction of the test. The linear dependence of the 

value of criterion of the sum of all absolute deviations of observed and theoretical 

frequencies on the sample size was proved even at 1% significance level. 
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